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Abstract. Quantum communication (QC) systems harness modern physics through state-of-the-art optical
engineering to provide revolutionary capabilities. An important concern for QC engineering is designing and
prototyping these systems to evaluate the proposed capabilities. We apply the paradigm of software-defined
communication for engineering QC systems to facilitate rapid prototyping and prototype comparisons. We detail
how to decompose QC terminals into functional layers defining hardware, software, and middleware concerns,
and we describe how each layer behaves. Using the superdense coding protocol as an example, we describe
implementations of both the transmitter and receiver, and we present results from numerical simulations of the
behavior. We conclude that the software-defined QC provides a robust framework in which to explore the large
design space offered by this new regime of communication. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
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1 Introduction
Quantum communication (QC) is an active area of funda-
mental research and technology development that makes
use of the quantum properties of light to transmit and receive
quantum information.1,2 It enables novel capabilities such as
quantum teleportation or quantum key distribution (QKD)
that cannot be provided by means of classical communica-
tion (CC).3,4 The design of prototype QC systems is an
important step toward realizing theoretical predictions
and assessing experimental performance. Of course, similar
issues face CC systems and we may expect QC research
to leverage existing methods for system prototyping. In
particular, software-defined implementations have proven
useful for providing flexibility in the design and testing of
conventional radio systems.5 In this contribution, we extend
the software-defined communication (SDC) paradigm to the
design and development of QC systems.6

SDC allocates signal processing tasks that nominally
require specialized hardware to software implementations
based on general-purpose computational power.5 For exam-
ple, within traditional radio communications, the ideal SDC
receiver would use an antenna and analog-to-digital converter
(ADC) for signal sampling before handing off the remaining
waveformprocessing tasks to software. These tasks, including
mixing, filtering, and demodulation, are then tuned by simply
reprogramming the radio. Reprogrammable radios promise
to be cheaper to design and build than using dedicated and
fixed hardware components. More important, the ability for
SDC to configure itself in real time affords the opportunity
to adapt to the transmission environment, i.e., a cognitive
radio.7 The SDC paradigm is not restricted to radios; similar
ideas have been argued for use in optical communication
systems.8,9

Although much of the physics underlying QC is very dif-
ferent from conventional communications, the SDC para-
digm can be applied to build QC systems as well. This is
because both domains employ many of the same processing
primitives at the information (bit) level. This includes the de/
modulation and de/coding techniques required for individual
transmissions in addition to the handshaking exchanges
needed to negotiate complete protocols. These common needs
motivate our consideration of software-defined quantum
communication (SDQC) systems and our evaluation of its
feasibility with state of the art quantum optical hardware.

Of course, there are notable differences between QC and
CC. These differences manifest from how information is
encoded into the photonic carrier. In particular, QC encodes
information into the quantum state of a photon using any
number of degrees of freedom, e.g., polarization, quadrature
phase, spatial mode, angular momentum, frequency, and
so on. By comparison, CC uses macroscopic amounts of
photons to encode the classical state of the same degrees of
freedom. This difference leads to unique capabilities for each
physical domain.10

Notwithstanding differences at the physical layer, QC and
CC share a dependence on logical control data known as
“metadata.” Both regimes require metadata to control, man-
age, organize, and annotate the transmitted payload. In a
typical CC example, metadata may be concatenated with the
payload by the transmitter and then extracted by the receiver.
This information may, for example, identify the demodula-
tion needed to recover the payload or specify the destination
address needed for routing.

In the case of QC, classical metadata may either be shared
through a synchronized side-channel or generated by meas-
urement of the transmitted quantum state. An example of the
latter is found in QKD in which the transmitter and receiver
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share measurement results to determine the next steps in the
key generation protocol.4 In the QKD example, some mea-
surements serve the role of metadata while others represent
the payload. These distinctions are not known at the time
of transmission but are derived using an agreed upon CC
protocol. By contrast, quantum teleportation and entangle-
ment swapping typically require a side channel through
which to share the classical measurements recorded by the
transmitter and needed by the receiver to recover or relay
the quantum state.3 Similar examples include the cases of
quantum memory modules or quantum routers that use
dynamic addresses to store11 and route information,12 respec-
tively. Moreover, Fujiwara13 has shown how metadata may
even be encoded into the quantum state, which would move
our software paradigm into a quantum computational setting.
These latter examples serve to emphasize that a quantum
receiver need only operate on the transmitted states and
not necessarily measure them. It is also possible to process
metadata within the quantum receiver hardware. This ap-
proach has been previously taken in some QKD and quantum
teleportation testbeds.14–18

