
Workshop on Hybrid Multi-core Computing, HiPC 2010, Goa India, December 19, 2010

FFT-Based Spatio-Temporal Noise
Covariance Matrix Inversion on Hybrid

Multicore Processor Systems
Jacob Barhen* Travis Humble Pramita Mitra+
 Charlotte Kotas Neena Imam Bryan Schleck

Abstract. The emergence of streaming multicore processors with
multi-SIMD architectures opens unprecedented opportunities
for executing many sophisticated signal processing algorithms
faster and within a much lower energy budget. Here we report
on the development, implementation, and demonstration of a
novel, massively parallel computational scheme for inverting
the spatio-temporal covariance matrix associated with ambient
noise in signal detection algorithms. Our methodology involves
extensive use of the FFT, for which we exploit the capabilities of
leading hybrid multicore processors, including the IBM Cell,
the Nvidia Tesla, and the Coherent Logix HyperX.

Index Terms — FFT, multicore processors, Cell, Tesla, HyperX,
spatio-temporal data whitening

I. Introduction

As stealthier underwater targets become more pervasive,
there is a need to deploy ever more performing sensor
arrays. To fully exploit the information contained in data
measured by these novel devices often requires the use of
unconventional algorithms that exhibit growing computa-
tional complexity as function of the number of acoustic
channels and the number of complex samples in each
observation window.

For example, signal whitening has long been recognized as
an essential stage in processing sonar array data [1], and the
Fast Fourier Transform (FFT) has played, for many years, a
fundamental role in that context [2-4]. The unconventional
twice whitening paradigm includes the inversion of the
spatio-temporal covariance matrix for ambient noise. The
computational challenge one then faces stems from the
following considerations.

J. Barhen, T. Humble, P. Mitra, C. Kotas, and N. Imam are with the Center
for Engineering Science Advanced Research, Computer Science and
Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN
37831-6015, United States of America. B. Schleck is with Coherent Logix,
Inc, Austin, TX, USA.
* Corresponding author, phone: 1-865-574-7131, barhenj@ornl.gov
+ P. Mitra is also with the Department of Computer Science and
Engineering, University of Notre Dame, Notre-Dame, IN 46556, USA
This work was supported by agencies of the United States Department of
Defense, including the Office of Naval Research. Oak Ridge National
Laboratory is managed for the United States Department of Energy by UT-
Battelle, LLC under contract DE_AC05-00OR22725.

An array consisting of Ne acoustic channels, capturing Ns
complex samples per time window per channel, (Ne 310~ ,
Ns 4)10~ yields a spatio-temporal covariance matrix of
size 7 710 10! for diffuse ambient noise. Its inversion may
involve up to 33 10! 16 K- point complex FFTs that must
be carried out for each observation window [5].

This, in turn, translates into a demand for computational
throughput that cannot readily be met with conventional
hardware. In such a context, the emergence of streaming
hybrid multicore processors with multi-SIMD architectures
(e.g., the IBM “Cell” [6], the NVIDIA Tesla and Fermi [7],
or the Coherent Logix “HyperX” [8]) opens unprecedented
opportunities for executing sophisticated signal processing
algorithms, including FFTs, faster and within a much lower
energy budget.

Here, our objective is to report on the development,
implementation, and demonstration of a novel, massively
parallel computational scheme for inverting the spatio-
temporal covariance matrix associated with ambient noise in
signal detection. Our paper is organized as follows. Section
II highlights several multicore platforms that are under
consideration for sensor array processing. Section III
presents the methodology for inverting the covariance matrix
using unitary Fourier factorization. Section IV discusses our
specific implementation on the novel, ultra-low power 100-
core HyperX processor. Since an efficient FFT is at the heart
of the inversion paradigm, results of two alternative schemes
for its implementation on the IBM Cell and the Nvidia Tesla
are included in Section V. Finally, a summary and
conclusions reached so far are given in Section VI.

