
CONCURRENCYANDCOMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2011)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.1746

Concurrent FFT computing on multicore processors

J. Barhen1,∗,†, T. Humble1, P. Mitra1,2, N. Imam1, B. Schleck3, C. Kotas1
and M. Traweek4

1CESAR, Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge,
TN 37831-6015, U.S.A.

2Computer Science and Engineering, University of Notre Dame, Notre-Dame, IN 46556, U.S.A.
3Coherent Logix, Inc., Austin, TX 78746, U.S.A.

4Maritime Sensing Branch, Office of Naval Research, Arlington, VA 22203, U.S.A.

SUMMARY

The emergence of streaming multicore processors with multi-SIMD (single-instruction multiple-data)
architectures and ultra-low power operation combined with real-time compute and I/O reconfigurability
opens unprecedented opportunities for executing sophisticated signal processing algorithms faster and
within a much lower energy budget. Here, we present an unconventional Fast Fourier Transform (FFT)
implementation scheme for the IBM Cell, named transverse vectorization. It is shown to outperform (both
in terms of timing and GFLOP throughput) the fastest FFT results reported to date for the Cell in the
open literature. We also provide the first results for multi-FFT implementation and application on the
novel, ultra-low power Coherent Logix HyperX processor. Copyright ! 2011 John Wiley & Sons, Ltd.

Received 2 September 2010; Accepted 30 January 2011

KEY WORDS: multicore processors; FFT; HyperX; IBM cell; transverse vectorization

1. INTRODUCTION

In commenting on Charles Van Loan’s seminal book [1] Computational Frameworks for the Fast
Fourier Transform, David Bailey wrote in the Journal SIAM Review that ‘. . . the FFT has found
application in almost every field of modern science, including fields as diverse as astronomy, acous-
tics, image processing, fluid dynamics, petroleum exploration, medicine, and quantum physics . . .
It is not an exercise in hyperbole to say that the world as we know it would be different without
the FFT.’ [2]. This observation, made over a decade ago, is ever more valid today.

The application area of interest to us involves detection, classification, and tracking of underwater
targets [3]. As stealth technologies used for such targets become more pervasive, there is a need
to deploy ever more performing sensor arrays. To fully exploit the information contained in data
measured by these novel devices requires use of unconventional algorithms that exhibit growing
computational complexity (function of the number of acoustic channels and the number of complex
samples in each observation window). For example, signal whitening has long been recognized as
an essential stage in processing sonar array data [4]. The unconventional twice whitening paradigm
includes the inversion of the spatio-temporal covariance matrix for ambient noise via unitary
Fourier factorization [3]. The computational challenge one faces in such an endeavor stems from
the following considerations. An array consisting of Ne acoustic channels (or ‘elements’), capturing

∗Correspondence to: J. Barhen, CESAR, Computer Science and Mathematics Division, Oak Ridge National Laboratory,
Oak Ridge, TN 37831-6015, U.S.A.

†E-mail: barhenj@ornl.gov

Copyright ! 2011 John Wiley & Sons, Ltd.

J. BARHEN ET AL.

Ns complex samples per time window per channel, (Ne "103,Ns "104) yields a spatio-temporal
covariance matrix of size 107×107 for diffuse ambient noise. Its inversion may involve up to
3×103 16K-point complex Fast Fourier Transforms (FFTs) [3] per window.

This, in turn, translates into computational throughput that cannot readily be met with
conventional hardware. In such a context, the emergence of streaming multicore processors
with multi-SIMD (single-instruction multiple-data) architectures (e.g. the IBM ‘Cell’ [5], the
NVIDIA Tesla [6]), or with multiple-instruction multiple-data (MIMD) capabilities (Coherent
Logix ‘HyperX’ [7]), opens unprecedented opportunities for executing many sophisticated signal
processing algorithms, including FFTs, faster and within a much lower energy budget.

Our objective, in this paper, is to report on the development, implementation, and demonstration
of two massively parallel computational schemes for the FFT that exploit the capabilities of two
such multicore processors, namely the IBM Cell and the Coherent Logix HyperX. Our paper is
organized as follows. Section 2 briefly reviews the current approaches to parallelizing the FFT,
and motivates the concept of transverse vectorization (TV). In Section 3, we highlight several
multicore platforms that are under consideration for sensor array processing. The implementation
of the TV scheme on the IBM Cell is subsequently discussed in Section 4. Corresponding results
are given in Section 5. FFT implementation on the HyperX and results achieved in the context of
a specific application are presented in Sections 6 and 7. Finally, conclusions reached so far are
given in Section 8.

2. VECTORIZATION OF THE FFT

Exploiting the capabilities of SIMD processors to improve the performance of FFT has long
been of interest to the applied mathematics, signal processing, and computer science communities
[1, 8–11]. Historically, SIMD schemes first appeared in the 1970s and 1980s, in the so-called
‘vector supercomputers’ (such as the Cray 1), where the emphasis was on multiple vector registers,
each of which held many words. For instance, the Cray 1 had eight vector registers, each holding
64 words, each 64-bit long. But operations on words of lengths of up to 512 bits had also been
proposed (e.g. on the CDC STAR-100). In the recent years, with the emergence of SIMD-enhanced
multicore devices with short vector instructions (up to 128 bits), there is a rapidly increasing
interest in the topic [12–15]. Most of the latest reported innovations attempt to achieve optimal
device-dependent performance by optimizing cache utilization or vectorizing operations carried
out on a single data sequence. In this paper, we address a complementary question. Specifically,
we propose an algorithm that extends an existing sequential FFT algorithm (say decimation in
frequency) so as to carry out an FFT on several data vectors concurrently, while exploiting the
architecture of the underlying multicore processor.

SIMD multicore computing architectures, such as the IBM Cell, offer new opportunities for
quickly and efficiently calculating multiple one-dimensional (1D) FFTs of acoustic signals. Since
time-sampled acoustic data arrays can naturally be partitioned across the multiple cores, there is
a very strong incentive to design vectorized FFT algorithms.