The ubiquity and importance of metadata in QC motivates
consideration of how the SDC paradigm may be leveraged to
build prototype systems. We will show that a typical QC
transceiver can be decomposed into components that sepa-
rate the physical encoding layer from the metadata control
layer. These layers can then be identified as separating
the concerns between the hardware and software domains
while a third middleware layer interpolates between these
domains. We describe implementations of all three domains
that maintain a natural separation of concerns while also pro-
viding a tunable interface for QC developers.

In this paper, we present a framework for defining a
SDQC system with respect to hardware, middleware, and
software layers. We elaborate on the abstraction of these dif-
ferent layers and provide a concrete example for the case of
a point-to-point superdense coding communication system.
We include details of how the complete system can be con-
structed and emphasize how the software and middleware
layers should interact in order to make the physics oblivious
to an end user.

2 Framework
We formalize the SDQC framework by considering a single
transmitter-receiver pair with a quantum transmitter (TX)
and quantum receiver (RX). A decomposition of each termi-
nal is shown in Fig. 1 with respect to the functional domain
layers. These layers serve to separate development concerns
in constructing each transceiver with respect to the hardware
physics, the software protocol, and a middleware that com-
municates between the two domains. Similar decompositions
can be applied to previously developed QC systems. Our
objective is to show how to deliberately identify these
domains at an abstract level and subsequently develop them
into concrete realizations.

2.1 Transmitter and Receiver Structure

A concrete representation of the SDQC framework is shown
in Fig. 2, in which the TX hardware layer is expressed as
a quantum light source (QLS) for preparing quantum states
and accessing the quantum channel, the middleware is
represented as a hardware device driver (HDD), and the

software layer is represented by a general purpose processor
(GPP) running a user-defined QC program. The classical
channel is assumed to be a local area network (LAN),
whereas the quantum channel is represented by some quan-
tum optical modes.

In the TX of Fig. 2, the prepared states are encoded into
the Hilbert (sub)space of some photonic degrees of freedom.
Candidates for the encoding include the polarization, orbital
angular momentum, or field quadrature variables among
others. The hardware layer is modeled to include all compo-
nents necessary for state preparation such as polarization or
phase modulators, with the physical encoding controlled by
the HDD. It is the middleware that implements the interface
to the QLS for use by the software. The software issues con-
trols and manages the TX behavior by signaling to the QLS
which states to prepare. As a simple example, software can
send a bit to the HDD specifying the basis to use for state
preparation. The HDD middleware may then parse this bit
into the appropriate sequence of QLS control signals. Of
course, more elaborate protocols will require more elaborate
interactions between the two layers, but, in general, the mid-
dleware and hardware do not require detailed information
about the protocol implemented in software.

The RX in Fig. 2 is modeled similar to the TX, except that
the RX software now drives a quantum light detector (QLD).
The QLD measures received photons and outputs measure-
ment information. The RX middleware serves to sample the
measurement information and relay it back to the software.

Fig. 1 Decomposition of a software-defined quantum communication
(SDQC) system consisting of a single transmitter-receiver pair. Each
terminal is composed from hardware, software, and middleware
layers. Hardware layers interact via a quantum channel, whereas
software layers interact over the classical channel. The middleware
serves to translate between the languages serving the hardware
and software domains.

Fig. 2 A component representation of the SDQC system shown in
Fig. 1: a transmitter (TX) consists of a quantum light source (QLS)
driven by a hardware device driver (HDD) that is controlled by a gen-
eral purpose processor (GPP). The TX GPP communicates over a
wide/local area network (W/LAN) with a receiver RX. The RX GPP
manages an HDD that monitors a quantum light detector (QLD).
The QLS/QLD link defines the quantum channel.
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It is the presence of the QLD that distinguishes the RX from
TX. A transceiver (TRX) combining both QLS and QLD
components would need only one middleware interface to
implement this design.