II. Computational Platforms

Four parameters are of paramount importance when
evaluating the relevance of emerging computational
platforms for time-critical, embedded applications. They are:
computational speed, communication speed (the I/O and
inter-core data transfer rates), the power dissipated (usually
measured in pico-Joules per floating point operation), and the
processor footprint. For each of these parameters, one can
compare the performance of an algorithm for different

Workshop on Hybrid Multi-core Computing, HiPC 2010, Goa India, December 19, 2010

hardware platforms and software (e.g., compilers) tools. In
that context, several multicore processors are of relevance for
computationally intensive maritime sensing applications.

II.1 The HyperX hx3100 Processor

The hx3100 processor is the latest entry in the HyperX
family of ultra low power, massively parallel processors
produced by Coherent Logix, Inc [8]. Because of its ultra-
low power consumption, it is a very strong contender not
only for maritime sensing computations, but also for those
applications that can substantially benefit from an MIMD
capability in conjunction with real-time reconfigurability.

a. HyperX Architectural Overview

The hx3100 processor consists of an array of processing
elements (PEs) of size 10-by-10, embedded on an 11-by-11
array of data management and routing units (DMRs). It is
illustrated in Figure 1. At a system clock frequency of 500
MHz, the maximum chip-level throughput for 32-bit
floating-point operations is 25 GFLOPS. Alternatively, when
power consumption is prioritized, performance can be
measured for the current release as 16 GFLOPS/Watt. This
translates into energy consumption on the order of 10 pico-
Joules (pJ) per instruction, which rivals the performance of
dedicated ASIC designs.

The DMR network provides Direct Memory Access (DMA)
for the PEs to both on-chip and off-chip memory. Each DMR
has 8 KB of SRAM, and operates at a read/write cycle rate of
500 MHz, while the eight independent DMA engines within
a DMR may act in parallel. A PE directly accesses data
memory in four neighbouring DMRs, such that 32 KB of
data is addressable by any given PE. In addition, when a
subset of PEs shares direct access to the same DMR, the
associated memory space may act as shared memory
between PEs. This inter-connectedness provides for a
mixture of shared and distributed memory hierarchies. Each
DMR consists of 8 16-bit DMA engines that route memory
requests from neighbouring PEs and support routing memory
requests managed by other DMRs. In addition to supporting
on-chip DMAs, the DMRs handle requests to off-chip

memory, including the eight DDR2 DRAM ports. Moreover,
the 24 IO ports surrounding (six per side) the chip can be
wired to connect together multiple HyperX chips.

b. Integrated Software Development Environment

Programming the HyperX entails writing an ANSI C code,
which defines the parallelism in the algorithm through the
use of the industry standard Message Passing Interface (MPI)
protocol. Note that, contrary to the IBM Cell or the Nvidia
Tesla, no FORTRAN 2003 compiler for high performance
numerical computations is yet available. The Coherent Logix
integrated software tools automatically assign individual
tasks to PEs, and create routing to support the movement of
data between PEs. Tasks may be both parallelized and
pipelined across multiple cores, while DMAs are controlled
explicitly in software. The latter capabilities provide
opportunities for designing the flow of program execution to
meet resource constraints and programming requirements.

c. Power Management

The current version of the HyperX architecture provides the
option to power down quadrants of the PE grid that are
unneeded by a designed application. As a result, programs
can be optimized with respect to energy usage (of the chip)
as well as the computational speed and memory bandwidth
usage. Wake-up signals can be triggered by external events,
such that the processor may be shutdown during period of
computational idle time.

II.2 The Cell Broadband Engine

The Cell multicore architecture is the product of five years of
intensive R&D efforts undertaken in 2000 by IBM, Sony,
and Toshiba [6]. Results reported in this paper refer to the
PXC 8i (third generation) release of the processor, which is
implemented on the QS 22 blades that utilize an IBM
BladeCenterTM H. The PXC 8i model includes one multi-
threaded 64-bit PowerPC processor element (PPE) with two
levels of globally coherent cache, and eight synergistic
processor elements (SPE). Each SPE consists of a processor
(SPU) designed for streaming workloads, local memory, and
a globally coherent DMA engine. Emphasis is on SIMD
processing. An integrated high-bandwidth element inter-
connect bus (EIB) connects the nine processors and their
ports to external memory and to system I/O. Details on the
design parameters of the PXC 8i are well documented [9-11]
and will not be repeated here. Note that both FORTRAN
2003 and C/C++ compilers for multi-core acceleration under
Linux (i.e., XLF and XLC) are provided by IBM.

