
Real-Time Spatio-Temporal Twice Whitening
for MIMO Energy Detectors

T. S. Humble, P. Mitra, and J. Barhen
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, Tennessee, United States of America

humblets@ornl.gov

B. Schleck
Coherent Logix, Inc.

Austin, Texas, United States of America

Abstract—While many techniques exist for local spectrum
sensing of a primary user, each represents a computationally
demanding task to secondary user receivers. In software-
defined radio, computational complexity lengthens the time for
a cognitive radio to recognize changes in the transmission
environment. This complexity is even more significant for
spatially multiplexed receivers, e.g., in SIMO and MIMO,
where the spatio-temporal data sets grow in size with the
number of antennae. Limits on power and space for the
processor hardware further constrain SDR performance. In
this report, we discuss improvements in spatio-temporal twice
whitening (STTW) for real-time local spectrum sensing by
demonstrating a form of STTW well suited for MIMO
environments. We implement STTW on the Coherent Logix
hx3100 processor, a multicore processor intended for low-
power, high-throughput software-defined signal processing.
These results demonstrate how coupling the novel capabilities
of emerging multicore processors with algorithmic advances
can enable real-time, software-defined processing of large
spatio-temporal data sets.

cognitive radio; spectrum sensing; dynamic spectrum access;
MIMO; data whitening; energy detector; multicore processor;

I. INTRODUCTION
Spectrum sensing is an important component in the

design and development of cognitive radio (CR) programs in
which the state of the transmission environment of the
primary users and, more explicitly, the frequencies available
for broadcast, must be identified by the secondary users.
However, spectrum sensing often amounts to near-real-time
monitoring of wide frequency bands, a task that is very
computationally demanding. In addition, as noted by Cabric
et al., any secondary user CR must outperform the receivers
of a primary user by a wide margin due to consideration of
the hidden node problem [1]. This requirement further
increases the computational challenge placed on the software
and hardware underlying any CR program. To mitigate these
computational challenges requires the use of algorithms that
demonstrate less computational complexity and/or take
advantage of computationally more powerful hardware.

Motivated by these considerations, we report our effort to
decrease the computational complexity of one local spectrum
sensing strategy for the case a secondary user’s receiver is
composed of multiple antennas, i.e., SIMO and MIMO
transmission configurations. In Sec. II, we review a local

spectrum sensing strategy based on detection of a primary
user’s transmitted signal, i.e., energy detection. We clarify
the role of spatio-temporal twice whitening (STTW) in
designing the optimal energy detector for the MIMO signal,
and we detail the computational complexity associated with
those calculations. We provide the main results of this report
in Sec. III, where we establish a reduced computational
complexity of STTW by accounting for properties of the
spatially diffuse noise at the receivers. We demonstrate
feasibility by implementing real-time STTW on the ultra-
low-power Coherent Logix hx3100 processor. As described
in Sec. IV, the hx3100 processor has a peak performance of
25 GFLOPS and a peak power efficiency of 16 GFLOPS/W.
The results of this implementation, presented in Sec. V,
support the prospects for STTW to be used in future CR
programs. These conclusions are provided in Sec. VI.

II. LOCAL SPECTRUM SENSING
Common approaches to local spectrum sensing include

cooperative sensing, interference detection, and transmitter
detection. The latter detection techniques include:

• matched-filter detection;
• energy detection;
• cyclostationary feature detection.

We limit subsequent discussion to energy detection, for
which the spectrum of the transmission is analyzed with
respect to the presence or absence of amplitude. Generically,
this may be implemented by Fourier transforming the
received signal and detecting the presence of amplitude with
a resolution set by the number of processed samples. While
this technique is incapable of discriminating interference or
more subtle transmission behaviors, such as frequency-
selective fading or spread spectrum techniques, energy
detection provides a relatively simple and robust method for
identifying transmitter presence.

Energy detection minimizes the error associated with
detection of the signal at the ith antennae, i.e.,

 r(i) = s(i) +η(i) , (1)

where r(i) is the signal received, s(i) is the transmitted signal,
and η (i) is additive noise. For example, hypothesis testing
discriminates (1) from the absence of signal (r(i) = η (i)) by
comparing the detection statistic r(i)†H(i)-1r(i) against a

threshold [2]. This detection statistic depends explicitly on
the whitened signal vector

 z i() = H i()−1/2r i() . (2)

where H(i) denotes the noise covariance matrix for signal i,
cf. Sec. III. Note the inversion of H(i) requires O(Nt

3)
operations, where Nt is the number of samples.
Consequently, better resolved detection are computationally
very costly. Moreover, for multiple antennae, the full spatio-
temporal covariance matrix H must be employed to whiten
the signal composed from all partitions corresponding to the
NA antennae. The inversion of H has complexity O(NA

3 Nt
3).

The subject of the present paper is to exploit features in the
spatially additive noise that reduces this complexity to Nt ×
O(NA

3); given that NA << Nt, this reduction in the cost of
spatio-temporal data whitening can be significant.