For both the TX and RX, the software layer also serves
to communicate required metadata over the LAN. This
includes, for example, negotiating the key protocol inherent
to QKD or relaying feed-forward measurement information
for quantum teleportation. Because the software is assumed
to be reprogrammable, techniques used in sharing metadata
can be modified by the end users as needed. As an example,
classical error correction steps are important to deriving
keys in QKD, but the error codes used may require tuning
to match the channel and observed bit error rates (BERs).19

These types of modifications are easily made using software-
defined implementations of the user’s selected protocol.

2.2 Hardware Layer

The hardware layer expresses components that are funda-
mental to the physical encoding of quantum information
into the transmitted signal. Many QLSs and detectors are
available as off-the-shelf components. For example, sin-
gle-photon detectors are sufficiently advanced and wide-
spread in their application as to be stand-alone items from
optical suppliers. Similarly, weak-coherent pulses generated
from the attenuated output of photodiodes are easily setup
for transmission. There is a significant variety in these ele-
ments with respect to wavelength, bandwidth, stability, and
cost so as to warrant their consideration as replaceable ele-
ments in the QLS/D design. Individual applications require
suitable pairing between the wavelengths of the source and
detector, but the modularity of the system design ensures
such hardware changes do not undermine the software and
middleware layers. Similar arguments also hold for research-
grade hardware that may be tailored for specific experimental
questions. The essential similarity is that both require exter-
nally accessible interfaces for the actively controlled ele-
ments and generated metadata.

The engineering challenge to the development of the
QLS/D hardware within the SDQC framework is correctly
executing the controls sent to the hardware layer. Nominally,
the SDQC design implies that the hardware consists of pro-
grammable elements that may be driven explicitly by the
middleware. Device drivers supplied with most actively con-
trolled components, e.g., translation stages, piezo-electric
controllers, phase modulators, etc., satisfy this requirement.
Collectively, these device drivers and control wires define the
hardware interface. The remaining challenge, therefore, is
the integration and mapping of hardware control implemen-
tations into a well-defined interface. For most lab-based QC
experiments, this is traditionally accomplished in an ad hoc
manner that is sufficient for proof of principle but not robust
to updates or modifications. Within SDQC, it is the role
of the middleware to ease the hardware management by
abstracting the interface required by the software layer
while enforcing the constraints imposed by the hardware
specification.

2.3 Middleware Layer

The middleware parses metadata within the TX and RX. This
includes translating metadata generated by the TX software

specifying the qubits (states) to prepare within the hardware
as well as tagging raw measurement data generated by the
RX hardware. A middleware interface is defined to separate
the concerns between the structure of the hardware and its
expected behaviors required by the software.

Implementing the middleware requires knowledge of
what hardware components are available and the means
by which they are controlled, e.g., via specified device driv-
ers. Several controlled components may be synthesized to
implement selected software behavior, for example, state
preparation or measurement in a specific basis. However,
the particular methods implemented by the middleware to
manage control of the hardware should be hidden from
software in order to maintain a separation of concerns. In
addition, the middleware need only provides a library of
elementary functions that can be called upon. This separates
the middleware from whatever particular protocol is being
implemented. Similarly, the middleware relays information
up to the software but remains oblivious to its usage. The
middlware is also responsible for managing the interaction
with other subsystems. For example, many protocols for
QC make use of a quantum random number generator to pro-
vide strings of bits. It is the responsibility of the middleware
to negotiate the interaction with this independent subsystem
and manage the use of the random bits, but the middleware
defers to the subsystem regarding the details of number
generation.

The promotion of metadata from the hardware layer to the
software layer requires translation between the domain spe-
cific languages native to those layers. This is built into the
design of the middleware interface and is determined by the
level of abstraction provided. The middleware interface can
and should vary with the intended use cases of the terminal.
For example, a terminal could be designed such that user-
developed software is able to explicitly request the middle-
ware “rotate waveplate 1 to angle θ ¼ π∕4.” The resulting
middleware implementation would then relay the appropri-
ately parsed signal to the hardware in order to prepare the
specified configuration. Alternatively, the middleware may
be designed to accept only more abstract commands, e.g.,
“prepare a qubit in the X basis,” in which case the translation
into the hardware language would be determined by a more
sophisticated middleware implementation that included
rotation of the necessary waveplates. These cases are distin-
guished by how much they abstract away the hardware com-
ponents from the software protocols. Either approach may be
a useful implementation—the best choice is driven by the
expected needs of the end user.

