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Abstract—While many techniques exist for local spectrum 
sensing of a primary user, each represents a computationally 
demanding task to secondary user receivers. In software-
defined radio, computational complexity lengthens the time for 
a cognitive radio to recognize changes in the transmission 
environment. This complexity is even more significant for 
spatially multiplexed receivers, e.g., in SIMO and MIMO, 
where the spatio-temporal data sets grow in size with the 
number of antennae. Limits on power and space for the 
processor hardware further constrain SDR performance. In 
this report, we discuss improvements in spatio-temporal twice 
whitening (STTW) for real-time local spectrum sensing by 
demonstrating a form of STTW well suited for MIMO 
environments. We implement STTW on the Coherent Logix 
hx3100 processor, a multicore processor intended for low-
power, high-throughput software-defined signal processing. 
These results demonstrate how coupling the novel capabilities 
of emerging multicore processors with algorithmic advances 
can enable real-time, software-defined processing of large 
spatio-temporal data sets. 
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I. INTRODUCTION  
Spectrum sensing is an important component in the 

design and development of cognitive radio (CR) programs in 
which the state of the transmission environment of the 
primary users and, more explicitly, the frequencies available 
for broadcast, must be identified by the secondary users. 
However, spectrum sensing often amounts to near-real-time 
monitoring of wide frequency bands, a task that is very 
computationally demanding. In addition, as noted by Cabric 
et al., any secondary user CR must outperform the receivers 
of a primary user by a wide margin due to consideration of 
the hidden node problem [1]. This requirement further 
increases the computational challenge placed on the software 
and hardware underlying any CR program. To mitigate these 
computational challenges requires the use of algorithms that 
demonstrate less computational complexity and/or take 
advantage of computationally more powerful hardware.  

Motivated by these considerations, we report our effort to 
decrease the computational complexity of one local spectrum 
sensing strategy for the case a secondary user’s receiver is 
composed of multiple antennas, i.e., SIMO and MIMO 
transmission configurations. In Sec. II, we review a local 

spectrum sensing strategy based on detection of a primary 
user’s transmitted signal, i.e., energy detection. We clarify 
the role of spatio-temporal twice whitening (STTW) in 
designing the optimal energy detector for the MIMO signal, 
and we detail the computational complexity associated with 
those calculations. We provide the main results of this report 
in Sec. III, where we establish a reduced computational 
complexity of STTW by accounting for properties of the 
spatially diffuse noise at the receivers. We demonstrate 
feasibility by implementing real-time STTW on the ultra-
low-power Coherent Logix hx3100 processor. As described 
in Sec. IV, the hx3100 processor has a peak performance of 
25 GFLOPS and a peak power efficiency of 16 GFLOPS/W. 
The results of this implementation, presented in Sec. V, 
support the prospects for STTW to be used in future CR 
programs. These conclusions are provided in Sec. VI. 

II. LOCAL SPECTRUM SENSING  
Common approaches to local spectrum sensing include 

cooperative sensing, interference detection, and transmitter 
detection. The latter detection techniques include:  

• matched-filter detection;  
• energy detection;  
• cyclostationary feature detection. 

We limit subsequent discussion to energy detection, for 
which the spectrum of the transmission is analyzed with 
respect to the presence or absence of amplitude. Generically, 
this may be implemented by Fourier transforming the 
received signal and detecting the presence of amplitude with 
a resolution set by the number of processed samples. While 
this technique is incapable of discriminating interference or 
more subtle transmission behaviors, such as frequency-
selective fading or spread spectrum techniques, energy 
detection provides a relatively simple and robust method for 
identifying transmitter presence.  

Energy detection minimizes the error associated with 
detection of the signal at the ith antennae, i.e.,  

 r(i ) = s(i ) +η(i ) , (1) 

where r(i) is the signal received, s(i) is the transmitted signal, 
and η (i) is additive noise. For example, hypothesis testing 
discriminates (1) from the absence of signal (r(i) = η (i)) by 
comparing the detection statistic r(i)†H(i)-1r(i) against a 



threshold [2]. This detection statistic depends explicitly on 
the whitened signal vector  

 z i( ) = H i( )−1/2r i( ) . (2) 

where H(i) denotes the noise covariance matrix for signal i, 
cf. Sec. III. Note the inversion of H(i) requires O(Nt

3) 
operations, where Nt is the number of samples. 
Consequently, better resolved detection are computationally 
very costly. Moreover, for multiple antennae, the full spatio-
temporal covariance matrix H must be employed to whiten 
the signal composed from all partitions corresponding to the 
NA antennae. The inversion of H has complexity O(NA

3 Nt
3). 

The subject of the present paper is to exploit features in the 
spatially additive noise that reduces this complexity to Nt × 
O(NA

3); given that NA << Nt, this reduction in the cost of 
spatio-temporal data whitening can be significant. 