II.3 The NVIDIA Tesla Processor

The NVIDIA Tesla C1060 GPU [7] used in our system
operates in conjunction with an Intel Xeon E5530 2.4 GHz
CPU that accesses 6 GB of ECC DDR3 1066 MHz RAM.
The operating system is the 64-bit edition of Windows XP.
Our algorithms are programmed in CUDA FORTRAN using
a compiler provided by the Portland Group Inc [12].

Fig 1. The Coherent Logix hx3100 processor. An exapnded view of
four PEs surrounded by 9 DMRs demonstrates the degree of
connectivity. HyperIO references the input/output ports used by the
hx3100 processor to community with off-chip memory or other
hx3100 processors.

Workshop on Hybrid Multi-core Computing, HiPC 2010, Goa India, December 19, 2010

NVIDIA GPUs exploit the CUDA architecture [13], which,
for the Tesla, is built in terms of an array of 30 Streaming
Multiprocessors (SMs). Each SM consists of eight scalar
processor cores. This results in a total of 240 cores for the
Tesla. In addition, an SM includes two special units for
transcendental functions, a multithreaded instruction unit,
and 16 KB of shared memory. There are 4 GB of global
RAM available to the GPU, and its clock runs at 1.296 GHz.

From a computational perspective, the fundamental
underlying paradigm is the concept of scalar thread. Threads
are grouped in blocks that execute concurrently on one SM
with zero overhead [13]. Massive parallelism is achieved in
terms of a kernel grid comprising the thread blocks. As any
thread block terminates, a new block is launched on the first
available (vacated) multiprocessor.

III. Inversion of Spatio-Temporal Covariance

The formal spatio-temporal detection problem can be stated
as follows. Let ()ir denote the signal received, ()is the
unknown signal source, and ()i! the additive noise at the i-
th element of a sensor array comprising eN elements. Given
a combined (stacked) array observable r , i.e., a vector

1 2[() , () ,..., ()]eT T T TN"r r r r of s etN N N" complex
data, we must choose between two hypotheses 0!

and 1! ,
such that

 0! (source absent): "r ! (1)

 1! (source present): " #r s ! (2)

The likelihood ratio test is a central mechanism for making a
decision between two hypotheses. In practice, this statistical
test uses the natural logarithm of the ratio of the probability
densities of the observable r under hypotheses 1! and

0! , respectively [4]. Thus, it is usually referred to as the log
likelihood ratio (LLR) ! . To compute ! , one must first
derive expressions for these probability distributions, which
involves the integration of complex Gaussian random
processes. Omitting the propagation transfer matrices [5],

 1 log (| |)e
$" $z A z "A" (3)

where 1 1$ $" #A " H , " represents the covariance
matrix of the signal, and the full spatio-temporal covariance
matrix of the noise is denoted as H . Here, spatial compo-
nents refer to sensors, while temporal components refer to
measured samples. Specifically, matrix H has the following
structure:

111 12

21

1 2

...

...

.

e

e e e e

N

N N N N

#

% &
' (
' (") * + "
' (
' (
, -

H H H
H

H ! !

H H H

! !
! !

!
! !

 (4)

i iH denotes the noise covariance matrix associated with the
signal detected at sensor i, and z is a vector of “twice
whitened” data, defined as

......... 1$"z H r (5)

This expression of z (introduced in [5] to avoid replica
whitening during target search), is distinct from the
conventional expression for whitening data that is written

1/2$"z H r . The inversion of H has complexity of order
3 3()e sN N" . We now show that by exploiting features in

the spatially additive noise in conjunction with the FFT, we
can reduce this complexity to 3()s aN N" ; given that

e sN N! , this reduction in the cost of spatio-temporal data
whitening can be very significant.