In many naval applications, there are severe constraints on the amount of power consumed (and
dissipated) by a processor. In that context, the recent availability of the Coherent Logix HyperX
MIMD multicore device, which combines ultra-low power operation with real-time compute and
I/O reconfigurability, is expected to revolutionize the framework within which detection and
tracking of underwater targets occurs. This provides the motivation for presenting here, along with
the IBM Cell data, the first comprehensive results involving the parallelization of multiple FFTs
on that processor, and their application to a non-trivial problem of relevance to spectrum sensing.

Most Cell implementation efforts reported so far have focused on parallelizing a single FFT
across all synergistic cores (synergistic processor elements (SPEs)). We define such a paradigm as
inline vectorization. It is this approach that has produced the fastest FFT execution time published
to date [14]. In contra-distinction, we are interested in the case where M 1D data arrays, each of
length N , would be Fourier-transformed concurrently by a single SPE core. This would result in

Copyright ! 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

CONCURRENT FFT COMPUTING ON MULTICORE PROCESSORS

8M arrays that could be handled simultaneously by the Cell processor, with each core exploiting
its own SIMD capability. We define such a paradigm as TV.

3. MULTICORE PLATFORMS

Four parameters are of paramount importance when evaluating the relevance of emerging compu-
tational platforms for time-critical, embedded applications. They are computational speed, commu-
nication speed (the I/O and inter-processor data transfer rates), the power dissipated (measured
in pico-Joules (pJ) per floating point operation), and the processor footprint. For each of these
parameters, one can compare the performance of an algorithm for different hardware platforms
and software (e.g. compilers) tools. Multicore processors of particular relevance for many compu-
tationally intensive maritime sensing applications include the IBM Cell [5], the Coherent Logix
HyperX [7], and the NVIDIA Tesla, Fermi, Ion and Tegra devices [6]. In this paper, we focus on
the Cell and the HyperX.

3.1. The Cell Broadband EngineTM

The Cell multicore architecture is the product of five years of intensive R&D efforts undertaken
in 2000 by IBM, Sony, and Toshiba [5]. The results reported in this paper refer to the PXC 8i
(third generation) release of the processor, implemented on QS 22 blades that utilize an IBM
BladeCenterTM H. The PXC 8i model includes one multi-threaded 64-bit PowerPC processor
element (PPE) with two levels of globally coherent cache, and eight SPEs. Each SPE consists of
a processor (synergistic processing unit (SPU)) designed for streaming workloads, local memory,
and a globally coherent Direct Memory Access (DMA) engine. Emphasis is on SIMD processing.
An integrated high-bandwidth element inter-connect bus (EIB) connects the nine processors and
their ports to external memory and to system I/O.

The key design parameters of the PXC 8i are as follows [15]. Each SPE comprises an SPU
having a peak performance of 25.6 GFLOP (single precision) for a 3.2GHz clock, a 256 kB local
store (LS) memory, a memory flow controller (MFC) with a non-blocking DMA engine, and
128 registers, each 128-bit wide to enable SIMD-type exploitation of data parallelism. The EIB
provides 2×25.6GB/s memory bandwidth to each SPE LS, and allows external communication
(I/O) up to 35GB/s (out), 25GB/s (in). The PPE has a 64-bit RISC PowerPC architecture, a
32 kB L1 cache, a 512 kB L2 cache, and can operate at clock rates in excess of 3GHz. It includes
a vector multimedia extension (VMX) unit. The total power dissipation is estimated nominally
around 125W per node (not including system memory and NIC). The total peak throughput, in
single precision, exceeds 200 GFLOPS per Cell processor, for a total communication bandwidth
above 204.8GB/s. This Cell architecture is illustrated in Figure 1. Further details on the design
parameters of the PXC 8i are well documented [14–17] and will not be repeated here. Note that
both FORTRAN 2003 and C/C++ compilers for multi-core acceleration under Linux (i.e. XLF
and XLC) are provided by IBM.

3.2. The HyperX hx3100 processor

In order to contrast its architecture with that of the better known Cell, we now highlight some
of the key features of the HyperXTM processor. Because of its ultra-low power consumption, the
HyperX is a very strong contender not only for maritime sensing computations, but also for those
applications that can substantially benefit from an MIMD capability in conjunction with real-time
reconfigurability.

3.2.1. HyperX architectural overview. The hx3100 processor is the latest entry in the HyperX
family of ultra-low power, massively parallel processors produced by Coherent Logix, Inc. [7].
The hx3100 processor is a 10-by-10 array of processing elements (PEs) embedded on an 11-by-11
array of data management and routing units (DMRs). It is illustrated in Figure 2. At a system clock
frequency of 500MHz, the maximum chip-level throughput for 32-bit floating-point operations is

Copyright ! 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

J. BARHEN ET AL.

SPU

LS

AUC

MFC

SPE 0

SPU

LS

AUC

MFC

SPE 1

SPU

LS

AUC

MFC

SPE 7

PPE

PPU

L1

L2

MIC BIC

DDR2 RRAC I/O

16 B/c

16 B/c

16 B/c

16 B/c 16 B/c x

32 B/c

Figure 1. IBM Cell processor architecture [5].

Figure 2. The Coherent Logix hx3100 processor, a 10-by-10 array of processing elements (PEs) interleaved
by an 11-by-11 array of data management and routing units (DMRs). An expanded view of four PEs
surrounded by nine DMRs demonstrates the degree of connectivity. HyperIO references the input/output
ports used by the hx3100 processor to communicate with off-chip memory or other hx3100 processors.

25 GFLOPS. Alternatively, when power consumption is prioritized, performance can be measured
for the current release as 16 GFLOPS/W [7]. This translates into energy consumption on the order
of 10 pJ per instruction, which rivals the performance of dedicated ASIC designs.