2.4 Software Layer

In the SDQC framework, the software layer defines the
abstracted behavior of the hardware but not the implemen-
tation details. The level of abstraction and, therefore, control
that is provided to the software layer is determined by the
overall design of the terminal and especially the limitations
implied by the middleware interface. Depending on these
design decisions, the software layer may explicitly define
the type of information to be communicated as well as
methods for validating transmission and negotiating classical
metadata between the TX and RX. Alternatively, the middle-
ware interface may only provide access to a more limited
set of behaviors, for example, how many bits to exchange
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between users. The flexibility in assigning these responsibil-
ities offers a natural way to control the terminal design space.

It seems necessary to justify that the demands of existing
and near-term prototype QC systems can be satisfied using
software control. Current state of the art QC systems provide,
at most, detection at rates of 1 Gbps,20 and many systems
operate at rates closer to a few mega bits per second. This
upper bound on the bit rate is largely due to operational lim-
its of current light sources, which must employ trade-offs
between quantum detector efficiency and response time.
Losses arising from transmission serve to reduce observed
count rates further and limit most QC systems to subgiga
hertz rates. By comparison, modern processors containing
multiple cores have theoretical clock rates well above
10 GHz. This represents a more than 10-fold increase in
processing speed over data acquisition rates. Moreover,
these clock rates correspond with 109 floating-point opera-
tions per second (1 GFLOPS) even for commodity process-
ors. Alongside gigabit per second (Gbps) communication
links, the availability of more than 1 GFLOPS suggest it is
both possible and reasonable to carry out the computation-
ally intensive part of many QC protocols relatively easily in
near real time. Of course, for detection rates beyond 1 Gbps,
using off-the-shelf processors may require additional design
considerations. For example, the inclusion of specialized
coprocessors such as graphical processing units or field-pro-
grammable arrays (FPGAs) remains an option. However, for
the purpose of building reprogrammable QC systems capable
of testing new protocols, it seems modern processor technol-
ogy is well matched for prototyping.

The design of the software layer requires a clear specifi-
cation of the abstraction intended for the application
programming infrastructure. This includes the application
programming interface (API) exposed to the user as well
as the supporting libraries providing the interface with the
middleware. This can be accomplished using standard sys-
tem software programming and device drivers as well as
more elaborate integrated programming environments.

3 Superdense Coding System Design and
Implementation

As a demonstration of the SDQC framework, we present an
implementation of superdense coding.21 Superdense coding
is a protocol whereby two users, Alice and Bob, begin by
sharing a pair of entangled two-level systems, i.e., qubits.
The entangled qubits are initially prepared in the state

jΦðþÞi ¼ 1
ffiffiffi

2
p ðj0A; 0Bi þ j1A; 1BiÞ; (1)

where subscript A denotes Alice’s qubit and B denotes Bob’s
qubit. Alice has a 2-bit message b1b2, which she transmits to
Bob by applying to her qubit one of the four unitary oper-
ators O ∈ fI; X; Z; XZg. These operators have the distinc-
tion of mapping the original state within the complete set
of Bell states,

jΦð�Þi ¼ 1
ffiffiffi

2
p ðj0A; 0Bi � j1A; 1BiÞ

jΨð�Þi ¼ 1
ffiffiffi

2
p ðj0A; 1Bi � j1A; 0BiÞ: (2)

The mapping between operators and bit pairs is estab-
lished by Alice and Bob before beginning the protocol.
We will use the mapping

b1b2 O jψA;Bi
00 I jΦðþÞi
01 X jΨðþÞi
10 Z jΦð−Þi
11 XZ jΨð−Þi

; (3)

where jψA;Bi denotes the state prepared by Alice. After
applying the operator O to her qubit, Alice transmits her
qubit to Bob. Upon receiving Alice’s qubit, Bob performs a
joint measurement that discriminates between the four Bell
states. Based on the outcome of the measurement, Bob
decodes the original two bits of the message.