III. SPATIO-TEMPORAL TWICE WHITENING
Consider a collection of NA antennae having some fixed

spatial distribution. In addition, assume each collects Nt
complex-valued samples with the output defined in the
temporal domain. This yields a total of Nτ = NA × Nt samples
for the antennae array that are represented collectively by a
vector r. The vector r is constructed from NA ordered
partitions, e.g., r(i)

 represents the ith channel, such that

r =
r(1)

r(Ne)

⎛

⎝⎜
⎞

⎠⎟
. (3)

The ith partition of samples r(i) corresponds to either the sum
of a sought after signal and the associated noise, cf. Eq. (1)
or to the absence of any signal and, therefore, only the
background noise. A fundamental goal of detection theory is
to discriminate between these two hypotheses [2].
 The spatio-temporal noise covariance matrix for the array
of NA antennae is represented by

Η =
Η (1,1)

 Η (1,Ne)

  
Η (Ne ,1)  Η (Ne ,Ne)

⎛

⎝⎜
⎞

⎠⎟
 (4)

where

 Η (i,j) = η (i) η (j)† (5)

represents an Nt × Nt submatrix formed by the outer product
of the noise vectors for the ith and jth antennae. Whitening of
the signal vector r refers, mathematically, to the application
of the square-root inverse of Η , i.e., z = Η -1/2r. Twice-
whitening, i.e., x = H-1r, forgoes the square root operation,
and is sufficient, for example, when computing a statistical
description of the signal, c.f. the case of energy detection in
Sec. II.

For an estimate of the sizes attributed to these tensors, the
number of antennae may be of the order NA ~ 10. Assuming

each sensor collects Nt ~ 106 samples (per window), the
resulting Nτ × Nτ noise-covariance matrix Η has on the order
of 1014 entries. Constructing the inverse of Η is essential in
the theory of the optimum receiver [1]. The computational
complexity of matrix inversion scales as O(Nτ

3); however,
due to the symmetric positive semi-definiteness of Η ,
inversion be more efficiently obtained by the Cholesky
decomposition [4]. Yet, even then, direct calculation of the
twice-whitened signal vector x is exceedingly expensive.

Figure 1. Block structure of the covariance matrix Η before (left) and
after (right) Fourier transformation. Symmetry arises from the condition of
spatially diffuse noise sources (neglecting differences due to conjugations).
The Fourier transform reveals the block-digaonal submatrix Λ.

To overcome the poor scaling associated with direct
computation of Η -1, we reformulate data whitening to exploit
the spatio-temporal organization of array data. First, we limit
consideration of the noisy background to spatially diffuse
noise that is wide-sense stationary. This imposes the
restriction that the submatrices of Η be Toeplitz and that the
full matrix be block Toeplitz. Consequently, due to the
Hermitian form of Η following Eq. (4), the noise covariance
matrix exhibits the block-diagonal structure illustrated in Fig.
1. Note that this approximation excludes contributions from
discrete interferes to sources of noise in Eq. (1).

The spectral theorem yields the eigenvalues of each Nt ×
Nt submatrix Η (i,j) for i, j = 1 to NA, while Fourier analysis of
the full covariance matrix Η yields

 Η = F Λ F†, (6)

where Λ is an Nτ × Nτ band-diagonal matrix composed of
diagonal submatrices Λ(i,j) representing the eigenvalues of the
corresponding noise covariance between channels i and j,
and F symbolizes the block-diagonal form of the discrete
Fourier transforms applied to each block. The resulting
structure of Λ is illustrated in Fig. 1. Elements of Λ may
then be permuted to form the block-diagonal matrix

 Κ = Ω Λ ΩT, (7)

where Ω symbolizes the orthogonal permutation matrix and
the kth block Κ(kk) is NA × NA for k = 1 to Nt. See Fig. 2.