The DMR network provides DMA for the PEs to both on-chip and off-chip memory. Each
DMR has 8 kB of SRAM, and operates at a read/write cycle rate of 500MHz, while the eight
independent DMA engines within a DMR may act in parallel. A PE directly accesses data memory
in four neighboring DMRs, such that 32 kB of data is addressable by any given PE. In addition,
when a subset of PEs shares direct access to the same DMR, the associated memory space may
act as shared memory between PEs. This inter-connectedness provides for a mixture of shared and

Copyright ! 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

CONCURRENT FFT COMPUTING ON MULTICORE PROCESSORS

distributed memory hierarchies. Each DMR consists of 8 16-bit DMA engines that route memory
requests from neighboring PEs and support routing memory requests managed by other DMRs.
In addition to supporting on-chip DMAs, the DMRs handle requests to off-chip memory, including
the eight DDR2 DRAM ports. Moreover, the 24 IO ports surrounding the chip (six per side) can
be wired to connect together multiple HyperX chips.

3.2.2. Integrated software development environment. Programming the HyperX entails writing an
ANSI C program, which defines the parallelism in the algorithm through the use of the industry
standard Message Passing Interface (MPI) protocol. Note that, contrary to the IBM Cell or the
Nvidia Tesla, no FORTRAN 2003 compiler for high performance numerical computations is
yet available. The Coherent Logix integrated software tools automatically assign individual tasks
to PEs, and create routing to support the movement of data between PEs. Tasks may be both
parallelized and pipelined across multiple cores, while DMAs are controlled explicitly in software.
The latter steps provide opportunities for designing the flow of program execution to meet resource
constraints and programming requirements.

3.2.3. Power management. The current version of the HyperX architecture provides the capability
to power down quadrants of the PE grid that are unneeded by a designed application. As a result,
programs can be optimized with respect to energy usage (of the chip) as well as the computational
speed and memory bandwidth usage. Wake-up signals can be triggered by external events, such
that the processor may be shutdown during periods of computational idle time.

4. FFT TV

We now present the TV method for implementing multiple FFTs on a Cell. The problem under
consideration is a function of two parameters, namely the number of sensing channels Ne , and
the number of complex data samples, Ns . In order to convert complexities into computational
costs, two additional parameters are needed: !, which is the cost per multiplication (or division)
expressed in the appropriate units (e.g. FLOPs, instructions per cycle, etc) and ", the cost per
addition (subtraction) expressed in the same units.

Our approach makes use, via intrinsic functions calls, of the SIMD instruction set and large
number of vector registers inherent to each SPE core in order to efficiently calculate, in a concurrent
fashion, FFTs of the M 1D acoustic data arrays, each of length N. Note that, in contradistinction
to previously published techniques, no inter-core synchronization mechanism will be required.

4.1. Complexity

Let # denote the number of synchronous floating point operations executable by an SPE core. In
order to provide quantitative estimates of potential vectorization gains, we express the complexity
of the DFT and FFT in terms of the M , N , !, ", and # parameters. Note that communication costs
are not included, as we will fully exploit the non-blocking nature of the Cell’s DMA engines.

The conventional computational complexities of the DFT and FFT algorithms are usually char-
acterized as follows [18]. For the DFT:

CDFT=MN [N!+(N −1)"]. (1)

For the radix-2 FFT, the complexity estimate is

CFFT=M(!/2+")N log2(N). (2)

Consider now the two types of vectorization. Under the Inline Vectorization paradigm, one would
vectorize the operations for each 1D FT within a core, extend the parallelization across all SPE
cores, but then compute the M 1D FTs sequentially. Under the TV paradigm, each 1D FT is
computed using a standard scheme (in our case we chose decimation in frequency), but all M 1D

Copyright ! 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

J. BARHEN ET AL.

FTs processed by a core are computed in parallel. Clearly, the optimal value of M depends on the
parameter # defined above. Moreover, all cores of a processor would operate in parallel. The latter
is of relevance only if a sufficient number of FFTs need to be computed, which is typically the
case in acoustic array signal processing.

For DFT, there is no difference in computational complexity between the inline and transverse
vectorizations. Indeed,

C inline
DFT =MN

[
N
#

!+ N−1
#

"
]

(3)

while

C transv
DFT = M

#
N [N!+(N−1)"]. (4)

However, there is a very substantial difference between inline and transverse vectorization for the
FFT. Because of the recursive (nested) nature of the FFT scheme, only a small scalar factor speedup
can be achieved for inline vectorization. This factor is radix dependent. Therefore, past emphasis
for this approach has been on extending the computation over multiple cores, in conjunction with
developing very fast inter-core synchronization schemes [14]. On the other hand, the algorithm
described herein, which provides a generalization via TV of the decimation in frequency scheme,
is shown to achieve linear speedup. The complexity expression is

C transv
FFT = M

#

(!
2

+"
)
N log2(N). (5)

4.2. Implementation

We now present details of the TV scheme, including the compilers we used, platform description,
and the optimization levels. We also highlight the key data structures. Programs were written in a
mixed language framework (FORTRAN 95/2003 and C) using the IBM XLF and XLC compilers
for multicore acceleration under Linux. The C components made use of the IBM Cell SDK
3.1 and, in particular, the SPE management library libspe2 for spawning tasks on the SPU, for
managing DMA transfers, and for passing LS address information to the FORTRAN subroutines.
The FORTRAN code was used for the numerically intensive computations because of the higher
level of optimization achievable. Subroutines were written and compiled using IBM XLF 11.1.

Intrinsic SIMD functions including spu_add, spu_sub, spu_splats, spu_mul, and specialized data
structures for SIMD operations were exploited. These functions benefit from the large number
of vector registers available within each core. The FORTRAN code was compiled at the O5
optimization level. Examples of these specialized data structures are shown in Table I.