III.1 Efficient Algorithms for Twice-Whitening

In order to design efficient algorithms to compute 1$H , we
exploit the specific spatio-temporal organization of array
ambient noise data. In particular, we observe that spatially
diffuse noise is wide-sense stationary. This imposes the
restriction that the submatrices of H be Toeplitz, and that
the full matrix be block Toeplitz. Note that this approxi-
mation excludes contributions from discrete interferers to the
sources of noise in Eqs. (1-2). Then, the spectral theorem
yields the eigenvalues’ matrix i j# for each s sN N!
submatrix i jH , for , 1, ei j N" " . The Fourier factoriza-
tion of the full covariance matrix H can then be written

1,1,1 1,2
dif dif dif
2,1
dif

,1 ,2 ,
dif dif dif

...

...

ˆ ˆ

e

e e e e

N

N N N N

#

#
#

#

% &% &
' (' (
' (' (" !
' (' (
' (' (
' (, - , -
% &
' (
' (/
' (
' (
, -

F 0 0 # # #
0 F #

H
0

0 0 F # # #

F 0 0
0 F

F#F
0

0 0 F

"
! # ! !

! ! ! !
"

"
! #

! !
"

!
! ! (6)

F is just the sN -

point inverse Fourier transform (in unitary

representation) applied to the time series at each of the eN
array elements. The matrix # , of size t tN N! , is band-
diagonal, in the sense illustrated on Figure 2.

Fig 2. Block structure of the covariance matrix H before (left) the unitary
Fourier factorization. Symmetry arises from the condition of spatially
diffuse noise sources. The Fourier factorization reveals the digaonal
structure of each submatrix i j# .

Elements of # can then be rearranged (using an orthogonal
permutation matrix $) into block-diagonal form (see Figure
3). Given this structure, we can efficiently invert the space-
time noise covariance matrix. Indeed, using the unitarity of
F̂ and the orthogonality of $, we can write

Workshop on Hybrid Multi-core Computing, HiPC 2010, Goa India, December 19, 2010

1 1

1 1 1 1 1 1

ˆ ˆ()
ˆ ˆ ˆ ˆ () () () ()

T

T T

$ # $

$ $ $ $ $ $

"

" "

H F$ $ F

F $ $ F F$ $ F

#

#
 (7)

Fig 3. Transformation of the band-diagonal matrix # by the orthogonal
permutation matrix $ yields the block-diagonal matrix # , where each
diagonal block k k# is of size e eN N! .

However, since # is block-diagonal, 1$# can now be
computed on a frequency by frequency basis, by inverting
each block k k# . As can readily be seen, this methodology
will reduce the complexity of inverting the full space-time
covariance matrix of size t tN N! to one of inverting sN
spatial covariance matrices. Each of these matrices is of
considerably smaller size e eN N! . For 1, sk N" " , we
need to solve

 k k k k"y d# (8)

where ky and kd represent 1eN ! ordered partitions of the
transformed vectors

ˆ()T #"y $ F z (9)

 ˆ()T #"d $ F r (10)

respectively. Eqs (9-10) are carried out first; thereafter, Eq
(8) is solved via Cholesky decomposition. This result can
then be permutated and inverse Fourier transformed in order
to obtain the twice-whitened signal vector z .

III.2 Program Design

Our implementation of twice whitening on the hx3100
organizes the algorithm into multiple, pipelined and
parallelized programs occupying 17 of the 100 available PEs.
Refer to Figure 4 for locations of the programs described
below. First, prior to any data processing, input data is
loaded into off-chip DRAM memory banks. Here, the data is
single-precision, complex-valued signal vectors stored in
sample-consecutive order in DRAM 1. At runtime, program
IOPE 1 fetches one input vector from DRAM 1 and copies
the data onto the chip via a series of 4 routing programs
labelled RPEs. The latter manage and synchronize the input
data for our complex-to-complex FFT program.

