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Abstract. The emergence of streaming multicore processors with 
multi-SIMD architectures opens unprecedented opportunities 
for executing many sophisticated signal processing algorithms 
faster and within a much lower energy budget. Here we report 
on the development, implementation, and demonstration of a 
novel, massively parallel computational scheme for inverting 
the spatio-temporal covariance matrix associated with ambient 
noise in signal detection algorithms.  Our methodology involves 
extensive use of the FFT, for which we exploit the capabilities of 
leading hybrid multicore processors, including the IBM Cell, 
the Nvidia Tesla, and the Coherent Logix HyperX.  

Index Terms — FFT, multicore processors, Cell, Tesla, HyperX, 
spatio-temporal data whitening 

I. Introduction 

As stealthier underwater targets become more pervasive, 
there is a need to deploy ever more performing sensor 
arrays. To fully exploit the information contained in data 
measured by these novel devices often requires the use of 
unconventional algorithms that exhibit growing computa-
tional complexity as function of the number of acoustic 
channels and the number of complex samples in each 
observation window. 

For example, signal whitening has long been recognized as 
an essential stage in processing sonar array data [1], and the 
Fast Fourier Transform (FFT) has played, for many years, a 
fundamental role in that context [2-4]. The unconventional 
twice whitening paradigm includes the inversion of the 
spatio-temporal covariance matrix for ambient noise. The 
computational challenge one then faces stems from the 
following considerations. 
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An array consisting of Ne acoustic channels, capturing Ns 
complex samples per time window per channel, (Ne 310~ , 
Ns 4 )10~  yields a spatio-temporal covariance matrix of 
size 7 710 10!  for diffuse ambient noise. Its inversion may 
involve up to 33 10!  16 K- point complex FFTs that must 
be carried out for each observation window [5]. 

This, in turn, translates into a demand for computational 
throughput that cannot readily be met with conventional 
hardware. In such a context, the emergence of streaming 
hybrid multicore processors with multi-SIMD architectures 
(e.g., the IBM “Cell” [6], the NVIDIA Tesla and Fermi [7], 
or the Coherent Logix “HyperX” [8]) opens unprecedented 
opportunities for executing sophisticated signal processing 
algorithms, including FFTs, faster and within a much lower 
energy budget.  

Here, our objective is to report on the development, 
implementation, and demonstration of a novel, massively 
parallel computational scheme for inverting the spatio-
temporal covariance matrix associated with ambient noise in 
signal detection. Our paper is organized as follows. Section 
II highlights several multicore platforms that are under 
consideration for sensor array processing. Section III 
presents the methodology for inverting the covariance matrix 
using unitary Fourier factorization. Section IV discusses our 
specific implementation on the novel, ultra-low power 100-
core HyperX processor. Since an efficient FFT is at the heart 
of the inversion paradigm, results of two alternative schemes 
for its implementation on the IBM Cell and the Nvidia Tesla 
are included in Section V. Finally, a summary and 
conclusions reached so far are given in Section VI.  

II. Computational Platforms 

Four parameters are of paramount importance when 
evaluating the relevance of emerging computational 
platforms for time-critical, embedded applications. They are: 
computational speed, communication speed (the I/O and 
inter-core data transfer rates), the power dissipated (usually 
measured in pico-Joules per floating point operation), and the 
processor footprint. For each of these parameters, one can 
compare the performance of an algorithm for different 
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hardware platforms and software (e.g., compilers) tools. In 
that context, several multicore processors are of relevance for 
computationally intensive maritime sensing applications.  

II.1 The HyperX hx3100 Processor 

The hx3100 processor is the latest entry in the HyperX 
family of ultra low power, massively parallel processors 
produced by Coherent Logix, Inc [8]. Because of its ultra-
low power consumption, it is a very strong contender not 
only for maritime sensing computations, but also for those 
applications that can substantially benefit from an MIMD 
capability in conjunction with real-time reconfigurability. 

a. HyperX Architectural Overview 

The hx3100 processor consists of an array of processing 
elements (PEs) of size 10-by-10, embedded on an 11-by-11 
array of data management and routing units (DMRs). It is 
illustrated in Figure 1. At a system clock frequency of 500 
MHz, the maximum chip-level throughput for 32-bit 
floating-point operations is 25 GFLOPS. Alternatively, when 
power consumption is prioritized, performance can be 
measured for the current release as 16 GFLOPS/Watt. This 
translates into energy consumption on the order of 10 pico-
Joules (pJ) per instruction, which rivals the performance of 
dedicated ASIC designs. 