Our code, named FFT_TV was executed on an IBM Blade Center H using an IBM QS22 blade
running at 3.2 GHz. Two TV routines were developed for a Cooley-Tukey radix-2 decimation
in frequency scheme [1, 18]. One was for implicit transverse vectorization (FFT_TV_impl). It
implemented the TV concept through the FORTRAN column (:) array operator. The other routine

Table I. Calling arguments and typical SIMD data structures used in the Transverse Vectorization FFT
code. Here, Y_REAL and Y_IMAG denote the real and imaginary components of the sampled data;
WW contains the precomputed complex exponential factors; NK =number of samples; NX = log2(NK);
NV = the number of complex data vectors to be processed. Observe the explicit SIMD data structures

VECTOR(REAL(4)). Computations are in single precision.

SUBROUTINE FFT_TV_simd(Y_REAL, Y_IMAG, WW, &
Z_REAL, Z_IMAG, TSAM, NK, NX, NV, IOPM)

COMPLEX(4) WW(1:NK)
VECTOR(REAL(4)) Y_REAL(1:NK), Y_IMAG(1:NK)
VECTOR(REAL(4)) Z_REAL, Z_IMAG
...

Copyright ! 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

CONCURRENT FFT COMPUTING ON MULTICORE PROCESSORS

Table II. Excerpts from FFT_TV_simd source listing illustrating usage of SIMD intrinsic functions
SPU_ADD and SPU_SUB.

...

I = 1
L = NK

DO i_e = 1,NX
N = L / 2
i_w = I + 1

DO m = 1,NK,L
k = m + N
Z_REAL = SPU_ADD(Y_REAL(m), Y_REAL(k))
Z_IMAG = SPU_ADD(Y_IMAG(m), Y_IMAG(k))
Y_REAL(k) = SPU_SUB(Y_REAL(m), Y_REAL(k))
Y_IMAG(k) = SPU_SUB(Y_IMAG(m), Y_IMAG(k))
Y_REAL(m) = Z_REAL
Y_IMAG(m) = Z_IMAG

ENDDO
...

Table III. Excerpts of SPE code showing interface between C and FORTRAN.

// Fetch the real and imaginary data components
mfc_getb(buffer_real, inp_addr_real, SIZE,...);
mfc_getb(buffer_imag, inp_addr_imag, SIZE,...);

// Perform the TV FFT on the data set
fft_tv_simd(buffer_real, buffer_imag, ww, ...);

// Write out the deinterleaved results
mfc_putb(buffer_real, out_addr_real, SIZE,...);
mfc_putb(buffer_imag, out_addr_imag, SIZE,...);

was for explicit vectorization (FFT_TV_simd), and included explicit calls to the SIMD intrinsic
functions shown in Table II.

Communications and data transfers between the PPE and SPE cores were established using
the Cell SPE Runtime Management Library version 2 (libspe2). This API is available in the
C programming language and, therefore, FFT_TV is mixed language. FORTRAN was used to
initialize the array of complex-valued input data, and partition the data into the transposed blocks
to be processed by each SPE. Then, threads for each SPE were initialized and spawned using the
libspe2 API. On each SPE core, data was fetched from main memory using the libspe2 API, and
each data chunk of four input vectors was transformed by calling the FORTRAN-based transverse
vectorization FFT program, as shown in Table III.

Upon return, the output was written back to main memory using the libspe2 interface. Completion
of the SPE tasks was signaled by termination of the threads, and the transformed output was then
written to file using FORTRAN.

5. IBM CELL RESULTS

For test purposes we have used up to 128 data vectors per core, with each vector containing
N =1024 complex samples. Figure 3 illustrates the results for the following three cases:

• Sequential: One complex vector of size N was read at a time from system memory to each
SPE local address space; then an FFT was performed, and the results were written back to
system memory (no pipeline).

Copyright ! 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

J. BARHEN ET AL.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0
Number of Vectors per SPE (in log2units)

P
ro

ce
ss

in
g

Ti
m

e
M

ic
ro

se
cs

 (i
n

lo
g1

0
un

its
)

 Sequential

 Transverse (4) -
implicit

 Transverse (4)
SIMD explicit

1 2 3 4 5 6 7 8

Figure 3. Timing performance of transverse vectorization FFT.

• Implicit TV: Sets of four complex vectors of size N were read from system memory to each
single SPE local address space; on each SPE, FFTs were performed on them concurrently,
using the compiler’s implicitly available concurrency; then, the results were written back to
system memory. We used a pipelined flow structure with a triple-buffering scheme. Since
each SPE can operate on data in parallel while reading and writing data from and to system
memory, the pipelined flow structure hides the DMA latencies. Note that, due to DMA size
constraints, two transfers are required for each quartet of input vectors.

• Explicit TV: An explicitly vectorized version of the FFT_TV algorithm was constructed
using SIMD data structure VECTOR(REAL(4)) shown in Table I, and SIMD intrinsic
functions/instructions on the SPU, as illustrated in Table II. As in the case of the implicit
vectorization above, complex input vectors of size N were processed by sets of four in each
SPE core. Here, these complex vectors were de-interleaved, and their real and imaginary
components were stored separately. This step was considered necessary to achieve better
alignment and stride. As above, data was processed using a triple-buffering scheme to hide
the DMA latencies.

Remark. Because SPU short vectors necessarily hold data from four input vectors, no sequential
or pairwise FFT_TV tests were conducted, as this would involve ineffective zero-padding of the
data array.

Timing results for all of the routines were obtained using the SPU decrementers and time base
to convert clock cycles into microseconds. The SPU clock was started before issuing the first
DMA fetch of input data and stopped after confirming that the final output data was written to
main memory. Over the course of these tests, the timing results for each case were found to be
consistent to within ±1!s, representing a maximum uncertainty in timing of less than 1%. The
results of all cases were compared with results from a scalar FFT program run on the PPU core
and found to be accurate to within floating-point (32-bit) precision.

Each scenario above was timed with respect to the number of input vectors. The results of
these timings are shown in Figure 3. This figure plots (in units of logarithm base 2) the number
of input vectors (NV) against the processing time (expressed in logarithm base 10 units). The
performance is linear with respect to NV; however, the slopes and absolute times for each case are
different.