Inversion of Η can now be recast as

 Η –1 = F Ω Κ –1 ΩT F†. (8)

The cost of computing the inverse of Η via the inverse of Κ
then reduces from O(Nτ

3) to O(Nt NA
3), where inversion of

the Nt submatrices of Κ each carry O(NA
3) cost. With respect

to the resource estimates cited at the beginning of Sec. II,
exploiting the spatial structure of the noise covariance matrix
reduces the cost of inversion by ~6 orders of magnitude.

Figure 2. Transformation of the band-diagonal matrix Λ by the
permutation matrix Ω yields the block-diagonal matrix Κ, where each
diagonal block Κ(kk) is NA × NA in size.

Given the block-diagonal structure of Κ illustrated in Fig.
2, twice whitening the spatio-temporal data reduces to a
system of Nt uncoupled equations, i.e., for k = 1 to Nt,

 Κ (kk) y(k) = d(k), (9)

where y(k) and d(k) represent NA × 1 ordered partitions of the
transformed vectors

 y = ΩT F† x and d = ΩT F† r, (10)

respectively. Solutions to the latter recover the twice-
whitened vector x. Using the Cholesky decomposition

 Κ (kk) = L(k) L(k)†, (11)

with L(k) a lower triangular matrix, the twice-whitened
partition y(k) can be recovered from Eq. (9) by first solving
for the intermediate result b(k), defined by

 L(k) b(k)
 = d(k), (12)

using forward elimination, before solving the equation

 L(k)† y(k) = b(k). (13)

This result can then be permutated and inverse transformed
in order to obtain the twice-whitened signal vector x.

IV. HYPERX HX3100

A. HyperX Architectural Overview
The hx3100 processor is the latest entry in the HyperX

family of ultra low power, massively parallel processors
produced by Coherent Logix, Inc [3]. The hx3100 processor
is a 10-by-10 array of processing elements (PEs) embedded
on an 11-by-11 array of data management and routing units

(DMRs). At a system clock frequency of 500 MHz, the
maximum chip-level throughput for 32-bit floating-point
operations is 25 GFLOPS. Alternatively, when power
consumption is prioritized, performance can be measured as
16 GFLOPS/Watt. This translates into energy consumption
on the order of 10 picoJoules (pJ) per instruction that rivals
the performance of dedicated ASIC designs.

Figure 3. The Coherent Logix hx3100 processor, a 10-by-10 array of
processing elements (PEs) inleaved by an 11-by-11 array of data
management and routing units (DMRs). An exapnded view of four PEs
surrounded by 9 DMRs demonstrates the degree of connectivity. HyperIO
references the input/output ports used by the hx3100 processor to
community with off-chip memory or other hx3100 processors.

The DMR network provides Direct Memory Access
(DMA) for the PEs to both on-chip and off-chip memory.
Each DMR has 8 kB of SRAM and operates at a read/write
cycle rate of 500 MHz, while the eight independent DMA
engines within a DMR may act in parallel. A PE directly
accesses data memory in four neighbouring DMRs, such
that 32 kB of data is addressable by any given PE. In
addition, when a subset of PEs shares direct access to the
same DMR, the associated memory space may act as shared
memory between PEs. This inter-connectedness provides for
a mixture of shared and distributed memory hierarchies.
Each DMR consists of 8 16-bit DMA engines that route
memory requests from neighbouring PEs and support
routing memory requests managed by other DMRs. In
addition to supporting on-chip DMAs, the DMRs handle
requests to off-chip memory, including the eight DDR2
DRAM ports. Moreover, the 24 IO ports surrounding (six
per side) the chip can be wired to connect together multiple
HyperX chips.

B. Integrated Sofware Development Environment
Programming the HyperX entails writing an ANSI C

program, which defines the parallelism in the algorithm
through the use of the industry standard Message Passing
Interface (MPI) protocol. The Coherent Logix software tools
automatically assign individual tasks to PEs, and create
routing to support the movement of data between PEs. Tasks
may be both parallelized and pipelined across multiple cores,
while DMAs are controlled explicitly in software. The latter
steps provide opportunities for designing the flow of
program execution such that resource constraints and
programming requirements are met.
C. Power Management

The current version of the HyperX architecture provides
the capability to power down quadrants of the PE grid that
are unneeded by a designed application. As a result,

programs can be optimized with respect to energy usage (of
the chip) as well as the computational speed and memory
bandwidth usage. Wake-up signals can be triggered by
external events, such that the processor may be shutdown
during period of computational idle time.