3.1 Software Layer

For our implementation of superdense coding, the software
layer is a library built within the GNU Radio signal process-
ing framework. GNU Radio is a free software toolkit for
deploying SDCs systems that offers primitive signal process-
ing blocks for application development.22 We have leveraged
GNU Radio by creating the Quantum Information Tool Kit
for Application Testing (QITKAT), a library extension that
provides both C++ and Python-based processing blocks
to support prototyping stream-based QC.23 The QITKAT
library includes primitives for expressing communication
protocols completely in software. This includes methods
for encoding and decoding the SDC messages as well as
interfaces exchanging network metadata between users.
These blocks can then be connected using an interprocess
communication system provided by the GNU Radio run-
time environment. The run-time manager is responsible for
maintaining the flow of data, whereas the block developer is
responsible for ensuring each blocks consumes and proc-
esses samples in the desired way.

Using QITKAT and GNU Radio blocks, we have devel-
oped TX and RX programs that permit Alice to encode
binary data and send modulated entangled states to Bob,
who decodes these modulations from measurements made
on the entangled state. The processing flow graphs for the
dense coding system are shown in Figs. 3 and 4. These dia-
grams describe the flow of information between the process-
ing blocks within the system. In particular, the SDCMessage
Source block forwards binary strings to the SDC Encode
block, which looks up the appropriate operator based on
the bit values according to the table in Eq. (3). The corre-
sponding operator flag is sent to the QM server block,
which represents the middleware interface responsible for
translating operators into correct actions on the fiducial
Bell state. These commands are issued over a network
using transmission control protocol (TCP) messaging.

On the RX end, the QM server block accepts messages
returned by the hardware layer via the same TCP messaging.
These “messages” from the hardware are actually signatures
corresponding to specific detection events. After interpreting
these events as specific state labels, the SDC Decode block
decodes these Bell-state measurements into bit pairs. These
bits are then forwarded into the SDC Message Sink block,
which serves the purpose of buffering the complete message.
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3.2 Middleware Layer

The QM server block serves as a visible middleware
component. The encode and decode blocks issue control
commands to modulate and measure the Bell state, respec-
tively. The modulations are based on application of the oper-
ator O in Eq. (3), whereas the measurements correspond
with projections in the Bell basis of Eq. (2). This block is
also responsible for the handshaking between the encode
and decode blocks, which in our implementation is simply
a classical transmission of packet counter to monitor the
qubit sequence. This is in addition to the handshaking that
underlies the classical network communications. In the cur-
rent implementation, the server resides on a separate com-
puter and communication is managed using TCP packets.
The QM server may be running locally on the same host
as either the TX or RX clients, or on a separate device as
would be a more natural case when the server is managing
separate hardware.

3.3 Hardware Layer

For SDC, the necessary hardware includes a source of
entangled particles, a modulation mechanism, and a meas-
urement apparatus. We will assume the use of polariza-
tion-entangled photon pair states, in which the horizontal
and vertical polarizations of the photons are used to encode
j0i and j1i, respectively. A nondeterministic source of polari-
zation-entangled photon pairs can be constructed using the
process of spontaneous parametric down conversion pumped
by an external laser. This approach, however, lacks a means
of announcing the photon’s presence. Heralded pair produc-
tion offers a slightly more complicated alternative, but it has
the advantage that each photon is tagged as being in a known
time slot.24

For polarization-entangled biphoton states, the modula-
tion operators are implemented using an optical wave
plate for the X, Z, and XZ transformations. Because the
orientation determines the operator being implemented,
we can mount the waveplate(s) on an electronically driven
rotator.25,26 The state of the rotator and the photon polariza-
tion can then be driven using computer-controlled electrical
signals. The measurement of the photon pair state at the RX
can be partially implemented using a linear-optical Bell-state
measurement device.27 In this setup, a static beam splitter
interferes the two photons and polarization analyzers mea-
sure the resulting state. The observed measurements can
then identify 3 of the 4 possible Bell states but cannot detect
all of them.28 Alternative approaches to measure all four
states come at the cost of additional complexity.29 In our
design, we assume a static optical network precedes a bank
of detectors which output a unique signature for each
encoded state.