Next, we provide a comparison with the latest and best results related to FFT implementation on
the Cell that have been published to date in the open literature [14]. The comparison is illustrated
in Figure 4. For complex data vectors of length 1024, Bader reports a processing time of 5.2 !s
when using all SPEs of a Cell processor running at 3.2GHz. To compare his processing time to

Copyright ! 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

CONCURRENT FFT COMPUTING ON MULTICORE PROCESSORS

0
2
4
6
8

10
12

Leading Edge Methods
Ti

m
e

pe
r

FF
T

8
S

P
E

s
(in

 u
s)

 FFTW FFTC FFT_TV_SIMD

Figure 4. Comparison of FFT_TV to best competing methods [14].

Table IV. Timing results for 1024 complex FFTs (each of length
1024 points) processing 128 vectors per core across all SPEs.

SPU # Time (in !s)

0 2710
1 2710
2 2705
3 2714
4 2707
5 2705
6 2715
7 2712

ours, we observe that we need 181!s to process 64 vectors on the 8 SPEs of the Cell. This results
in a time of 2.82!s per 1D data vector.

We also timed the processing of 128 vectors per SPE (that is a total of 1024 vectors, each
of length 1024 complex samples). The timing results are shown in Table IV. The average time
is 2709.75!s, corresponding to 2.64!s per FFT. This is even faster than the result shown above
for 64 vectors, due to the reduced impact of pipeline startup and shutdown. The timing uncer-
tainty is under 0.4%. Finally, we note that additional efforts are also needed to overcome the
absence of dynamic branch predictor in the Cell, which affects code with many IF statements.
A possible alternative that avoids IF statements and bit reversal computation (although at the
cost of additional ‘work’ storage) is based on the Stockham scheme [1]. We are currently testing
such an approach on the Nvidia Tesla using CUDA FORTRAN, and the preliminary results are
promising [19].

We conclude this section with a few remarks about the vital role of programming languages. For
developing high-performance, computationally intensive programs, modern FORTRAN (including
appropriate compilers and libraries) appears essential. In this study, we have used the IBM XLF
v11.1 compiler for multicore acceleration on Linux operated systems. It is tuned for the IBM
PowerXCell 8i third generation architecture, and is intended to fully implement the intrinsic
array language, compiler optimization, numerical (e.g. complex numbers), and I/O capabilities of
FORTRAN.

DMA can be performed either in conjunction with the XLC library (as we have done here),
or solely in FORTRAN using the IBM DACS library. When computing on a single processor,
the C library provides a better performance. DACS becomes attractive when the computation has
to be distributed over multiple Cell processors. XLF supports the modern, leading-edge F2003
programming standard. It has an optimizer capable of performing inter-procedure analysis, loop
optimizations, and true SIMD vectorization for array processing. Note that the MASS (mathe-
matical acceleration subsystem) libraries of mathematical intrinsic functions tuned for optimum
performance on SPUs and PPU can be used by both FORTRAN and C applications. XLF can

Copyright ! 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

J. BARHEN ET AL.

automatically generate code overlays for the SPUs. This enables one to create SPU programs that
would otherwise be too large to fit in the local memory store of the SPUs.

6. FFT-BASED SIGNAL WHITENING ON THE hx3100 PROCESSOR

The FFT plays also a critical role in spectrum sensing, an important component in the design
and development of cognitive radio (CR) technology in which the state of the transmission envi-
ronment of the primary users and, more explicitly, the frequencies available for broadcast, must
be identified by any secondary user. Spectrum sensing often amounts to near real-time moni-
toring of wide frequency bands, a task that is computationally very demanding [20]. To mitigate
these computational challenges requires the use of algorithms that demonstrate less computational
complexity and/or take advantage of computationally more advanced hardware, while requiring
very low power processors for many field applications.

Motivated by these considerations, we focus on one local spectrum sensing strategy for the case
when a secondary user’s receiver is composed of multiple antennas, e.g. a MIMO transmission
configuration. First, we briefly review a local spectrum sensing strategy based on the detection of a
primary user’s transmitted signal, i.e. energy detection. The phenomenology bears similarities with
the detection of underwater acoustic energy by sonar arrays [3]. Here, we clarify the role of spatio-
temporal twice whitening (STTW) in designing the optimal energy detector for the MIMO signal,
and we detail the use of FFTs for reducing the computational complexity associated with those
calculations by exploiting the properties of the spatially diffuse noise at the receivers. We demon-
strate feasibility by implementing an FFT-based real-time STTW on the ultra-low power Coherent
Logix hx3100 processor. The results of this implementation are then discussed in Section 7.

6.1. Local spectrum sensing

Common approaches to local spectrum sensing include cooperative sensing, interference detection,
and transmitter detection. The latter detection techniques include matched-filter detection, energy
detection, and cyclostationary feature detection. We limit our discussion to energy detection, for
which the spectrum of the transmission is analyzed with respect to the presence or absence of
amplitude. Generically, this may be implemented by FFT-ing the received signal and determining
which frequency components have energy that exceeds some threshold. While this technique is
incapable of discriminating interference or more subtle transmission behaviors, such as frequency-
selective fading or spread spectrum techniques, energy detection provides a relatively simple and
robust method for identifying transmitter presence.

The formal spatio-temporal detection problem can be stated as follows. Let r(i) denote the signal
received, s(i) the unknown signal source, and g(i) the additive noise at the i th element of an antenna
array comprising Ne elements. Given a combined antenna array observable r, i.e. a stacked vector
r= [(r1)T, (r2)T, . . . , (rNe)T]T of Nt =NsNe complex data, we must choose between two hypotheses
H0 and H1, such that

H0 (source absent) : r=g, (6)

H1 (source present) : r= s+g. (7)

The likelihood ratio test is a central mechanism for making a decision between two hypotheses.
In practice, this statistical test uses the natural logarithm of the ratio of the probability densities
of the observable r under hypotheses H1 and H0, respectively [4]. Thus, it is usually referred to
as the log likelihood ratio (LLR) L. To compute L, one must first derive expressions for these
probability distributions, which involves the integration of complex Gaussian random processes.
Here, the result of such integration is simply

L=z+A−1z− loge(|"A|). (8)

Copyright ! 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

CONCURRENT FFT COMPUTING ON MULTICORE PROCESSORS

In Equation (8),A="−1+H−1," denotes the signal covariancematrix, and the full spatio-temporal
covariance matrix of the noise is represented as H, with

H=<g ·g+>=

H11 H12 . . . H1Ne

H21 . . .
. . .