Upon completion of the FFT of one input vector, the RPEs
trigger IOPE 2 to store the transformed data off-chip in
DRAM 2. Storage of the intermediate results is required to
free on-chip memory for processing the FFT of the next

input vector. The copying process occurs directly from the
DMRs used by the FFT cores and, specific to our algorithm,
requires a substantial amount of processing time. This
overhead results from our current use of a strided write
operation in which each complex-valued sample is written to
DRAM with a stride of eN . The purpose of this operation is
to perform the permutation denoted by $ in Figure 6.

Once all eN input vectors have been transformed and
written to DRAM 2, IOPE 2 changes state and begins to
fetch the permutated, length- eN vectors that represent the
partitions kd defined in Eq. (10). IOPE 3 fetches a pre-
computed Cholesky decomposition from DRAM 3. The
latter is represented by the (1) / 2e eN N $ elements of an
upper triangular, complex-valued matrix obtained by offline
decomposition of the matrix k k# . Future versions of this
program will implement the Cholesky decomposition of each
such matrix alongside the transformation and permutation of
the signal vectors. Both sets of data are moved to the DMRs
of the whitening program (LPE). Within this program
forward elimination and back substitution solve Eq. (8), both
requiring 2()eN" operations to complete. The output of
this program is written back to DRAM 4 via IOPE 4. Again,
a strided-write operation is used, with the eN components
(samples) spaced by sN positions; once all sN solutions are
obtained, DRAM 4 stores, in consecutive order, the eN
partitions of $y obtained from Eq (9), i.e., the FFT of the
twice-whitened vector z .

Fig 4. Layout of the STTW program on the hx3100 processor. Boxes
circumscribe PEs and DMRs for each individual program.

An important consideration is the synchronization between
individual PEs to ensure continuity and correctness of data
movement. The 8 KB memory available from each DMR
necessitates precise accounting for the size, location, and
timing of each data segment. This inter-core communication
is performed using a special purpose API written for the C
language. For example, blocking variants of DMA send and
receive functions and provide a basic communication
mechanism for data synchronization, and additional
mechanisms are available for reading and writing to DRAM.

Workshop on Hybrid Multi-core Computing, HiPC 2010, Goa India, December 19, 2010

The placement and routing of individual programs, e.g., the
IO servers or the FFT cores, with respect to the layout of
available cores is also an important consideration for
performance. While this level of detail can be programmed
explicitly, the HyperX software development environment
provides a global optimizer and scheduler to perform
placement and routing. For example, routing constraints
ensure the IO server programs are placed adjacent to the off-
chip IO ports and that on-chip DMA routes do not collide,
e.g., when transferring data between PEs.

IV. Computational Results

As implemented, the full program processed a series of
8192-complex-point input vectors, each representing a noisy
sinusoidal typical of a monotone acoustic source collected
against a diffusive (thermal) background. At a sampling rate
of 64 KHz, this amounts to ~125 ms of data. When running
on the hx3100 processor, input vectors are loaded into the
off-chip DDR2 memory banks. Vectors are stored in de-
interleaved, bit-reversed order, with a single input vector
representing 64 KB of memory. Eight DMA transfers are
required to load a collection of 8 on-chip DMRs. This IO
service requires 1 core for managing requests to the DDR2
and, in a double buffering approach, 3 neighboring DMRs to
optimize timing of the data transfer.

An 8192-point, complex-to-complex decimation-in-time FFT
is used to transform the input data. Each instance employs 8
PEs, as shown in Figure 4. The FFT algorithm requires bit-
reversed-order input data and reordering of the input is done
prior to loading the DRAM. The input and output servers are
synchronized to avoid overwriting data stored in the FFT
processing cores.

We have implemented the above on the HyperX hx3100, and
we have profiled the program elements using the Integrated
Software Development Environment. The results below refer
to version 3.0.1 of the HyperX ISDE tools for the case of

8eN " and 8192sN " complex samples. The number of
cycles, normalized to the relevant input type, is shown for
each program in Table 1.

Program PEs DMRs Cycles/iteration
IOPE 1 1 4 37,494
RPE’s 4 16 N/A
FPE’s 8 18 137,741
IOPE 2 (write) 1 4 565,749
IOPE 2 (read) 1 1 136
IOPE 3 1 2 358
LPE 1 4 4,384
IOPE 4 1 3 539
TOTAL 17 52 42,014,925

Table 1. Program resources used, including PEs, DMRs, and cycles per
iteration of each program element.