 

 

 

 
The DMR network provides Direct Memory Access (DMA) 
for the PEs to both on-chip and off-chip memory. Each DMR 
has 8 KB of SRAM, and operates at a read/write cycle rate of 
500 MHz, while the eight independent DMA engines within 
a DMR may act in parallel. A PE directly accesses data 
memory in four neighbouring DMRs, such that 32 KB of 
data is addressable by any given PE. In addition, when a 
subset of PEs shares direct access to the same DMR, the 
associated memory space may act as shared memory 
between PEs. This inter-connectedness provides for a 
mixture of shared and distributed memory hierarchies. Each 
DMR consists of 8 16-bit DMA engines that route memory 
requests from neighbouring PEs and support routing memory 
requests managed by other DMRs. In addition to supporting 
on-chip DMAs, the DMRs handle requests to off-chip 

memory, including the eight DDR2 DRAM ports. Moreover, 
the 24 IO ports surrounding (six per side) the chip can be 
wired to connect together multiple HyperX chips. 

b. Integrated Software Development Environment 

Programming the HyperX entails writing an ANSI C code, 
which defines the parallelism in the algorithm through the 
use of the industry standard Message Passing Interface (MPI) 
protocol. Note that, contrary to the IBM Cell or the Nvidia 
Tesla, no FORTRAN 2003 compiler for high performance 
numerical computations is yet available. The Coherent Logix 
integrated software tools automatically assign individual 
tasks to PEs, and create routing to support the movement of 
data between PEs. Tasks may be both parallelized and 
pipelined across multiple cores, while DMAs are controlled 
explicitly in software. The latter capabilities provide 
opportunities for designing the flow of program execution to 
meet resource constraints and programming requirements.  

c. Power Management 

The current version of the HyperX architecture provides the 
option to power down quadrants of the PE grid that are 
unneeded by a designed application. As a result, programs 
can be optimized with respect to energy usage (of the chip) 
as well as the computational speed and memory bandwidth 
usage. Wake-up signals can be triggered by external events, 
such that the processor may be shutdown during period of 
computational idle time. 

II.2 The Cell Broadband Engine  

The Cell multicore architecture is the product of five years of 
intensive R&D efforts undertaken in 2000 by IBM, Sony, 
and Toshiba [6]. Results reported in this paper refer to the 
PXC 8i (third generation) release of the processor, which is 
implemented on the QS 22 blades that utilize an IBM 
BladeCenterTM H. The PXC 8i model includes one multi-
threaded 64-bit PowerPC processor element (PPE) with two 
levels of globally coherent cache, and eight synergistic 
processor elements (SPE). Each SPE consists of a processor 
(SPU) designed for streaming workloads, local memory, and 
a globally coherent DMA engine. Emphasis is on SIMD 
processing. An integrated high-bandwidth element inter-
connect bus (EIB) connects the nine processors and their 
ports to external memory and to system I/O. Details on the 
design parameters of the PXC 8i are well documented [9-11] 
and will not be repeated here. Note that both FORTRAN 
2003 and C/C++ compilers for multi-core acceleration under 
Linux (i.e., XLF and XLC) are provided by IBM.  

II.3 The NVIDIA Tesla Processor  

The NVIDIA Tesla C1060 GPU [7] used in our system 
operates in conjunction with an Intel Xeon E5530 2.4 GHz 
CPU that accesses 6 GB of ECC DDR3 1066 MHz RAM. 
The operating system is the 64-bit edition of Windows XP. 
Our algorithms are programmed in CUDA FORTRAN using 
a compiler provided by the Portland Group Inc [12]. 