...

...
. . .

. . .
...

HNe1 HNe2 . . . HNeNe

. (9)

Hii denotes the noise covariance matrix associated with the signal detected at antenna i , brackets
represent integration over probability densities, and z is a vector of ‘twice whitened’ data,

z=H−1r. (10)

This expression of z (introduced in [3] to avoid repeated replica whitening during target search), is
distinct from the conventional whitening expression that is written z=H−1/2r which is applied to
both sensor data and replicas. The inversion of H has complexity of order O(N3

e N
3
s). We now show

that by exploiting features in the spatially additive noise in conjunction with the FFT, we can reduce
this complexity to O(Ns N3

e). Given that Ne %Ns , this reduction in the cost of spatio-temporal data
whitening can be very significant.

6.2. Efficient algorithms for twice whitening of the sensor data

In order to design efficient algorithms to compute H−1, we exploit the specific spatio-temporal
organization of array noise data. In particular, we observe that spatially diffuse noise is wide-sense
stationary. This imposes the restriction that the submatrices ofH be Toeplitz, and that the full matrix
be block Toeplitz. Note that this approximation excludes contributions from discrete interferers to
sources of noise in Equations (6)–(7). Then, the spectral theorem yields the eigenvalues of each
Ns ×Ns submatrix Hij for i, j =1, . . .Ne , while Fourier factorization of the full covariance matrix
H yields

H=

F 0 · · · 0

0 F
. . .

...

...
. . .

. . . 0

0 · · · 0 F

K1,1
dif K1,2dif . . . K1,Ne

dif

K2,1
dif

. . .
. . .

...

...
. . .

. . .
...

KNe,1
dif KNe,2

dif . . . KNe,Ne
dif

F+ 0 · · · 0

0 F+ . . .
...

...
. . .

. . . 0

0 · · · 0 F+

≡ F̂KF̂+ (11)

F is just the Ns -point inverse Fourier transform (in unitary representation) applied to the time
series at each of the Ne array elements. The matrix K, of size Nt ×Nt (where Nt =Ne×Ns), is
band-diagonal, in the sense illustrated on Figure 5. Elements of K may then be rearranged (using
an orthogonal permutation matrix X) into block-diagonal form (see Figure 6). Given this structure,
we can efficiently invert the space–time noise covariance matrix. Indeed, using the unitarity of F̂
and the orthogonality of X, we can write

H−1= (F̂XKXTF̂+)−1= (F̂+)−1(XT)−1K−1(X)−1(F̂)−1= F̂XK−1XTF̂+. (12)

However, since K is block-diagonal, K−1 can now be computed on a frequency by frequency
basis, by inverting each block Kkk. As can readily be seen, this methodology will reduce the
complexity of inverting the full space–time covariance matrix of size Nt ×Nt to one of inverting
Ns spatial covariance matrices. Each of these matrices is of considerably smaller size Ne×Ne.
Given the block-diagonal structure of K illustrated in Figure 6, twice whitening the spatio-

temporal data reduces to a system of Ns uncoupled equations (i.e. for k=1, . . .Ns),

Kkkyk =dk (13)

Copyright ! 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

J. BARHEN ET AL.

Figure 5. Block structure of the covariance matrix H before (left) the unitary Fourier factorization. The
Fourier factorization reveals the diagonal structure of each submatrix Ki j .

Figure 6. Transformation of the band-diagonal matrix K by the orthogonal permutation matrix X yields
the block-diagonal matrix K, where each diagonal block Kkk is of size Ne×Ne .

where yk and dk represent Ne×1 ordered partitions of the transformed vectors

y=XT(F̂+z) (14)

d=XT(F̂+r) (15)

respectively. Equations (14)–(15) are carried out first; thereafter, Equation (13) is solved via
Cholesky decomposition. This result can then be permutated using X and inverse Fourier trans-
formed in order to obtain the twice-whitened signal vector z.

6.3. Program design

Our implementation of twice whitening on the hx3100 organizes the algorithm into multiple,
pipelined, and parallelized programs occupying 17 of the 100 available PEs. Refer to Figure 7 for
locations of the programs described below. First, prior to any data processing, input data is loaded
into off-chip DRAM memory banks. Here, the data is single-precision, complex-valued signal
vectors stored in sample-consecutive order in DRAM 1. At runtime, program IOPE 1 fetches one
input vector from DRAM 1 and copies the data onto the chip via a series of four routing programs
labeled RPEs. The latter manage and synchronize the input data for our complex-to-complex FFT
program.

Upon completion of the FFT of one input vector, the RPEs trigger IOPE 2 to store the transformed
data off-chip in DRAM 2. Storage of the intermediate results is required to free on-chip memory for
processing the FFT of the next input vector. The copying process occurs directly from the DMRs
used by the FFT cores and, specific to our algorithm, requires a substantial amount of processing
time. This overhead results from our current use of a strided-write operation (see Figure 8) in

Copyright ! 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

CONCURRENT FFT COMPUTING ON MULTICORE PROCESSORS

Figure 7. Layout of the STTW program on the hx3100 processor. Boxes circumscribe PEs and DMRs for
each individual program.

Figure 8. Input vectors are sequentially transformed and permutated using an Ne-strided write to DRAM.
Consecutive memory is from left to right. As a result, the vector dk read directly from DRAM 2 can be

immediately used for the twice whitening operation defined by Kkkyk =dk .

which each complex-valued sample is written to DRAM with a stride of Ne . The purpose of this
operation is to perform the permutation denoted by X in Figure 6.