III. SPATIO-TEMPORAL TWICE WHITENING 
Consider a collection of NA antennae having some fixed 

spatial distribution. In addition, assume each collects Nt 
complex-valued samples with the output defined in the 
temporal domain. This yields a total of Nτ = NA × Nt samples 
for the antennae array that are represented collectively by a 
vector r. The vector r is constructed from NA ordered 
partitions, e.g., r(i)

 represents the ith channel, such that  

 
 

r =
r(1)

r(Ne )

⎛

⎝⎜
⎞

⎠⎟
. (3) 

The ith partition of samples r(i) corresponds to either the sum 
of a sought after signal and the associated noise, cf. Eq. (1) 
or to the absence of any signal and, therefore, only the 
background noise. A fundamental goal of detection theory is 
to discriminate between these two hypotheses [2]. 
 The spatio-temporal noise covariance matrix for the array 
of NA antennae is represented by 

 
 

Η =
Η (1,1)

 Η (1,Ne )

  
Η (Ne ,1)  Η (Ne ,Ne )

⎛

⎝⎜
⎞

⎠⎟
 (4) 

where  

 Η (i,j) = η (i) η (j)† (5) 

represents an Nt × Nt submatrix formed by the outer product 
of the noise vectors for the ith and jth antennae. Whitening of 
the signal vector r refers, mathematically, to the application 
of the square-root inverse of Η , i.e., z = Η -1/2r. Twice-
whitening, i.e., x = H-1r, forgoes the square root operation, 
and is sufficient, for example, when computing a statistical 
description of the signal, c.f. the case of energy detection in 
Sec. II. 

For an estimate of the sizes attributed to these tensors, the 
number of antennae may be of the order NA  ~ 10. Assuming 

each sensor collects Nt ~ 106 samples (per window), the 
resulting Nτ × Nτ noise-covariance matrix Η  has on the order 
of 1014 entries. Constructing the inverse of Η  is essential in 
the theory of the optimum receiver [1]. The computational 
complexity of matrix inversion scales as O(Nτ

3); however, 
due to the symmetric positive semi-definiteness of Η , 
inversion be more efficiently obtained by the Cholesky 
decomposition [4]. Yet, even then, direct calculation of the 
twice-whitened signal vector x is exceedingly expensive. 

 
 

Figure 1.  Block structure of the covariance matrix Η  before (left) and 
after (right) Fourier transformation. Symmetry arises from the condition of 
spatially diffuse noise sources (neglecting differences due to conjugations). 
The Fourier transform reveals the block-digaonal submatrix Λ. 

To overcome the poor scaling associated with direct 
computation of Η -1, we reformulate data whitening to exploit 
the spatio-temporal organization of array data. First, we limit 
consideration of the noisy background to spatially diffuse 
noise that is wide-sense stationary. This imposes the 
restriction that the submatrices of Η  be Toeplitz and that the 
full matrix be block Toeplitz. Consequently, due to the 
Hermitian form of Η  following Eq. (4), the noise covariance 
matrix exhibits the block-diagonal structure illustrated in Fig. 
1. Note that this approximation excludes contributions from 
discrete interferes to sources of noise in Eq. (1). 

The spectral theorem yields the eigenvalues of each Nt × 
Nt submatrix Η (i,j) for i, j  = 1 to NA, while Fourier analysis of 
the full covariance matrix Η  yields  

 Η  = F Λ  F†,  (6) 

where Λ  is an Nτ × Nτ band-diagonal matrix composed of 
diagonal submatrices Λ(i,j) representing the eigenvalues of the 
corresponding noise covariance between channels i and j, 
and F symbolizes the block-diagonal form of the discrete 
Fourier transforms applied to each block. The resulting 
structure of Λ  is illustrated in Fig. 1. Elements of Λ  may 
then be permuted to form the block-diagonal matrix  

 Κ  = Ω  Λ  ΩT,  (7) 

where Ω  symbolizes the orthogonal permutation matrix and 
the kth block Κ(kk) is NA × NA for k = 1 to Nt. See Fig. 2. 

