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Abstract: Correlations in the spectral degrees of freedom affect polarization-based entanglement 
swapping and type-I fusion gates, with the coherence of the subsequently entangled states 
essentially and similarly dependent on the initial spectral entanglement. 
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The relative ease with which polarization-entangled photons are generated using spontaneous parametric down-
conversion (SPDC) enables immediate realizations of the two-qubit gates underlying many proposals of quantum 
computation. But the adjunct photonic degrees of freedom can impact this entanglement, e.g., correlated frequencies 
arising from energy conservation yield spectral entanglement that distinguishes the polarizations. In this paper, we 
report on the impact of spectral entanglement in the performance of two polarization-encoded two-qubit gates: (1) 
entanglement swapping [1], which enables offline state preparation in the quantum circuit model [2], and (2) type-I 
fusion [3], proposed for preparing cluster states in the approach of one-way quantum computing [4].  

We consider degenerate type-II SPDC sources to produce polarization-entangled photons pairs (1,2) and (3,4), 
where the biphoton state of (1,2) 
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is described by the joint spectra
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g(", # " ) , i.e., the amplitudes for h1v2 and v1h2 polarization states, 
respectively. A similar expression holds for photon pair (3,4). For type-II SPDC, the joint spectra 
satisfy
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f (", # " ) = g( # " ,")  and, consequently, the marginal spectra correlate with the polarization degree of freedom. 
The joint spectrum, which is generally inseparable with respect to it’s arguments, can be well approximated by a 
Gaussian distribution having major and minor widths σ M and σ m [5],  i.e., 
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The difference frequencies Δω=ω-ω0 and Δω′=ω′-ω0 are defined with respect to ω0, half the pump-pulse energy, and 
c=cosθ and s=sinθ are given in terms of the angle θ, which orients the major and minor axes of the Gaussian and 
defines the marginal bandwidths σ 2=σM

2c2+σm
2s2 and σ ′2=σM

2s2+σm
2c2. See Fig. 1(a). The spectral entanglement is 

quantified by the linear correlation |χ| = ±(1-σM
2

 σm
2

 /σ 2σ ′2 )1/2 and vanishes for θ=0 or σM=σm. 
Entanglement swapping is implemented by sending photons 2 and 3 to a 50:50 beam splitter whose outputs are 

subsequently discriminated with respect to polarization before being detected. Certain coincidences between 
detectors [1] correspond with preparation of photons (1,4) in the polarization-entangled state  
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where the coherence  
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depends on the spectral interference between photons 2 and 3. This result, equivalent to the concurrence of ρ14, is a 
measure of the polarization entanglement resulting from entanglement swapping. For identical sources, the 
coherence evaluates to G14 = 2a/(a2+ 1), which is independent of θ and approaches unity as the aspect ratio a=σM/σm 
approaches 1, i.e., the distribution is circularly symmetric and free of spectral entanglement. See the right panel of 
Fig. 1. 
 

          
Fig. 1. (left) The rotated Gaussian distribution of Eq. (2). (right) The concurrence resulting from entanglement swapping with respect to the 
aspect ration a=σM/σm and with examples of the joint amplitude shown for θ = π/8. 



In type-I fusion [3], two pairs of polarization-entangled photon are used as the input to the fusion gate with the 
intention of generating a three-photon polarization-entangled state. This is accomplished by sending photons 2 and 3 
to a polarizing beam splitter after which the polarization of mode 2′ is rotated by π/4. The output in mode 2′ is then 
discriminated with respect to polarization in the h-v basis and subsequently detected. For the case of a single-photon 
detection, e.g., h2′, the polarization state of the remaining three-particle state is  
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The coherence is now given by 
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which, like Eq. (5), depends on the spectral interference between photons 2 and 3. However, Eq. (9) differs from Eq. 
(5), such that, by again considering the sources to be identical, we find 
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which depends on both the aspect ratio a and the orientation angle θ. This result reduces to the previous result for 
entanglement swapping when θ=π/4, i.e., when the two joint spectra are identical. Otherwise, the coherence 
resulting from type-I fusion is less, as exemplified by the panels of Fig. 2. The left panel demonstrates the 
dependence of the coherence prepared by fusion as a function of a for specific values of the spectra’s orientation. 
Peaks in the right panel of Fig. 3 occur at θ=π/4, an orientation which decouples the spectral and polarization 
degrees of freedom of Eq. (1). However, the coherence is still less than unity because the photons frequencies 
remain correlated. It is in principle possible to distinguish the paths that the photons take by monitoring both 
frequencies. The sole exception is when a =1, as then there are no frequency correlations between the photons.   
 

   
Fig. 2. (left) Plots of the coherence following type-I fusion with respect to the aspect ration a=σM/σm, where red, green, and blue lines correspond 
to θ=0, π/8, and π/4, respectively. For each value of θ, the joint spectrum for a=3 is inset in the upper part of the panel. (right) Plots of the 
coherence with respect to the angle θ at fixed values of the aspect ratio. 

The performance of the fusion gate can be improved if the polarization of the photon in path 3 is rotated by π/2 
prior to the first polarizing beam splitter. In that case, we effectively have 
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f12 (", # " ) = f34 ( # " ,")  and the coherence 
expressed by Eq. (9) evaluates to the expression previously obtained for entanglement swapping, i.e., the result is 
independent of the angle θ, cf. Fig. 1(right). The reason for this change in behavior can be understood to result from 
the now absent correlations between the spectral and polarization degrees of freedom, i.e., monitoring the frequency 
of the photon in mode 2′ yields no information regarding the polarizations of the remaining photons. In the previous 
arrangement, such information was readily available.  

The impact of spectral entanglement on the output of these two-qubit gates highlights the need for 
indistinguishable photons when using quantum-optical approaches to quantum computing. While forethought into 
the design of the experimental apparatus can sometimes alleviate the impact of spectral entanglement,  reductions in 
polarization entanglement caused by the presence of spectral distinguishability will aggregate as more complicated 
protocols are carried out, and eventually, either entanglement distillation techniques will be required to (re)purify the 
states, or the entanglement will be irrevocably lost. 
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