Once all Ne input vectors have been transformed and written to DRAM 2, IOPE 2 changes state
and begins to fetch the permutated, length-Ne vectors that represent the partitions dk defined in
Equation (15). IOPE 3 fetches a Cholesky decomposition from DRAM 3. The latter is represented
by the Ne(Ne−1)/2 elements of an upper triangular, complex-valued matrix obtained by off-chip
decomposition of the matrix Kkk. Future versions of this program will implement the Cholesky
decomposition of each such matrix alongside the transformation and permutation of the signal
vectors. Both sets of data are moved to the DMRs of the whitening program (LPE). Within this
program forward elimination and back substitution solve Equation (13), both requiring O(N2

e)
operations to complete. The output of this program is written back to DRAM 4 via IOPE 4. Again,
a strided-write operation is used, with the Ne components (samples) spaced by Ns positions; once
all Ns solutions are obtained, DRAM 4 stores, in consecutive order, the Ne partitions of Xy
obtained from Equation (14), i.e. the FFT of the twice-whitened vector z.

An important programming consideration is the synchronization between individual PEs to
ensure continuity and correctness of data movement. The 8 kB memory available from each DMR
necessitates precise accounting for the size, location, and timing of each data segment. This
inter-core communication is performed using a special purpose API written for the C language.

Copyright ! 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

J. BARHEN ET AL.

For example, blocking variants of DMA send and receive functions and provide a basic communi-
cation mechanism for data synchronization; additional mechanisms are available for reading and
writing to DRAM.

The placement and routing of individual programs, e.g. the IO servers or the FFT cores, with
respect to the layout of available cores is also an important consideration for performance. While
this level of detail can be programmed explicitly, the HyperX software development environment
provides a global optimizer and scheduler to perform placement and routing. For example, routing
constraints ensure that the IO server programs are placed adjacent to the off-chip IO ports and that
on-chip DMA routes do not collide, e.g. when transferring data between PEs.

7. COMPUTATIONAL RESULTS ON THE hx3100 PROCESSOR

As implemented, the full program processed a series of 8192-complex-point input vectors, each
representing a noisy sinusoidal signal typical of a monotone acoustic source collected against
a diffusive (thermal) background. At a sampling rate of 64 kHz, this amounts to ∼125ms of
data. When running on the hx3100 processor, input vectors are loaded into the off-chip DDR2
memory banks. Vectors are stored in de-interleaved, bit-reversed order, with a single input vector
representing 64 kB of memory. Eight DMA transfers are required to load a collection of eight
on-chip DMRs. This IO service requires one core for managing requests to the DDR2 and, in a
double buffering approach, three neighboring DMRs to optimize timing of the data transfer.

An 8192-point, complex-to-complex decimation-in-time FFT is used to transform the input data.
Each instance employs eight PEs, as shown in Figure 7. The FFT algorithm requires bit-reversed
order input data and reordering of the input is done prior to loading the DRAM. The input and
output servers are synchronized to avoid overwriting data stored in the FFT processing cores.

We have implemented the above on the HyperX hx3100, and we have profiled the program
elements using the Integrated Software Development Environment. The results shown below refer
to version 3.0.1 of the HyperX ISDE tools for the case of Ne =8 and Ns =8192 complex samples.
The number of cycles, normalized to the relevant input type, is shown for each program in Table V.
For example, IOPE 1 requires 37 494 clock cycles to read one input vector and synchronize transfer
of that vector to the RPEs memory space. This accounting of clock cycles highlights the processing
bandwidth associated with each program; data transfer is not computationally complex, but a
moderate amount of time is needed to bring the data onto the chip. Regarding IOPE 1, the reported
cycles include sending data to the RPEs, while the cycles reported for the FPEs incorporate the
read operation from the RPE memory space. IOPE 3 reads the transformed and permutated vectors
dk from DRAM 3; recall the latter are identified by the sample (or, equivalently, frequency) index
k and there are a total of 8192 such vectors to process. The other program elements have similar
interpretations of the reported cycle counts.

IOPE 2 represents the most costly operations in this implementation. As stated above and
illustrated by Figure 8, IOPE 2 is performing a sample-by-sample strided write of the FFT output.

Table V. Program resources used, including PEs, DMRs, and
cycles per iteration of each program element.

Program PEs DMRs Cycles/iteration

IOPE 1 1 4 37494
RPEs 4 16 N/A
FPEs 8 18 137741
IOPE 2 (write) 1 4 565749
IOPE 2 (read) 1 1 136
IOPE 3 1 2 358
LPE 1 4 4384
IOPE 4 1 3 539
TOTAL 17 52 42014925

Copyright ! 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

CONCURRENT FFT COMPUTING ON MULTICORE PROCESSORS

Table VI. Power consumption (mW) with respect to clock frequency and voltage.

Tunable PE clock frequency (MHz)

Voltage (V) 200 300 400 500

1.00 914.29 1162.15 1410.01 1657.89
0.95 865.95 1089.65 1313.35 N/A
0.90 820.09 1020.86 1221.64 N/A

Many samples (8192) must be processed this way and the cost associated with strided writes to
DRAM is high. More important, the IOPE 2 write operation represents a significant bottleneck in
this implementation as the write operation takes significantly more time than the FFT processing.
However, the size of the processed data set (8×8192 samples =512kB) prohibits performing
transposition within on-chip memory space. The cost of the strided-write operation is constant
with respect to the number of input vectors. This problem will be addressed in the future work.

A notable feature of our implementation is that we employ only 17 of the available 100 PEs.
This conservative resource consumption indicates that additional programs can be incorporated
into the existing design. For example, our present implementation omits concurrent calculation
of the Cholesky decompositions for permutated and transformed noise covariance matrices Kkk.
Note that those calculations utilize a method identical to the computation of y (in timing and
complexity), and that the decomposition of each Kkk could be easily accommodated within the
LPE, provided Ne is not too large (∼35).