V. TWICE-WHITENING ON HX3100

A. Program Design
Our implementation of twice whitening on the hx3100

organizes the algorithm into multiple, pipelined and
parallelized programs occupying 17 of the 100 available
PEs. Refer to Fig. 5 for locations of the programs described
below. First, prior to any data processing, simulated input
data is loaded into off-chip DRAM memory banks. Here,
the data is single-precision, complex-valued signal vectors
stored in sample-consecutive order in DRAM 1. At runtime,
program IOPE 1 fetches one input vector from DRAM 1
and copies the data onto the chip via a series of 4 routing
programs labeled RPEs. The latter manage and synchronize
the input data for a complex-to-complex FFT program.

Upon completion of the FFT of one input vector, the
RPEs trigger IOPE 2 to store the transformed data off-chip
in DRAM 2. Storage of the intermediate results is required
to free on-chip memory for processing the FFT of the next
input vector. The copying process occurs directly from the
DMRs used by the FFT cores and, specific to our algorithm,
requires a substantial amount of processing time. This
overhead results from the use of a strided-write operation in
which each complex-valued sample is written to DRAM
with a stride of NA. The purpose of this operation is to
perform the permutation denoted by Ω in Fig. 2, cf. Fig. 4.

Figure 4. How input vectors are sequentially transformed and permutated
using a NA–strided write to DRAM. Consecutive memory is from left to
right. As a result, the vector d(k) read directly from DRAM 2 can be
immediately used for the twice-whitening operation defined by Eq. (9).

Once all NA input vectors have been transformed and
written to DRAM 2, IOPE 2 changes state and begins to
fetch the permutated, length-NA vectors that represent the
partitions d(k) defined in Eq. (10). IOPE 3 fetches a
precomputed Cholesky decomposition from DRAM 3. The
latter is represented by the NA (NA – 1) / 2 elements of an
upper triangular, complex-valued matrix obtained by offline
decomposition of the matrix Κ (kk). Future versions of this
program will implement the Cholesky decomposition of
each matrix alongside the transformation and permutation of
the signal vectors. Both sets of data are moved to the DMRs
of the whitening program (LPE). Within this program
forward elimination (12) and back substitution (13) solve
Eq. (9), both requiring O(NA

2) operations to complete. The

output of this program is written back to DRAM 4 via IOPE
4. Again, a strided-write operation is used, with the NA
components (samples) spaced by Nt positions; once all Nt
solutions are obtained, DRAM 4 stores, in consecutive
order, the NA partitions of Ωy defined in Eq. (10), i.e., the
FFT of the twice-whitened vector x.

 An important programming consideration is the
synchronization between individual PEs to ensure continuity
and correctness of data movement. The 8 kB memory
available from each DMR necessitates precise accounting
for the size, location, and timing of each data segment. This
inter-core communication is performed using a proprietary
API written for the C language. For example, blocking
variants of DMA send and receive functions provide a basic
communication mechanism for data synchronization, while
techniques are available for reading and writing to DRAM.

Figure 5. Layout of the STTW program on the hx3100 processor. Boxes
circumscribe PEs and DMRs for each individual program, cf. Table 1.

The placement and routing of individual programs, e.g.,
the IO servers or the FFT cores, with respect to the layout of
available cores is also an important consideration for
performance. While this level of detail can be programmed
explicitly, the HyperX software development environment
provides a global optimizer and scheduler to perform
placement and routing. For example, routing constraints
ensure the IO server programs are placed adjacent to the off-
chip IO ports and that on-chip DMA routes do not collide,
e.g., when transferring data between PEs.

B. Program Results
As implemented, the full program processed a series of

8192-complex-point input vectors, each representing a noisy
sinusoidal typically of a monotone acoustic source collected
against a diffusive (thermal) background. At a sampling rate
of 64KHz, this amounts to ~125 ms of data. When running
on the hx3100 processor, simulated input vectors are loaded
into the off-chip DDR2 memory banks. Vectors are stored in
deinterleaved, bit-reversed order, with a single input vector
representing 64 kB of memory. Eight DMA transfers are
required to load a collection of 8 on-chip DMRs. This IO
service requires 1 core for managing request to the DDR2
and, in a double buffering approach, 3 neighboring DMRs to
optimize timing of the data transfer.

An 8192-point, complex-to-complex decimation-in-time
FFT is used to transform the input data. Each instance
employs 8 PEs, cf. Fig. 5. The FFT algorithm requires bit-
reversed-order input data and reordering of the input is done
prior to loading the DRAM. The input and output servers are
synchronized to avoid overwriting data stored in the FFT
processing cores.
Table 1. Program resources used, including PEs, DMRs, and cycles per
iteration of each program element.