 

Fig 1.  The Coherent Logix hx3100 processor. An exapnded view of 
four PEs surrounded by 9 DMRs demonstrates the degree of 
connectivity. HyperIO references the input/output ports used by the 
hx3100 processor to community with off-chip memory or other 
hx3100 processors. 
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NVIDIA GPUs exploit the CUDA architecture [13], which, 
for the Tesla, is built in terms of an array of 30 Streaming 
Multiprocessors (SMs). Each SM consists of eight scalar 
processor cores. This results in a total of 240 cores for the 
Tesla. In addition, an SM includes two special units for 
transcendental functions, a multithreaded instruction unit, 
and 16 KB of shared memory. There are 4 GB of global 
RAM available to the GPU, and its clock runs at 1.296 GHz.  

From a computational perspective, the fundamental 
underlying paradigm is the concept of scalar thread. Threads 
are grouped in blocks that execute concurrently on one SM 
with zero overhead [13]. Massive parallelism is achieved in 
terms of a kernel grid comprising the thread blocks. As any 
thread block terminates, a new block is launched on the first 
available (vacated) multiprocessor.  

III. Inversion of Spatio-Temporal Covariance 

The formal spatio-temporal detection problem can be stated 
as follows. Let ( )ir  denote the signal received, ( )is  the 
unknown signal source, and ( )i!  the additive noise at the i-
th element of a sensor array comprising eN  elements. Given 
a combined (stacked) array observable r , i.e., a vector 

1 2[ ( ) , ( ) ,..., ( ) ]eT T T TN"r r r r of s etN N N"  complex 
data, we must choose between two hypotheses 0!  

and 1! , 
such that 

       0! (source absent):    "r !                                        (1) 

       1! (source present):   " #r s !                                  (2) 

The likelihood ratio test is a central mechanism for making a 
decision between two hypotheses. In practice, this statistical 
test uses the natural logarithm of the ratio of the probability 
densities of the observable r under hypotheses 1!  and 

0! , respectively [4]. Thus, it is usually referred to as the log 
likelihood ratio (LLR) ! . To compute ! , one must first 
derive expressions for these probability distributions, which 
involves the integration of complex Gaussian random 
processes. Omitting the propagation transfer matrices [5],  

      1 log (| | )e
# $" $z A z "A"                               (3) 

where 1 1$ $" #A " H , "  represents the covariance 
matrix of the signal, and the full spatio-temporal covariance 
matrix of the noise is denoted as H .  Here, spatial compo-
nents refer to sensors, while temporal components refer to 
measured samples. Specifically, matrix H  has the following 
structure: 
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i iH  denotes the noise covariance matrix associated with the 
signal detected at sensor i, and z  is a vector of “twice 
whitened” data, defined as 

......... 1$"z H r                                                                (5) 

This expression of z (introduced in [5] to avoid replica 
whitening during target search), is distinct from the 
conventional expression for whitening data that is written 

1/2$"z H r . The inversion of H  has complexity of order 
3 3( )e sN N" . We now show that by exploiting features in 

the spatially additive noise in conjunction with the FFT, we 
can reduce this complexity to 3( )s aN N" ; given that 

e sN N! , this reduction in the cost of spatio-temporal data 
whitening can be very significant. 

III.1  Efficient Algorithms for Twice-Whitening  

In order to design efficient algorithms to compute 1$H , we 
exploit the specific spatio-temporal organization of array 
ambient noise data. In particular, we observe that spatially 
diffuse noise is wide-sense stationary. This imposes the 
restriction that the submatrices of H  be Toeplitz, and that 
the full matrix be block Toeplitz. Note that this approxi-
mation excludes contributions from discrete interferers to the 
sources of noise in Eqs. (1-2). Then, the spectral theorem 
yields the eigenvalues’ matrix i j#  for each s sN N!  
submatrix i jH , for , 1, ei j N" " . The Fourier factoriza-
tion of the full covariance matrix H  can then be written  
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F is just the sN -
 
point inverse Fourier transform (in unitary 

representation) applied to the time series at each of the eN  
array elements. The matrix # , of size t tN N! , is band-
diagonal, in the sense illustrated on Figure 2.  

Fig 2. Block structure of the covariance matrix H  before (left) the unitary 
Fourier factorization. Symmetry arises from the condition of spatially 
diffuse noise sources. The Fourier factorization reveals the digaonal 
structure of each submatrix i j# . 