Inversion of Η  can now be recast as 

 Η –1  = F Ω  Κ –1 ΩT F†. (8) 



The cost of computing the inverse of Η  via the inverse of Κ 
then reduces from O(Nτ

3) to O(Nt NA
3), where inversion of 

the Nt submatrices of Κ each carry O(NA
3) cost. With respect 

to the resource estimates cited at the beginning of Sec. II, 
exploiting the spatial structure of the noise covariance matrix 
reduces the cost of inversion by ~6 orders of magnitude. 
 

 
Figure 2.  Transformation of the band-diagonal matrix Λ by the 
permutation matrix Ω yields the block-diagonal matrix Κ, where each 
diagonal block Κ(kk) is NA  × NA in size.  

Given the block-diagonal structure of Κ illustrated in Fig. 
2, twice whitening the spatio-temporal data reduces to a 
system of Nt uncoupled equations, i.e., for k = 1 to Nt, 

 Κ (kk) y(k) = d(k),  (9) 

where y(k) and d(k) represent NA × 1 ordered partitions of the 
transformed vectors 

 y = ΩT F† x     and    d = ΩT F† r, (10) 

respectively. Solutions to the latter recover the twice-
whitened vector x. Using the Cholesky decomposition  

 Κ (kk) = L(k) L(k)†, (11) 

with L(k) a lower triangular matrix, the twice-whitened 
partition y(k) can be recovered from Eq. (9) by first solving 
for the intermediate result b(k), defined by 

 L(k) b(k)
  = d(k), (12) 

using forward elimination, before solving the equation 

 L(k)† y(k) = b(k). (13) 

This result can then be permutated and inverse transformed 
in order to obtain the twice-whitened signal vector x. 

IV. HYPERX HX3100 

A. HyperX Architectural Overview 
The hx3100 processor is the latest entry in the HyperX 

family of ultra low power, massively parallel processors 
produced by Coherent Logix, Inc [3]. The hx3100 processor 
is a 10-by-10 array of processing elements (PEs) embedded 
on an 11-by-11 array of data management and routing units 

(DMRs).  At a system clock frequency of 500 MHz, the 
maximum chip-level throughput for 32-bit floating-point 
operations is 25 GFLOPS. Alternatively, when power 
consumption is prioritized, performance can be measured as 
16 GFLOPS/Watt. This translates into energy consumption 
on the order of 10 picoJoules (pJ) per instruction that rivals 
the performance of dedicated ASIC designs. 

 

 
Figure 3.  The Coherent Logix hx3100 processor, a 10-by-10 array of 
processing elements (PEs) inleaved by an 11-by-11 array of data 
management and routing units (DMRs). An exapnded view of four PEs 
surrounded by 9 DMRs demonstrates the degree of connectivity. HyperIO 
references the input/output ports used by the hx3100 processor to 
community with off-chip memory or other hx3100 processors. 

The DMR network provides Direct Memory Access 
(DMA) for the PEs to both on-chip and off-chip memory. 
Each DMR has 8 kB of SRAM and operates at a read/write 
cycle rate of 500 MHz, while the eight independent DMA 
engines within a DMR may act in parallel. A PE directly 
accesses data memory in four neighbouring DMRs, such 
that 32 kB of data is addressable by any given PE. In 
addition, when a subset of PEs shares direct access to the 
same DMR, the associated memory space may act as shared 
memory between PEs. This inter-connectedness provides for 
a mixture of shared and distributed memory hierarchies. 
Each DMR consists of 8 16-bit DMA engines that route 
memory requests from neighbouring PEs and support 
routing memory requests managed by other DMRs. In 
addition to supporting on-chip DMAs, the DMRs handle 
requests to off-chip memory, including the eight DDR2 
DRAM ports. Moreover, the 24 IO ports surrounding (six 
per side) the chip can be wired to connect together multiple 
HyperX chips. 

B. Integrated Sofware Development Environment 
Programming the HyperX entails writing an ANSI C 

program, which defines the parallelism in the algorithm 
through the use of the industry standard Message Passing 
Interface (MPI) protocol. The Coherent Logix software tools 
automatically assign individual tasks to PEs, and create 
routing to support the movement of data between PEs. Tasks 
may be both parallelized and pipelined across multiple cores, 
while DMAs are controlled explicitly in software. The latter 
steps provide opportunities for designing the flow of 
program execution such that resource constraints and 
programming requirements are met.  
C. Power Management 

The current version of the HyperX architecture provides 
the capability to power down quadrants of the PE grid that 
are unneeded by a designed application. As a result, 



programs can be optimized with respect to energy usage (of 
the chip) as well as the computational speed and memory 
bandwidth usage. Wake-up signals can be triggered by 
external events, such that the processor may be shutdown 
during period of computational idle time. 