Program PEs DMRs Cycles/iteration
IOPE 1 1 4 37,494
RPE’s 4 16 N/A
FPE’s 8 18 137,741
IOPE 2 (write) 1 4 565,749
IOPE 2 (read) 1 1 136
IOPE 3 1 2 358
LPE 1 4 4,384
IOPE 4 1 3 539
TOTAL 17 52 42,014,925

We have implemented the above on the HyperX hx3100,

and we have profiled the program elements using the
Integrated Software Development Environment. The results
below refer to version 3.0.1 of the HyperX ISDE tools for
the case of NA = 8 and Nt = 8192 complex samples. The
number of cycles, normalized to the relevant input type, are
shown for each program in Table 1. For example, IOPE 1
requires 37,494 clock cycles to read one input vector and
synchronize transfer of that vector to the RPEs memory
space. This accounting of clock cycles highlights the
processing bandwidth associated with each program; data
transfer is not computationally complex, but a moderate
amount of time is needed to bring the data onto the chip.
Regarding IOPE 1, the reported cycles include sending data
to the RPE’s, while the cycles reported for the FPEs
incorporates the read operation from the RPE memory space.
IOPE 3 reads the transformed and permutated vectors d(k)
from DRAM 3; recall the latter are identified by the sample
index k and there are a total of 8192 vectors to process. The
other program elements have similar interpretations of the
reported cycle counts.

IOPE 2 represents the most costly operations in this
implementation. As stated in Sec. IV.A and illustrated by
Fig. 4, IOPE 2 is performing a sample-by-sample strided
write of the FFT output. Many samples (8192) must be
processed this way and the cost associated with strided
writes to DRAM is high. More important, the IOPE 2 write
operation represents a significant bottleneck in this
implementation as the write operation takes significantly
more time than the FFT processing. However, the size of the
processed data set (8 × 8192 samples = 512 KB) prohibits
performing transposition within on-chip memory space. The
cost of the strided-write operation is constant with respect to
the number of input vectors.

Our present implementation omits concurrent calculation
of the Cholesky decompositions for permutated and
transformed noise covariance matrices Κ (kk). Note that those

calculations utilize a method identical to the computation of
y (in timing and complexity), and that the decomposition of
each Κ (kk) could be easily accommodated within the LPE
provided NA is not too large (~35).
Table 2. Power consumption with respect to clock frequency and voltage.

Tunable PE Clock Frequency (MHz)
Voltage(V) 200 300 400 500
1.00 V 914.29 1162.15 1410.01 1657.89
0.95 V 865.95 1089.65 1313.35 N/A
0.90 V 820.09 1020.86 1221.64 N/A

Table 2 reports the total power consumption with respect

to the PE clock frequency and operating voltage. The clock,
tuned from 200 MHz to 500 MHz, determines the overall
time-to-solution of the program. Based on the total cycles
reported in Table 1, a range of 84.2 ms at 500 MHz to 210
ms at 200 MHz is observed. Lowering the voltage, from 1.0
V to 0.95 V to 0.9 V, provides a corresponding decrease in
power. A two-fold increase in power occurs between the
case of 0.90 V at 200 MHz and the 1.0 V at 500 MHz.
Depending on the performance requirements, STTW on the
hx3100 satisfies a range of power and timing constraints.

VI. CONCLUSIONS
We have presented an implementation of STTW on the

hx3100 processor. Our implementation exploits spatially
diffuse noise to reduce the computational complexity by a
factor of Nt

2, amounting to several orders of magnitude. We
demonstrated real-time STTW on the hx3100 processor. The
hx3100 processor provides a platform capable of handling
multiple instruction, multiple data (MIMD) processing, and
the ability for block-stream processing of MIMO data. The
high throughput, low-power features of our realization
suggest opportunities to employ real-time STTW signal
processing techniques for MIMO energy detectors.

ACKNOWLEDGMENT
This work was supported by the United States Office of

Naval Research. Oak Ridge National Laboratory is managed
for the US Department of Energy by UT-Battelle, LLC under
contract DE-AC05-00OR22725.

REFERENCES
[1] D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation

issues in spectrum sensing for cognitive radios,” Signals, Systems and
Computers, 2004. Conference Record of the Thirty-Eighth Asilomar
Conference on, Vol. 1 (2004), pp. 772-776 Vol.1.

[2] H. L. van Trees, Detection, Estimation, and Modulation Theory, Vol.
1, New York: John Wiley & Sons, Inc., 2001.

[3] www.coherentlogix.com
[4] G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore,

ND: John Hopkins University Press, 1996.