Elements of #  can then be rearranged (using an orthogonal 
permutation matrix $ ) into block-diagonal form (see Figure 
3). Given this structure, we can efficiently invert the space-
time noise covariance matrix. Indeed, using the unitarity of 
F̂ and the orthogonality of $ , we can write 
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Fig 3. Transformation of the band-diagonal matrix #  by the orthogonal 
permutation matrix $  yields the block-diagonal matrix # , where each 
diagonal block k k#  is of size e eN N! .  

However, since #  is block-diagonal, 1$# can now be 
computed on a frequency by frequency basis, by inverting 
each block k k# . As can readily be seen, this methodology 
will reduce the complexity of inverting the full space-time 
covariance matrix of size t tN N!  to one of inverting sN  
spatial covariance matrices. Each of these matrices is of 
considerably smaller size e eN N! . For 1, sk N" " , we 
need to solve 

         k k k k"y d#                                                            (8) 

where ky  and kd  represent 1eN !  ordered partitions of the 
transformed vectors 

         
ˆ( )T #"y $ F z                                                       (9)         

         ˆ( )T #"d $ F r                                                     (10) 

respectively. Eqs (9-10) are carried out first; thereafter, Eq 
(8) is solved via Cholesky decomposition. This result can 
then be permutated and inverse Fourier transformed in order 
to obtain the twice-whitened signal vector z . 

III.2  Program Design 

Our implementation of twice whitening on the hx3100 
organizes the algorithm into multiple, pipelined and 
parallelized programs occupying 17 of the 100 available PEs. 
Refer to Figure 4 for locations of the programs described 
below. First, prior to any data processing, input data is 
loaded into off-chip DRAM memory banks. Here, the data is 
single-precision, complex-valued signal vectors stored in 
sample-consecutive order in DRAM 1. At runtime, program 
IOPE 1 fetches one input vector from DRAM 1 and copies 
the data onto the chip via a series of 4 routing programs 
labelled RPEs. The latter manage and synchronize the input 
data for our complex-to-complex FFT program. 

Upon completion of the FFT of one input vector, the RPEs 
trigger IOPE 2 to store the transformed data off-chip in 
DRAM 2. Storage of the intermediate results is required to 
free on-chip memory for processing the FFT of the next 

input vector. The copying process occurs directly from the 
DMRs used by the FFT cores and, specific to our algorithm, 
requires a substantial amount of processing time. This 
overhead results from our current use of a strided write 
operation in which each complex-valued sample is written to 
DRAM with a stride of eN . The purpose of this operation is 
to perform the permutation denoted by $  in Figure 6. 

Once all eN  input vectors have been transformed and 
written to DRAM 2, IOPE 2 changes state and begins to 
fetch the permutated, length- eN  vectors that represent the 
partitions kd  defined in Eq. (10). IOPE 3 fetches a pre-
computed Cholesky decomposition from DRAM 3. The 
latter is represented by the ( 1 ) / 2e eN N $ elements of an 
upper triangular, complex-valued matrix obtained by offline 
decomposition of the matrix k k# . Future versions of this 
program will implement the Cholesky decomposition of each 
such matrix alongside the transformation and permutation of 
the signal vectors. Both sets of data are moved to the DMRs 
of the whitening program (LPE). Within this program 
forward elimination and back substitution solve Eq. (8), both 
requiring 2( )eN"  operations to complete. The output of 
this program is written back to DRAM 4 via IOPE 4. Again, 
a strided-write operation is used, with the eN components 
(samples) spaced by sN positions; once all sN  solutions are 
obtained, DRAM 4 stores, in consecutive order, the eN  
partitions of $y obtained from Eq (9), i.e., the FFT of the 
twice-whitened vector z . 

 
Fig 4. Layout of the STTW program on the hx3100 processor. Boxes 
circumscribe PEs and DMRs for each individual program. 
 