V. TWICE-WHITENING ON HX3100 

A. Program Design 
Our implementation of twice whitening on the hx3100 

organizes the algorithm into multiple, pipelined and 
parallelized programs occupying 17 of the 100 available 
PEs. Refer to Fig. 5 for locations of the programs described 
below. First, prior to any data processing, simulated input 
data is loaded into off-chip DRAM memory banks. Here, 
the data is single-precision, complex-valued signal vectors 
stored in sample-consecutive order in DRAM 1. At runtime, 
program IOPE 1 fetches one input vector from DRAM 1 
and copies the data onto the chip via a series of 4 routing 
programs labeled RPEs. The latter manage and synchronize 
the input data for a complex-to-complex FFT program. 

Upon completion of the FFT of one input vector, the 
RPEs trigger IOPE 2 to store the transformed data off-chip 
in DRAM 2. Storage of the intermediate results is required 
to free on-chip memory for processing the FFT of the next 
input vector. The copying process occurs directly from the 
DMRs used by the FFT cores and, specific to our algorithm, 
requires a substantial amount of processing time. This 
overhead results from the use of a strided-write operation in 
which each complex-valued sample is written to DRAM 
with a stride of NA. The purpose of this operation is to 
perform the permutation denoted by Ω in Fig. 2, cf. Fig. 4. 

 

 
Figure 4.  How input vectors are sequentially transformed and permutated 
using a NA–strided write to DRAM. Consecutive memory is from left to 
right. As a result, the vector d(k) read directly from DRAM 2 can be 
immediately used for the twice-whitening operation defined by Eq. (9). 

Once all NA input vectors have been transformed and 
written to DRAM 2, IOPE 2 changes state and begins to 
fetch the permutated, length-NA vectors that represent the 
partitions d(k) defined in Eq. (10). IOPE 3 fetches a 
precomputed Cholesky decomposition from DRAM 3. The 
latter is represented by the NA (NA – 1) / 2 elements of an 
upper triangular, complex-valued matrix obtained by offline 
decomposition of the matrix Κ (kk). Future versions of this 
program will implement the Cholesky decomposition of 
each matrix alongside the transformation and permutation of 
the signal vectors. Both sets of data are moved to the DMRs 
of the whitening program (LPE). Within this program 
forward elimination (12) and back substitution (13) solve 
Eq. (9), both requiring O(NA

2) operations to complete. The 

output of this program is written back to DRAM 4 via IOPE 
4. Again, a strided-write operation is used, with the NA 
components (samples) spaced by Nt positions; once all Nt 
solutions are obtained, DRAM 4 stores, in consecutive 
order, the NA partitions of Ωy defined in Eq. (10), i.e., the 
FFT of the twice-whitened vector x. 

 An important programming consideration is the 
synchronization between individual PEs to ensure continuity 
and correctness of data movement. The 8 kB memory 
available from each DMR necessitates precise accounting 
for the size, location, and timing of each data segment. This 
inter-core communication is performed using a proprietary 
API written for the C language. For example, blocking 
variants of DMA send and receive functions provide a basic 
communication mechanism for data synchronization, while 
techniques are available for reading and writing to DRAM. 

 

 
Figure 5.  Layout of the STTW program on the hx3100 processor. Boxes 
circumscribe PEs and DMRs for each individual program, cf. Table 1. 

The placement and routing of individual programs, e.g., 
the IO servers or the FFT cores, with respect to the layout of 
available cores is also an important consideration for 
performance. While this level of detail can be programmed 
explicitly, the HyperX software development environment 
provides a global optimizer and scheduler to perform 
placement and routing. For example, routing constraints 
ensure the IO server programs are placed adjacent to the off-
chip IO ports and that on-chip DMA routes do not collide, 
e.g., when transferring data between PEs. 

B. Program Results 
As implemented, the full program processed a series of 

8192-complex-point input vectors, each representing a noisy 
sinusoidal typically of a monotone acoustic source collected 
against a diffusive (thermal) background. At a sampling rate 
of 64KHz, this amounts to ~125 ms of data. When running 
on the hx3100 processor, simulated input vectors are loaded 
into the off-chip DDR2 memory banks. Vectors are stored in 
deinterleaved, bit-reversed order, with a single input vector 
representing 64 kB of memory. Eight DMA transfers are 
required to load a collection of 8 on-chip DMRs. This IO 
service requires 1 core for managing request to the DDR2 
and, in a double buffering approach, 3 neighboring DMRs to 
optimize timing of the data transfer. 