For example, IOPE 1 requires 37,494 clock cycles to read
one input vector and synchronize transfer of that vector to
the RPEs memory space. This accounting of clock cycles

highlights the processing bandwidth associated with each
program; data transfer is not computationally complex, but a
moderate amount of time is needed to bring the data onto the
chip. Regarding IOPE 1, the reported cycles include sending
data to the RPE’s, while the cycles reported for the FPEs
incorporate the read operation from the RPE memory space.
IOPE 3 reads the transformed and permutated vectors kd
from DRAM 3; recall the latter are identified by the sample
(or, equivalently, frequency) index k and there are a total of
8192 vectors to process. The other program elements have
similar inter-pretations of the reported cycle counts.

Fig 5. In IOPE 2, input vectors are sequentially transformed and permutated
using an eN –strided write to DRAM. Consecutive memory is from left to
right. As a result, the vector kd read directly from DRAM 2, can be
immediately used for the twice-whitening operation via k k k k"y d# .

IOPE 2 represents the most costly operations in this
implementation. As stated above and illustrated by Figure 8,
IOPE 2 is performing a sample-by-sample strided write of
the FFT output. Many samples (8192) must be processed this
way and the cost associated with strided writes to DRAM is
high. More important, the IOPE 2 write operation represents
a significant bottleneck in this implementation as the write
operation takes significantly more time than the FFT
processing. However, the size of the processed data set (8 !
8192 samples = 512 KB) prohibits performing transposition
within on-chip memory space. The cost of the strided-write
operation is constant with respect to the number of input
vectors. This problem will be addressed in future work.

Our present implementation omits concurrent calculation of
the Cholesky decompositions for permutated and trans-
formed noise covariance matrices k k# . Note that those
calculations utilize a method identical to the computation of
y (in timing and complexity), and that the decomposition of
each k k# could be easily accommodated within the LPE
provided eN is not too large (~ 35).

Tunable PE Clock Frequency (MHz)
Voltage(V) 200 300 400 500
1.00 V 914.29 1162.15 1410.01 1657.89
0.95 V 865.95 1089.65 1313.35 N/A
0.90 V 820.09 1020.86 1221.64 N/A

Table 2. Power consumption with respect to clock frequency and voltage.

Table 2 reports the total power consumption with respect to
the PE clock frequency and operating voltage. The clock,
tuned from 200 MHz to 500 MHz, determines the overall

Workshop on Hybrid Multi-core Computing, HiPC 2010, Goa India, December 19, 2010

time-to-solution of the program. Based on the total cycles
reported in Table 1, a range of 84.2 ms at 500 MHz to 210
ms at 200 MHz is observed. Lowering the voltage, from 1.0
V to 0.95 V to 0.9 V, provides a corresponding decrease in
power. A two-fold increase in power occurs between the case
of 0.90 V at 200 MHz and the 1.0 V at 500 MHz. Thus,
depending on the performance requirements, STTW on the
hx3100 can satisfy a range of power and timing constraints.

V. Alternative FFT Implementations

As evidenced by Eqs (7, 9, 10) an efficient FFT lies at the
heart of the ambient noise covariance matrix inversion
paradigm. In that context, results of two alternative schemes
for its implementation on the IBM Cell and the Nvidia Tesla
are included in this Section.

The mathematical foundations of the FFT are discussed in
detail in Van Loan’s seminal monograph [14]. Exploiting the
capabilities of SIMD processors to improve the performance
of the FFT has long been of interest to the applied
mathematics, signal processing, and computer science
communities. Most of the latest reported innovations attempt
to achieve optimal device-dependent performance by
optimizing cache utilization or vectorizing operations carried
out on a single data sequence. We define such paradigms as
inline vectorization. Recently [15], motivated by the fact that
acoustic time-sampled array data can naturally be partitioned
across multiple SIMD-capable cores, we have addressed a
complementary question. We proposed an algorithm where
M 1D data arrays, each of length N, would be Fourier-
transformed concurrently by a single IBM Cell SPE core.
This resulted in 8M arrays that could be handled
simultaneously by the Cell processor, with each core
exploiting its own SIMD capability. We defined this
paradigm as transverse vectorization.