3.4 Integration

We have realized our design using an FPGA board with an
embedded ARM processor. Our implementation is based on
a Xilinx Zynq system-on-a-chip board appended with a cus-
tom daughter board that collects transistor-transistor logic
(TTL) inputs from a bank of Si-APD detectors. The Zynq
board supports communication over the Ethernet as well
as serial lines or other inputs, and it can be programmed
using Xilinx’s build tools. The Zynq board serves as a con-
venient platform for integrating the FPGA-based control and
parsing of electrical signals together with the reprogram-
mable behavior of the ARM processor.

An example of the complete implementation for the RX is
shown in Fig. 5. In this design, the FPGA accepts TTL sig-
nals from detectors connected through the custom daughter

Fig. 3 A Quantum Information Tool Kit for Application Testing (QITKAT) flow graph showing the super-
dense coding transmitter.

Fig. 4 A QITKAT flow graph showing the superdense coding receiver.
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board. The input signals are timestamped using edge detec-
tion and an on-board clock running at 200 MHz. There are
multiple input channels since the polarization analyzer used
to implement the linear optical Bell-state measurement
makes use of multiple detectors, each indicative of a particu-
lar polarization state. Thus, the input channel and the time-
stamp are sufficient metadata to distinguish the state of the
detected photons.

The FPGA writes the generated metadata to an on-board
memory region that is also accessible from the ARM proc-
essor. The ARM processor uses read/write access to the
memory region during execution of the user-defined code.
This includes, for example, forwarding the recorded meta-
data to the software layer. We use the ARM to monitor
the local memory buffer for metadata update and program
it to respond to a request from the network-connected soft-
ware client. The raw timestamps may be transmitted using
either a simple point-to-point UDP broadcast, or they may
be transmitted across a larger network using the TCP proto-
col. The implementation reported here uses TCP.

The transmitted packets include a set of timestamps and
channel ids as well as the necessary network overhead, e.g.,
checksums, packets id, and so on. These are received by the

software client and processed by the QITKAT program. For
the SDC Decode block, this includes correlating different
channels with near simultaneous timestamps as a means
of identifying a measured Bell state. This task could also
be assigned to the middleware, but our chosen API makes
this information available to the software layer in order to
provide diagnostic monitoring. We have not yet implemented
a complete build of the TX side. At present, our design sug-
gests using the ARM-driven FPGA to output control signals
that drive the waveplate rotators. Because the ARM executes
instruction received from the software-layer via a QITKAT
program, it can overwrite the shared memory with the FPGA
to modulate the rotator control signals. The more difficult
engineering challenge is synchronization of the rotator con-
figuration with the photon pair source. As mentioned above,
heralded photon production would provide the necessary
timing information, but these are conditional sources that
will require the ARM to monitor the availability of a photon
pair. Future on demand photon sources will alleviate this
requirement.

4 Superdense Coding System Simulation Studies
In the absence of the TX HW, we have tested the superdense
coding system design using numerical simulations of the
software and middleware behavior. This includes tracking
and storing individual quantum states as well as reproducing
the metadata generated by a simulated measurement process.
We use these studies to verify the QITKAT implementation
of the superdense coding protocol by checking that an
input message can be successfully encoded, decoded, and
received. We use these studies to validate the interaction
between the software and middleware, which is based on
a client-server model. Both the TX and RX SW interface
with a qubit management server (QM server) by sending
requests specific to individual qubit transmissions.

For the RX implementation, we allocated the qubit man-
agement server to the FPGA + ARM board. For the numeri-
cal studies, we allocate the server to a simulation program
running on a separate computer. It is possible to host the cli-
ent and server on the same computer, but we are explicitly
interested in the networking issues that the client-server
model must overcome. For each encoded bit pair, the TX
SW pushes a 2-bit metadata string describing the requested
data encoding operation. The server responds to this request
with an identification number labeling the prepared qubit.
Internally, the simulation tracks only the 2-bit metadata
and the 32-bit integer label. Similarly, the receiver requests

Fig. 5 A physical representation of the SDQC architecture for the
SDC RX implementation. The computer on the left runs the QITKAT
program while the customized Zynq board in the middle represents
the middleware implementation. On the right, a pair of silicon photo-
detectors represent the RX hardware and connect to the daughter
board.