An important consideration is the synchronization between 
individual PEs to ensure continuity and correctness of data 
movement. The 8 KB memory available from each DMR 
necessitates precise accounting for the size, location, and 
timing of each data segment. This inter-core communication 
is performed using a special purpose API written for the C 
language. For example, blocking variants of DMA send and 
receive functions and provide a basic communication 
mechanism for data synchronization, and additional 
mechanisms are available for reading and writing to DRAM. 
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The placement and routing of individual programs, e.g., the 
IO servers or the FFT cores, with respect to the layout of 
available cores is also an important consideration for 
performance. While this level of detail can be programmed 
explicitly, the HyperX software development environment 
provides a global optimizer and scheduler to perform 
placement and routing. For example, routing constraints 
ensure the IO server programs are placed adjacent to the off-
chip IO ports and that on-chip DMA routes do not collide, 
e.g., when transferring data between PEs. 

IV. Computational Results 

As implemented, the full program processed a series of 
8192-complex-point input vectors, each representing a noisy 
sinusoidal typical of a monotone acoustic source collected 
against a diffusive (thermal) background. At a sampling rate 
of 64 KHz, this amounts to ~125 ms of data. When running 
on the hx3100 processor, input vectors are loaded into the 
off-chip DDR2 memory banks. Vectors are stored in de-
interleaved, bit-reversed order, with a single input vector 
representing 64 KB of memory. Eight DMA transfers are 
required to load a collection of 8 on-chip DMRs. This IO 
service requires 1 core for managing requests to the DDR2 
and, in a double buffering approach, 3 neighboring DMRs to 
optimize timing of the data transfer. 

An 8192-point, complex-to-complex decimation-in-time FFT 
is used to transform the input data. Each instance employs 8 
PEs, as shown in Figure 4. The FFT algorithm requires bit-
reversed-order input data and reordering of the input is done 
prior to loading the DRAM. The input and output servers are 
synchronized to avoid overwriting data stored in the FFT 
processing cores. 

We have implemented the above on the HyperX hx3100, and 
we have profiled the program elements using the Integrated 
Software Development Environment. The results below refer 
to version 3.0.1 of the HyperX ISDE tools for the case of  

8eN "  and 8192sN "  complex samples. The number of 
cycles, normalized to the relevant input type, is shown for 
each program in Table 1.  

Program PEs DMRs Cycles/iteration 
IOPE 1  1 4 37,494 
RPE’s 4 16 N/A 
FPE’s 8 18 137,741 
IOPE 2 (write) 1 4 565,749 
IOPE 2 (read) 1 1 136 
IOPE 3 1 2 358 
LPE 1 4 4,384 
IOPE 4 1 3 539 
TOTAL 17 52 42,014,925 

Table 1. Program resources used, including PEs, DMRs, and cycles per 
iteration of each program element. 

For example, IOPE 1 requires 37,494 clock cycles to read 
one input vector and synchronize transfer of that vector to 
the RPEs memory space. This accounting of clock cycles 

highlights the processing bandwidth associated with each 
program; data transfer is not computationally complex, but a 
moderate amount of time is needed to bring the data onto the 
chip. Regarding IOPE 1, the reported cycles include sending 
data to the RPE’s, while the cycles reported for the FPEs 
incorporate the read operation from the RPE memory space. 
IOPE 3 reads the transformed and permutated vectors kd  
from DRAM 3; recall the latter are identified by the sample 
(or, equivalently, frequency) index k  and there are a total of 
8192 vectors to process. The other program elements have 
similar inter-pretations of the reported cycle counts. 

 

 

 

 

 

 
Fig 5. In IOPE 2, input vectors are sequentially transformed and permutated 
using an eN –strided write to DRAM. Consecutive memory is from left to 
right. As a result, the vector kd  read directly from DRAM 2, can be 
immediately used for the twice-whitening operation via  k k k k"y d# . 

IOPE 2 represents the most costly operations in this 
implementation. As stated above and illustrated by Figure 8, 
IOPE 2 is performing a sample-by-sample strided write of 
the FFT output. Many samples (8192) must be processed this 
way and the cost associated with strided writes to DRAM is 
high. More important, the IOPE 2 write operation represents 
a significant bottleneck in this implementation as the write 
operation takes significantly more time than the FFT 
processing. However, the size of the processed data set (8 ! 
8192 samples = 512 KB) prohibits performing transposition 
within on-chip memory space. The cost of the strided-write 
operation is constant with respect to the number of input 
vectors. This problem will be addressed in future work. 

