
 
 

PLEASE SCROLL DOWN FOR ARTICLE

!"#$%&'(#)*+%,&$%-.,/*.&-+-%012%34560*+7%!'&8#$%9:;
</2%=>%?&/5&'1%@A==
B))+$$%-+(&#*$2%B))+$$%C+(&#*$2%3$50$)'#D(#./%/560+'%E>@>FFEEG;
H50*#$"+'%!&1*.'%I%J'&/)#$
K/L.'6&%M(-%N+O#$(+'+-%#/%P/O*&/-%&/-%Q&*+$%N+O#$(+'+-%R560+'2%=AS@ETG%N+O#$(+'+-%.LL#)+2%U.'(#6+'%4.5$+7%>SV
G=%U.'(#6+'%9('++(7%M./-./%Q=!%>?47%WX

?.5'/&*%.L%U.-+'/%<D(#)$
H50*#)&(#./%-+(&#*$7%#/)*5-#/O%#/$('5)(#./$%L.'%&5(".'$%&/-%$50$)'#D(#./%#/L.'6&(#./2
"((D2YY,,,:#/L.'6&,.'*-:).6Y$6DDY(#(*+Z)./(+/([(S=>=E=>AG

9#65*(&/+.5$%(+*+D.'(&(#./%.L%65*(#D*+%$#/O*+VD".(./%-+O'++$%.L%L'++-.6
!'&8#$%9:%4560*+&\%N1&/%9:%]+//#/^&\%Q&''+/%H:%_'#)+&
&%<&^%N#-O+%R&(#./&*%M&0.'&(.'17%<&^%N#-O+7%!+//+$$++%>S`>=VFA=T7%W9B

J#'$(%D50*#$"+-%./2%=>%?&/5&'1%@A==

!.%)#(+%("#$%B'(#)*+%4560*+7%!'&8#$%9:%7%]+//#/^7%N1&/%9:%&/-%_'#)+7%Q&''+/%H:a@A==b%c9#65*(&/+.5$%(+*+D.'(&(#./%.L
65*(#D*+%$#/O*+VD".(./%-+O'++$%.L%L'++-.6c7%?.5'/&*%.L%U.-+'/%<D(#)$77%J#'$(%D50*#$"+-%./2%=>%?&/5&'1%@A==%a#J#'$(b
!.%*#/^%(.%("#$%B'(#)*+2%C<K2%=A:=A`AYAETAA>GA:@A=A:TG>@E=
WNM2%"((D2YY-d:-.#:.'OY=A:=A`AYAETAA>GA:@A=A:TG>@E=

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/terms-and-conditions-of-access.pdf
http://www.informaworld.com/smpp/title~content=t713191304
http://dx.doi.org/10.1080/09500340.2010.543291


Journal of Modern Optics
2011, 1–11, iFirst

Simultaneous teleportation of multiple single-photon degrees of freedom
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We report how quantum information encoded into multiple photonic degrees of freedom may be simultaneously
teleported using a single, common physical process. The application of teleportation to the complete quantum
state of a photon, i.e. the spectral, spatial, and polarization component states, permits the full photonic Hilbert
space to be used for encoding information while simultaneously enabling subspaces to be addressed individually,
e.g. for quantum information processing. We analyze the feasibility of teleporting the full quantum state through
numerical analysis of the fidelity under nominal experimental conditions and for different types of input states,
e.g. single-photon states that are separable or entangled in the physical degrees of freedom.
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1. Introduction

In quantum teleportation, quantum information is
communicated from a sender Alice to a remote receiver
Bob using the resource of distributed entanglement
alongside a shared classical communication channel [1].
As a basic protocol of quantum information science,
teleportation enables a variety of more complex
protocols such as long-distance distribution of cryp-
tographic keys [2,3] and teleportation-based quantum
computing architectures [4,5]. Experimentally, quan-
tum teleportation has been demonstrated using a
variety of physical systems with advances in the
teleportation of photonic states notable for the
present discussion [6–8]. In particular, demonstrations
of teleporting quantum information encoded into the
state of a single photon have been largely facilitated
by the readily available pair-wise entanglement
sources derived from spontaneous parametric down
conversion (SPDC) [9,10]. Moreover, the measure-
ments necessary to implement teleportation can be
performed using either linear [11,12] or nonlinear
optics [7]. As an example, photonic quantum telepor-
tation has been demonstrated using polarization as
well as continuous-variable quadrature degrees of
freedom [13,14], and implementations have been
proposed that use either the transverse momentum
[8,15], orbital angular momentum [16], or spectral
[17,18] degrees of freedoms.