An 8192-point, complex-to-complex decimation-in-time 
FFT is used to transform the input data. Each instance 
employs 8 PEs, cf. Fig. 5. The FFT algorithm requires bit-
reversed-order input data and reordering of the input is done 
prior to loading the DRAM. The input and output servers are 
synchronized to avoid overwriting data stored in the FFT 
processing cores. 
Table 1. Program resources used, including PEs, DMRs, and cycles per 
iteration of each program element. 

Program PEs DMRs Cycles/iteration 
IOPE 1  1 4 37,494 
RPE’s 4 16 N/A 
FPE’s 8 18 137,741 
IOPE 2 (write) 1 4 565,749 
IOPE 2 (read) 1 1 136 
IOPE 3 1 2 358 
LPE 1 4 4,384 
IOPE 4 1 3 539 
TOTAL 17 52 42,014,925 
 
We have implemented the above on the HyperX hx3100, 

and we have profiled the program elements using the 
Integrated Software Development Environment. The results 
below refer to version 3.0.1 of the HyperX ISDE tools for 
the case of  NA = 8 and Nt = 8192 complex samples. The 
number of cycles, normalized to the relevant input type, are 
shown for each program in Table 1. For example, IOPE 1 
requires 37,494 clock cycles to read one input vector and 
synchronize transfer of that vector to the RPEs memory 
space. This accounting of clock cycles highlights the 
processing bandwidth associated with each program; data 
transfer is not computationally complex, but a moderate 
amount of time is needed to bring the data onto the chip. 
Regarding IOPE 1, the reported cycles include sending data 
to the RPE’s, while the cycles reported for the FPEs 
incorporates the read operation from the RPE memory space. 
IOPE 3 reads the transformed and permutated vectors d(k) 
from DRAM 3; recall the latter are identified by the sample 
index k and there are a total of 8192 vectors to process. The 
other program elements have similar interpretations of the 
reported cycle counts. 

IOPE 2 represents the most costly operations in this 
implementation. As stated in Sec. IV.A and illustrated by 
Fig. 4, IOPE 2 is performing a sample-by-sample strided 
write of the FFT output. Many samples (8192) must be 
processed this way and the cost associated with strided 
writes to DRAM is high. More important, the IOPE 2 write 
operation represents a significant bottleneck in this 
implementation as the write operation takes significantly 
more time than the FFT processing. However, the size of the 
processed data set (8 × 8192 samples = 512 KB) prohibits 
performing transposition within on-chip memory space. The 
cost of the strided-write operation is constant with respect to 
the number of input vectors. 

Our present implementation omits concurrent calculation 
of the Cholesky decompositions for permutated and 
transformed noise covariance matrices Κ (kk). Note that those 

calculations utilize a method identical to the computation of 
y (in timing and complexity), and that the decomposition of 
each Κ (kk) could be easily accommodated within the LPE 
provided NA is not too large (~35). 
Table 2. Power consumption with respect to clock frequency and voltage. 

Tunable PE Clock Frequency (MHz)  
Voltage(V) 200 300 400 500 
1.00 V 914.29 1162.15 1410.01 1657.89 
0.95 V 865.95 1089.65 1313.35 N/A 
0.90 V 820.09 1020.86 1221.64 N/A 

 
Table 2 reports the total power consumption with respect 

to the PE clock frequency and operating voltage. The clock, 
tuned from 200 MHz to 500 MHz, determines the overall 
time-to-solution of the program. Based on the total cycles 
reported in Table 1, a range of 84.2 ms at 500 MHz to 210 
ms at 200 MHz is observed. Lowering the voltage, from 1.0 
V to 0.95 V to 0.9 V, provides a corresponding decrease in 
power. A two-fold increase in power occurs between the 
case of 0.90 V at 200 MHz and the 1.0 V at 500 MHz. 
Depending on the performance requirements, STTW on the 
hx3100 satisfies a range of power and timing constraints. 

VI. CONCLUSIONS 
We have presented an implementation of STTW on the 

hx3100 processor. Our implementation exploits spatially 
diffuse noise to reduce the computational complexity by a 
factor of Nt

2, amounting to several orders of magnitude. We 
demonstrated real-time STTW on the hx3100 processor. The 
hx3100 processor provides a platform capable of handling 
multiple instruction, multiple data (MIMD) processing, and 
the ability for block-stream processing of MIMO data. The 
high throughput, low-power features of our realization 
suggest  opportunities to employ real-time STTW signal 
processing techniques for MIMO energy detectors. 
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