Our present implementation omits concurrent calculation of 
the Cholesky decompositions for permutated and trans-
formed noise covariance matrices k k# . Note that those 
calculations utilize a method identical to the computation of 
y (in timing and complexity), and that the decomposition of 
each k k# could be easily accommodated within the LPE 
provided eN  is not too large (~ 35). 

Tunable PE Clock Frequency (MHz)  
Voltage(V) 200 300 400 500 
1.00 V 914.29 1162.15 1410.01 1657.89 
0.95 V 865.95 1089.65 1313.35 N/A 
0.90 V 820.09 1020.86 1221.64 N/A 

Table 2. Power consumption with respect to clock frequency and voltage. 
 

Table 2 reports the total power consumption with respect to 
the PE clock frequency and operating voltage. The clock, 
tuned from 200 MHz to 500 MHz, determines the overall 
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time-to-solution of the program. Based on the total cycles 
reported in Table 1, a range of 84.2 ms at 500 MHz to 210 
ms at 200 MHz is observed. Lowering the voltage, from 1.0 
V to 0.95 V to 0.9 V, provides a corresponding decrease in 
power. A two-fold increase in power occurs between the case 
of 0.90 V at 200 MHz and the 1.0 V at 500 MHz. Thus, 
depending on the performance requirements, STTW on the 
hx3100 can satisfy a range of power and timing constraints. 

V. Alternative FFT Implementations 

As evidenced by Eqs (7, 9, 10) an efficient FFT lies at the 
heart of the ambient noise covariance matrix inversion 
paradigm. In that context, results of two alternative schemes 
for its implementation on the IBM Cell and the Nvidia Tesla 
are included in this Section. 

The mathematical foundations of the FFT are discussed in 
detail in Van Loan’s seminal monograph [14]. Exploiting the 
capabilities of SIMD processors to improve the performance 
of the FFT has long been of interest to the applied 
mathematics, signal processing, and computer science 
communities. Most of the latest reported innovations attempt 
to achieve optimal device-dependent performance by 
optimizing cache utilization or vectorizing operations carried 
out on a single data sequence. We define such paradigms as 
inline vectorization. Recently [15], motivated by the fact that 
acoustic time-sampled array data can naturally be partitioned 
across multiple SIMD-capable cores, we have addressed a 
complementary question. We proposed an algorithm where 
M 1D data arrays, each of length N, would be Fourier-
transformed concurrently by a single IBM Cell SPE core. 
This resulted in 8M arrays that could be handled 
simultaneously by the Cell processor, with each core 
exploiting its own SIMD capability. We defined this 
paradigm as transverse vectorization.  

V.1  Transverse Vectorization on the IBM Cell 

Our algorithms were implemented using programs written in 
a mixed language framework (FORTRAN 95/2003 and C) 
based upon the IBM XLF and XLC compilers for multicore 
acceleration under Linux. They are specifically exploiting 
the intrinsic data structures and functions available for SIMD 
operation. Our results are illustrated in Figure 6.  

 

Fig 6. Comparison of FFT_TV to best competing methods [14]. 

The results are for vector lengths of 1024 complex samples, 
SIMD transverse vectorization of 4, and batches of 64 
vectors per core. Our method was shown to outperform, by at 
least a factor of two, the fastest results from competing 
leading edge methods published to date in the open literature 
[9].  

V.2  Transverse Vectorization on the Nvidia Tesla 

The situation is somewhat different with the NVIDIA Tesla, 
where the SIMD concept does not directly apply. Rather, the 
CUDA architecture exploits a single-instruction-multiple-
thread (SIMT) concept [13]. Each thread block executing on 
an SM is partitioned into groups of 32 threads (called warps) 
that are scheduled by the SIMT unit to execute concurrently. 
Under SIMT, each thread from a warp is assigned to one of 
the scalar processor cores belonging to the SM. Threads 
composing the warp start at the same program address, but 
are nominally free to branch and execute independently. At 
every instruction select time, the SIMT unit selects a warp 
that is ready to execute and issues the next instruction to the 
active threads in the warp. If threads in a warp diverge via 
data-dependent conditional branching, the warp serially 
executes each branch path taken, while disabling threads that 
are not on that path. Finally, when all paths complete, the 
threads converge back to the same execution path [13]. Since 
a warp executes one common instruction at a time, the 
highest efficiency is achieved when all 32 threads in a warp 
agree on their execution path. This is precisely what happens 
under the transverse vectorization construct, which we had 
defined in the context of the Cell processor.  