While these prior demonstrations have teleported
information encoded into a single degree of freedom,
the formalism of quantum teleportation indicates that

the complete quantum state of a single photon may
also be teleported. In addition to enabling fundamental
studies of teleportation, the ability to teleport the
complete quantum state would benefit the broader
development of quantum information science by pro-
viding a means to utilize a greater portion of the
photonic Hilbert space. For example, an increase in the
size of the accessible Hilbert space would provide a
corresponding increase in the symbol alphabet avail-
able for long-haul quantum key distribution schemes
[19,20]. In addition, as each degree of freedom natu-
rally partitions the full photon Hilbert space into
subspaces, multiple qubits (or qudits) encoded into a
single photon could be individually addressed through
physically separable unitary operators. Consequently,
simultaneously teleporting multiple qubits encoded
into one photon suggests a resource efficient means
of communicating multi-qubit entangled states, e.g.
between separated nodes in a quantum computational
network.

The features described above motivate the question
of how multiple photonic degrees of freedom can be
simultaneously teleported. We have previously
addressed simultaneous teleportation of quantum infor-
mation encoded into the spectral, transverse-spatial
(angular), and polarization components of a single-
photon quantum state in an idealized setting [21].
Independently, Ether and colleagues have proposed a
similar strategy for complete teleportation of a single-
photon field [22]. In the context of both reports,
teleportation of the complete single-photon quantum
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state is performed by overlaying otherwise distinct
protocols that have been separately developed for
each individual degree of freedom. A crucial element
in both proposals is the use of hyperentangled photon
pair states, i.e. biphoton states simultaneously
entangled in multiple degrees of freedom [23,24].
For example, hyperentangled biphoton states pre-
pared using polarization and momentum degrees of
freedom have been experimentally realized and used
for demonstrating the complete discrimination of
polarization-entangled Bell states [25] as well as for
polarization-encoded superdense coding [26].
Hyperentangled states composed from three photonic
degrees of freedom have also recently been demon-
strated [27].

In addition to hyperentanglement, both proposals
for total teleportation share the need for an entangled-
state projective measurement that can simultaneously
act on the polarization, spectral, and angular compo-
nents of a biphoton state. In particular, it has been
established previously that teleportation of an infor-
mation carrying degree of freedom, e.g. polarization, is
degraded by entanglement in the auxiliary, non-
information carrying spectral and spatial degrees of
freedom as these modes provide distinguishing state
information [28,30,31]. Consequently, the required
measurement must act simultaneously on all the
entangled, information carrying degrees of freedom
in order to effect the complete quantum state. The use
of photon up-conversion followed by spectrally and
spatially resolved polarization measurements has been
suggested to perform this Bell-state-like measurement
on the composite Hilbert space of two photons [21,22].

The present paper advances prior analyses of
teleporting multiple photonic degrees of freedom by
establishing expectations for the teleportation fidelity
of a complete single-photon state using current sources
of hyperentanglement. Section 2 explains how telepor-
tation of quantum information encoded into the
spectral degree of freedom can be implemented and
continues by exploring the dependence of the spectral
teleportation fidelity on the degree of spectral entan-
glement and bandwidth. Section 3 similarly considers
transverse-spatial, or angular, teleportation, which is
shown to exhibit a dependence on angular bandwidth
and entanglement analogous to that found for spectral
teleportation. Section 4 briefly reviews well-established
methods for teleporting polarization states. The inte-
gration of these three disparate protocols for simulta-
neous teleportation of all three degrees of freedom is
presented in Section 5 in the form of a conceptual
experiment that combines these ‘piece-wise’
approaches into a single procedure. The fidelity
expected of this setup for separable as well as spatio-
spectral entangled input states is investigated.

Concluding remarks on the probability for successful
teleportation and the fidelity expected from simulta-
neous teleportation of multiple single-photon degrees
of freedom are presented in Section 6.