Fig. 6 The complete QITKAT flow graph for simulating the superdense coding protocol and verifying
the transmission by computing the bit error rate (BER).
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updates from the server about available measurement results.
Measurements are simulated assuming an unbiased, com-
plete Bell-state measurement station. This idealization sup-
ports our effort to verify the correctness of the software layer
and networking between terminals.

In Fig. 7, we present statistical measures of the flow graph
from Fig. 6 using a numerical simulation of the QM server
block. Our simulation models transmission of the qubit
through an isotropic depolarizing noise channel. The depo-
larizing noise channel transmits the unmodified input state
with probability ð1 − pÞ and applies each of the Pauli oper-
ators ðX; Y; or ZÞ with probability p∕3.30 For depolarizing
noise, the BER scales linearly in p as 2p∕3, which is pre-
cisely the behavior recovered in the first plot of Fig. 7. In the
second plot of Fig. 7, we show a snapshot of the transmission
by recording the windowed BER over a range of 200 con-
secutive samples for a fixed noise parameter p ¼ 0.01. The
BER is nominally zero, but spikes occasionally when an
incorrectly encoded state is received.

5 Conclusions
We have extended the paradigm of SDC to the context of a
point-to-point QC system. We defined a layered model for
the transmitter and receiver that separates each QC terminal
into hardware, software, and middleware concerns. Our
design methodology emphasized the role of middleware
for abstracting the high-level, software control language,
and managing the low-level hardware operations. We gave
a detailed description of how each layer operates as well
as a concrete implementation based on parts commonly
found in existing QC designs.

We have used the SDQC framework to design a super-
dense coding system. Our approach includes an extension
of GNU Radio for the software layer and an FPGA + ARM-
based solution for the middleware layer. In the absence of
experimental hardware, we have emulated the middleware
behavior at each terminal using numerical simulation to
model the transmission and measurement of quantum states.
We tested our implementation for correctness as well as
behavior with respect to the dimensionality of the transmitted
quantum state. These results have been used to validate the
software layer and provide insights into the classical over-
head associated with implementing the protocol.

The motivation for SDQC is to establish design method-
ologies that enable rapid prototyping of experimental

systems. The availability of a reconfigurable software layer
supports testing a robust family of communication protocols
at significantly less expense in terms of development time.
We are currently applying the case of dense coding using
error corrected transmissions.31 Because QC is a relatively
young field with a large design space, the ability to explore
design parameters rapidly using prototype systems supports
the testing of new theories and the assessment of existing
communication strategies. The versatility of SDQC testbeds
is useful for exploring new regimes in communication.

The implementation presented here has been based on a
novel combination of an ARM processor and an FPGA, but
there is not a strong dependence on this configuration. The
software and middleware layers expressed in QITKAT are
portable to other ARM-based system-on-a-chips platforms,
such as the Arduino, Raspberry Pi, or Beagleboard. The lim-
iting requirement is the availability of an ADC for sampling
single-photon detection events. Requirements on the ADC
are determined by the detection rate and pulse duration
output by the QLD. The FPGA within the Zynq 7000 is
adequate for timestamping the 30-ns pulses emitted by con-
ventional silicon avalanche photodiodes. Isolation of the
middleware and hardware layer ensures that if ADCs for
these platforms are available, then they can be easily inte-
grated with the existing QITKAT implementation.

Our discussion of QC systems has been limited to end-
user terminals. We have not discussed the implementation
of the classical or quantum networks that connect users,
apart from assuming that these network exist and that
they have well-defined interfaces. Recently, van Meter and
Touch32 have discussed the design decisions underlying
quantum networks and internetworks. They provided insight
into the protocols and stacks needed to support the type of
interactions not included here. We anticipate it is possible to
extend our present ideas to similar concerns, for example to
software-defined quantum networking.
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