Our implementation comprises two components. A code that 
runs on the host CPU and a kernel that runs on the GPU and 
is invoked by the host. In practice we run a set of identical 
kernels on a one-dimensional grid partitioned into thread 
blocks. These blocks get assigned to different SMs of the 
GPU as scheduled by the hardware. Because of the latencies 
associated with data retrieval from the GPU’s global 
memory, there is a strong incentive to maximally exploit all 
banks of shared memory, as well as the constant memory.  

In terms of specific algorithms, we report below our initial 
results for a radix-8 Stockham scheme [14].  

 
NX! BATCH! TF! TB! GFLOPS!

8! 1048576! 0.00373! 0.00373! 33.69!

64! 131072! 0.00946! 0.00959! 26.38!

512! 16384! 0.00875! 0.00991! 40.46!

4096! 2048! 0.01225! 0.01219! 41.18!

4096! 4096! 0.02027! 0.02007! 49.89!

4096! 8192! 0.04654! 0.05460! 39.81!

Table 3. FFT timings on Tesla C1060 (preliminary).  NX = length of vector; 
BATCH = number of vectors; TF = forward transform time; TB = inverse 
transform time. 
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In the actual subroutine, we have implemented loop 
unrolling. Moreover, even though complex numbers are 
supported both by the NVIDIA’s CUDA C and PGI’s CUDA 
FORTRAN compilers, we have split the real and imaginary 
components to achieve better alignment in memory fetches. 
This splitting also enables the use of a single set of weights. 
It is important to note that the results reported in Table 3 
were obtained without invoking the compiler optimization 
options (due to yet unresolved data transfer error messages in 
PGI’s CUDA FORTRAN 10.8 compiler). Hence, there is a 
substantial room for performance improvement. Also, no 
attempt was made at this stage to optimize the data partition 
between global and shared memory. As such, this 
implementation does not yet reach the performance reported 
by Govindaraju et al [16]. On the other hand, a direct use of 
CUDA’s FFT library [17] produces the following results. 

Fig 7.  Throughput performance of CT radix-2 scheme on our system 

V. Summary and Conclusions 

To achieve the real-time and low power performance 
required for maritime sensing and other computationally 
demanding applications, many existing algorithms may need 
to be revised and adapted to the emerging revolutionary 
computing technologies. Novel hardware platforms of 
interest to naval applications include the IBM Cell, the 
Coherent Logix HyperX, and the NVIDIA Tesla (Fermi) 
devices. 

In this article, we have developed, implemented, and 
demonstrated a novel algorithm for spatio-temporal twice 
whitening on the ultra-low power hx3100 processor. Our 
implementation exploits the structure of the spatially diffuse 
noise covariance matrix to reduce the computational 
complexity by a factor of 2

sN , amounting to several orders 
of magnitude. Moreover, we demonstrated that this critical 
signal processing task can be performed in real time on the 
hx3100. This processor provides a platform capable of 
handling adaptive computations through real-time 
reconfigurability. The high throughput and low-power 
features of our realization suggest new signal processing 
opportunities for acoustic energy detectors in maritime 

sensing applications. Because of the essential role the FFT 
plays in such applications, we also included results for the 
transverse vectorization paradigm on the IBM Cell. This 
algorithm was recently shown to outperform, by at least a 
factor of two, the fastest results from competing leading edge 
methods published to date in the open literature. We also 
included preliminary results for a radix 8 Stockham FFT 
implementation on the Nvidia Tesla. The recent release by 
PGI of the high-performance CUDA FORTRAN compiler 
for the NVIDIA Tesla opens, via mixed language (C and 
FORTRAN) programming an optimal framework for ultra 
fast future implementations. Such a framework would fully 
exploit the intrinsic array language, compiler optimization 
and numerical capabilities of FORTRAN in conjunction with 
the DMA and system capabilities of C. 

Finally, we believe that in the longer term, the emergence of 
multicore devices will enable the implementation of novel, 
more powerful information–processing paradigms that could 
not be considered heretofore. 
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