2. Spectral teleportation

We first consider a protocol for teleporting the spectral
probability amplitude of a single-photon state [17,18].
Spectral teleportation uses entanglement in the joint
spectral amplitude of a biphoton state to mediate the
transfer of a single-photon spectral state. Spectral
entanglement arises naturally, for example, in the
biphoton states generated by spontaneous parametric
down conversion (SPDC), where conservation of
energy and phase-matching constraints specify prepa-
ration of the joint spectral amplitude.

Consider a single, spectrally multimode photon
described by the pure state

 spec
1

!! "
¼

ð
! !ð Þ !1j id! ð1Þ

where !(!) is the normalized spectral probability
amplitude and |!1i is the spectral eigenstate of
photon 1 at frequency !. The spectral amplitude
represents the quantum information intended to be
teleported to the receiving party. This information can
be encoded using a family of (non-orthogonal) spectral
amplitudes generated by varying the properties of !(!),
including both the envelope and the phase. Photonic
states of the form of Equation (1) can be prepared
using either single-photon sources [32] or heralding
with photon pair sources [33–35] in which the
transverse-spatial and polarization degrees of freedom
are prepared in single-mode states, e.g. using single-
mode fiber and polarization beam-splitters. While the
theory to follow applies equally well to mixed states,
we defer that description to future work.

Spectral teleportation transfers the spectral ampli-
tude !(!) of photon 1 to a remote photon 3, where the
latter is initially prepared with photon 2 in the
normalized state

’spec23

!! "
¼

ð
d!

ð
d!0f !,!0ð Þ !2,!

0
3

!! "
: ð2Þ

The joint spectral probability amplitude f(!,!0) deter-
mines the spectral entanglement of the photon pair
[28]. The Schmidt decomposition of the joint spectral
amplitude [29]

f !,!0ð Þ ¼
X1

n¼0

"1=2n gn !ð Þhn !0ð Þ ð3Þ

given in terms of the Schmidt coefficients "n and the
Schmidt modes gn(!) and hn(!0), is spectrally entangled
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when there exists more than one term in the summa-
tion of equation (3), i.e. when

f !,!0ð Þ 6¼ g0 !ð Þh0 !0ð Þ: ð4Þ

The spectral entanglement is conveniently quanti-
fied using the Schmidt number [29]

Kspec $
X1

n¼0

"n

$X1

n¼0

"2n ð5Þ

which grows from unity as the number of nonzero
Schmidt coefficients increases. Experimentally, the
effects of spectral entanglement may be inferred from
the reduced visibility of the Hong-Ou-Mandel dip
when using independent sources [28,30,31,36], while
estimates for the spectral entanglement generated by
typical SPDC sources yield spectral Schmidt numbers
as large as %600 with the potential to be larger [36–39].

The mechanism for spectral teleportation is the up-
conversion of photons 1 and 2 into a higher-frequency
photon 4. Up-conversion entangles the spectral state of
photon 3 with the spectral state of photon 4. A spectral
measurement of photon 4 then projects photon 3 into a
correlated spectral state. The measured frequency pro-
vides the necessary information to transform the spec-
tral state of photon 3 into the form of Equation (1).
As an example, photons 1 and 2 may be up-converted
to yield photon 4 using sum-frequency generation
(SFG). For SFG, the joint state of photons 3 and 4
may be expressed as

#spec34

!! "
¼ c

ð
d!

ð
d!0

ð
d!00! !ð Þf !0,!00ð Þ !00

3, ð!þ !0Þ4
!! "

ð6Þ

where c is a normalization factor and perfect phase-
matching has been assumed for simplicity. In Equation
(6), entanglement between photons 3 and 4 is estab-
lished through the overlap of the initial spectral
amplitude !(!) and the joint spectral amplitude
f(!,!0). As a result, a measurement of photon 4
transforms the state of photon 3. In its simplest form,
this measurement is modeled by a projection onto the
frequency eigenstate |!4i. This spectral measurement
then prepares photon 3 in the state

~ spec
3

!!!
"
¼ $spec

ð
d!

ð
d!0! !ð Þ f !' !,!0ð Þ !0

3

!! "
ð7Þ

where the tilde denotes this state as an intermediate
result and $spec is the normalization factor.