V.1 Transverse Vectorization on the IBM Cell

Our algorithms were implemented using programs written in
a mixed language framework (FORTRAN 95/2003 and C)
based upon the IBM XLF and XLC compilers for multicore
acceleration under Linux. They are specifically exploiting
the intrinsic data structures and functions available for SIMD
operation. Our results are illustrated in Figure 6.

Fig 6. Comparison of FFT_TV to best competing methods [14].

The results are for vector lengths of 1024 complex samples,
SIMD transverse vectorization of 4, and batches of 64
vectors per core. Our method was shown to outperform, by at
least a factor of two, the fastest results from competing
leading edge methods published to date in the open literature
[9].

V.2 Transverse Vectorization on the Nvidia Tesla

The situation is somewhat different with the NVIDIA Tesla,
where the SIMD concept does not directly apply. Rather, the
CUDA architecture exploits a single-instruction-multiple-
thread (SIMT) concept [13]. Each thread block executing on
an SM is partitioned into groups of 32 threads (called warps)
that are scheduled by the SIMT unit to execute concurrently.
Under SIMT, each thread from a warp is assigned to one of
the scalar processor cores belonging to the SM. Threads
composing the warp start at the same program address, but
are nominally free to branch and execute independently. At
every instruction select time, the SIMT unit selects a warp
that is ready to execute and issues the next instruction to the
active threads in the warp. If threads in a warp diverge via
data-dependent conditional branching, the warp serially
executes each branch path taken, while disabling threads that
are not on that path. Finally, when all paths complete, the
threads converge back to the same execution path [13]. Since
a warp executes one common instruction at a time, the
highest efficiency is achieved when all 32 threads in a warp
agree on their execution path. This is precisely what happens
under the transverse vectorization construct, which we had
defined in the context of the Cell processor.

Our implementation comprises two components. A code that
runs on the host CPU and a kernel that runs on the GPU and
is invoked by the host. In practice we run a set of identical
kernels on a one-dimensional grid partitioned into thread
blocks. These blocks get assigned to different SMs of the
GPU as scheduled by the hardware. Because of the latencies
associated with data retrieval from the GPU’s global
memory, there is a strong incentive to maximally exploit all
banks of shared memory, as well as the constant memory.

In terms of specific algorithms, we report below our initial
results for a radix-8 Stockham scheme [14].

NX! BATCH! TF! TB! GFLOPS!

8! 1048576! 0.00373! 0.00373! 33.69!

64! 131072! 0.00946! 0.00959! 26.38!

512! 16384! 0.00875! 0.00991! 40.46!

4096! 2048! 0.01225! 0.01219! 41.18!

4096! 4096! 0.02027! 0.02007! 49.89!

4096! 8192! 0.04654! 0.05460! 39.81!

Table 3. FFT timings on Tesla C1060 (preliminary). NX = length of vector;
BATCH = number of vectors; TF = forward transform time; TB = inverse
transform time.

0
2
4
6
8

10
12

Ti
m

e
pe

r F
FT

 8
 S

PE
s

(i
n

us
)

 FFTW FFTC FFT_TV_SIMD

Workshop on Hybrid Multi-core Computing, HiPC 2010, Goa India, December 19, 2010

In the actual subroutine, we have implemented loop
unrolling. Moreover, even though complex numbers are
supported both by the NVIDIA’s CUDA C and PGI’s CUDA
FORTRAN compilers, we have split the real and imaginary
components to achieve better alignment in memory fetches.
This splitting also enables the use of a single set of weights.
It is important to note that the results reported in Table 3
were obtained without invoking the compiler optimization
options (due to yet unresolved data transfer error messages in
PGI’s CUDA FORTRAN 10.8 compiler). Hence, there is a
substantial room for performance improvement. Also, no
attempt was made at this stage to optimize the data partition
between global and shared memory. As such, this
implementation does not yet reach the performance reported
by Govindaraju et al [16]. On the other hand, a direct use of
CUDA’s FFT library [17] produces the following results.