Table VI reports the total power consumption with respect to the PE clock frequency and
operating voltage. These results are obtained using the ISDE profiling environment, which provides
a fine-grain analysis of the power consumption of each PE. That analysis is based on both the state
of the PE (active vs inactive) and the number of clock cycles spent executing each instruction. The
clock, tuned from 200 to 500MHz, determines the overall time-to-solution of the program. Based
on the total cycles reported in Table V, a range of 84.2ms at 500MHz to 210ms at 200MHz is
observed. Lowering the voltage, from 1.0 to 0.95 to 0.9V, provides a corresponding decrease in
power. A twofold increase in power occurs between the case of 0.90V at 200MHz and the 1.0V
at 500MHz. Thus, depending on the performance requirements, STTW on the hx3100 can satisfy
a range of power and timing constraints.

8. CONCLUSIONS

To achieve the real-time and low-power performance required for maritime sensing and other
computationally demanding applications, many existing algorithms may need to be revised and
adapted to the revolutionary emerging multicore computing technologies. Novel hardware platforms
of interest to naval applications include the IBM Cell, the Coherent Logix HyperX, and the NVIDIA
Tesla (Fermi), Ion, and Tegra devices.

In this paper, we have developed, implemented on the Cell, and demonstrated a novel algorithm
for transverse vectorization of multiple 1D FFTs. This algorithm was shown to outperform, by at
least a factor of 2, the fastest results from competing leading edge methods published to date in
the open literature. We believe that the transverse vectorization should benefit signal processing
paradigms where many 1D FFTs must be processed. We have also presented an implementation of
FFT-based spatio-temporal twice whitening on the ultra-low power hx3100 processor. The novel
results from this work include exploiting the structure of the spatially diffuse noise covariance
matrix to reduce the computational complexity by a factor of N2

s , amounting to 10 orders of
magnitude for typical problems under consideration in this area. Moreover, we demonstrated that
STTW can be performed in real time on the hx3100. This processor provides a platform capable of
handling MIMD processing, and the ability for block-stream processing of MIMO data. The high

Copyright ! 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

J. BARHEN ET AL.

throughput and low-power features of our realization suggest new signal processing opportunities
for MIMO energy detectors in CR applications that have not yet been realized.

Finally, in the longer term, the emergence of multicore devices will enable the implementation of
novel, more powerful information-processing paradigms that could not be considered heretofore.

ACKNOWLEDGEMENTS

This work was supported by agencies of the United States Department of Defense, including the Office
of Naval Research. Oak Ridge National Laboratory is managed for the US Department of Energy by
UT-Battelle, LLC under contract DE-AC05-00OR22725.

REFERENCES

1. Van Loan C. Computational Frameworks for the Fast Fourier Transform. SIAM Press: Philadelphia, PA, 1992.
2. Bailey DH. Computational frameworks for the fast Fourier transform. SIAM Review 1993; 35(1):142–143.
3. Barhen J, Polcari J, Traweek M, Humble T, Imam N, Mitra P. Vector-sensor array algorithms for advanced

multicore processors. US Navy Journal of Underwater Acoustics 2010; 60:429–459.
4. Van Trees HL. Detection, Estimation, and Modulation Theory. Part I, Wiley (1968); Part III, Wiley (1971); ibid,

Wiley-Interscience (2001).
5. Kahle JA et al. Introduction to the cell multi-processor. IBM Journal of Research and Development 2005;

49(4–5):589–604.
6. www.nvidia.com, September 2010.
7. Stolka M. (Coherent Logix), personal communication. Available at: www.coherentlogix.com, August 2009.
8. Hockney RW, Jesshope CR. Parallel Computers. Adam Hilger: Bristol, 1981.
9. Swarztrauber P. Vectorizing the FFTs. Parallel Computations, Rodrigue G (ed.). Academic Press: New York,

1982; 51–83.
10. Swarztrauber P. FFT algorithms for vector computers. Parallel Computing 1984; 1:45–63.
11. Chu E, George A. Inside the FFT Black Box: Serial and Parallel Fast Fourier Transform Algorithms. CRC Press:

Boca Raton, 1999.
12. Kral S, Franchetti F, Lorenz J, Ueberhuber C. SIMD vectorization of straight line FFT code. Euro-Par’03 Parallel

Processing (Lecture Notes in Computer Science, vol. 2790). Springer: Berlin, 2003; 251–260.
13. Takahashi D. Implementation of parallel FFT using SIMD instructions on multicore processors. Proceedings of

the International Workshop on Innovative Architectures for Future Generation Processors and Systems. IEEE
Computer Society Press: Silver Spring, MD, 2007; 53–59.

14. Bader DA, Agarwal V, Kang S. Computing discrete transforms on the cell broadband engine. Parallel Computing
2009; 35(3):119–137.

15. Vogt JS et al. IBM BladeCenter QS22: Design, performance, and utilization in hybrid computing systems.
IBM Journal of Research and Development 2009; 53(5). See also IBM Systems and Technology Group. IBM
BladeCenter QS22, BLD03019-USEN-02. IBM Corporation, 2008.

16. Chellappa S, Franchetti F, Pueschel M. Computer generation of fast Fourier transforms for the cell broadband
engine. Proceedings of the International Conference on Supercomputing, SC’09, Portland, OR, 2009; 26–35.

17. Kurzak J, Dongarra J. QR factorization for the cell broadband engine. Scientific Programming 2009; 17(1–2):
31–42.

18. Brigham OE. The Fast Fourier Transform. Prentice Hall: Englewood Cliffs, NJ, 1974.
19. Barhen J, Kotas C, Imam N. Massively parallel FFT algorithm for the NVIDIA Tesla GPU. Proceedings IEEE

Passive, Brest, France, June 2010.
20. Cabric D, Mishra SM, Brodersen RW. Implementation issues in spectrum sensing for cognitive radios. The 38th

Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, vol. 1, 2004; 772–776.

Copyright ! 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