Fig 7. Throughput performance of CT radix-2 scheme on our system

V. Summary and Conclusions

To achieve the real-time and low power performance
required for maritime sensing and other computationally
demanding applications, many existing algorithms may need
to be revised and adapted to the emerging revolutionary
computing technologies. Novel hardware platforms of
interest to naval applications include the IBM Cell, the
Coherent Logix HyperX, and the NVIDIA Tesla (Fermi)
devices.

In this article, we have developed, implemented, and
demonstrated a novel algorithm for spatio-temporal twice
whitening on the ultra-low power hx3100 processor. Our
implementation exploits the structure of the spatially diffuse
noise covariance matrix to reduce the computational
complexity by a factor of 2

sN , amounting to several orders
of magnitude. Moreover, we demonstrated that this critical
signal processing task can be performed in real time on the
hx3100. This processor provides a platform capable of
handling adaptive computations through real-time
reconfigurability. The high throughput and low-power
features of our realization suggest new signal processing
opportunities for acoustic energy detectors in maritime

sensing applications. Because of the essential role the FFT
plays in such applications, we also included results for the
transverse vectorization paradigm on the IBM Cell. This
algorithm was recently shown to outperform, by at least a
factor of two, the fastest results from competing leading edge
methods published to date in the open literature. We also
included preliminary results for a radix 8 Stockham FFT
implementation on the Nvidia Tesla. The recent release by
PGI of the high-performance CUDA FORTRAN compiler
for the NVIDIA Tesla opens, via mixed language (C and
FORTRAN) programming an optimal framework for ultra
fast future implementations. Such a framework would fully
exploit the intrinsic array language, compiler optimization
and numerical capabilities of FORTRAN in conjunction with
the DMA and system capabilities of C.

Finally, we believe that in the longer term, the emergence of
multicore devices will enable the implementation of novel,
more powerful information–processing paradigms that could
not be considered heretofore.

References
1. H. L. Van Trees, Optimum Array Processing, Wiley – Interscience

(2002).
2. R. Trider, IEEE Transactions on Acoustics, Speech, and Signal

Processing, 26(1), 15-20 (1978).
3. R. F. Follett and J. P. Donohoe, IEEE Journal of Ocean Engineering,

19(2), 175-182 (1994).
4. H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part

I, Wiley (1968); Part III, Wiley (1971); ibid, Wiley – Interscience
(2001).

5. J. Barhen et al, US Navy Journal of Underwater Acoustics (in press,
2010).

6. J. A. Kahle et al, IBM Journal of Research and Development, 49 (4-5),
589-604 (2005).

7. www.nvidia.com
8. M. Stolka (Coherent Logix), personal communication; see also:

www.coherentlogix.com
9. D.A. Bader, V. Agarwal, and S. Kang, Parallel Computing, 35(3),

119-137 (2009).
10. S. Chellappa, F. Franchetti, and M. Pueschel, “Computer Generation

of Fast Fourier Transforms for the Cell Broadband Engine”,
Proceedings of the International Conference on Supercomputing, pp.
26-35 (2009).

11. J. Kurzak and J. Dongarra, Scientific Programming, 17(1-2), 31-42
(2009).

12. M. Wolfe et al, CUDA FORTRAN Programming Guide and
Reference, The Portland Group, Inc (November 2009).

13. Anonymous, NVIDIA CUDA Programming Guide, NVIDIA
Corporation (August 2009).

14. C. Van Loan, Computational Frameworks for the Fast Fourier
Transform, SIAM Press (1992).

15. J. Barhen et al, ACM / IEEE Frontiers of GPU, Multi- and Many-Core
Systems, Proceedings CD, IEEE Press (2010).

16. N. Govindaraju et al, Proceedings of Super-computing 2008
Conference (November 2008).

17. Anonymous, CUDA cuFFT, NVIDIA Corporation (2010).

cuFFT, complex FFT only

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25

log2(NX)

G
FL

O
P

S