Equation (7) may be readily understood in the limit
that photons 2 and 3 are perfectly entangled in
frequency. In this limit, the joint spectral amplitude
approaches the delta distribution

f !,!0ð Þ ! % 2 "!0 ' !' !0ð Þ ð8Þ

the Schmidt coefficients are identical, and the Schmidt
number approaches infinity. This form of the joint
spectral amplitude is well approximated by CW
pumping of the SPDC process [30], where the quantity
2 "!0 plays the role of the pump frequency. Although
this CW-pumped source is impractical (the large
uncertainty in emission time prevents the temporal
overlap required for SFG), this example does illumi-
nate how the properties of the joint spectrum affect
teleportation. Inserting the approximate joint spectral
amplitude of Equation (8) into Equation (7), the state
of photon 3 after normalization is found to be

~ spec
3

!!!
"
¼

ð
d! ! !ð Þ ð!' DÞ3

!! "
: ð9Þ

In the present case, the spectral shift D ¼ !' 2 "!0 is
derived from the observed frequency ! and knowledge
of the pump frequency (which specifies the energy
conservation condition but does not distinguish pho-
tons 2 and 3). This spectral shift is then used to
transform the received state in Equation (9) to match
the initial state in Equation (1). This spectral shift can
be applied using either difference frequency generation
(DFG) with a pump pulse having frequency D [40] or an
acousto-optic frequency shifter driven at frequency D.
Thus, as originally noted by Molotkov [17], unit
spectral teleportation fidelity can be realized in the
idealized case of infinite spectral entanglement and
bandwidth.

The limiting case above suggests a protocol for
performing spectral teleportation for the case of an
arbitrary joint spectral amplitude in which the spectral
state of Equation (7) is shifted by an amount D to
obtain

 spec
3

!! "
¼ $spec

ð
d!

ð
d!0! !ð Þf !' !,!0 ' Dð Þ !0

3

!! "
: ð10Þ

The corresponding spectral teleportation fidelity,
i.e. the magnitude squared overlap of Equation (10)
with Equation (1), is calculated to be

Fspec ¼ $spec

ð
d!

ð
d!0! !ð Þ f !' !,!0 ' Dð Þ! !0ð Þ(

!!!!

!!!!
2

:

ð11Þ

For the case that the spectral amplitude !(!) is
sampled from a distribution of amplitudes P(!), then
the ensemble-averaged fidelity is

Fspec

% "
¼

ð
P !ð ÞFspec !ð Þd!: ð12Þ

Equations (11) and (12) depend on D as well as the
available spectral entanglement. The value of D that
optimizes the spectral teleportation fidelity of a given
spectral state depends on the properties of the
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entangled photon pair, the relative bandwidths of the
photons as well as the amount of spectral entangle-
ment. The dependence of the fidelity on these param-
eters is discussed in detail elsewhere, but it should be
noted that unit average fidelity is not expected in the
case of finite entanglement [18]. However, a very high
average fidelity, e.g. hFspeci40.999, can be obtained for
realistic values of the relative bandwidths and the
spectral entanglement.

As an example of spectral teleportation using finite
spectral entanglement, consider the joint spectral
amplitude of photons 2 and 3 to be expressed as the
symmetric two-dimensional Gaussian amplitude

f !,!0ð Þ ¼ Nspec exp

&
' 1

2&2
spec

'
!' "!2ð Þ2þ !0 ' "!3ð Þ2

'2'spec !' "!2ð Þ !' "!3ð Þ
()

ð13Þ

with &2
spec ¼ (2

specð1' '2specÞ expressed in terms of the
marginal bandwidth of the photons (spec and the linear
correlation between the photon frequencies 'spec 2
½1, ' 1*, "!j the mean frequency of photon j, and Nspec

the normalization factor. For this joint amplitude, the
spectral Schmidt number, Equation (5), is found via
the substitution 'spec ¼ tanh 2) to be [18]

Kspec ¼ cosh 2): ð14Þ

Assuming the input spectral state is Gaussian, as
defined by

! !ð Þ ¼ *(2
1,spec

* +'1=4
exp ' !' "!1ð Þ2

2(2
1,spec

" #

ð15Þ

the intermediate state, Equation (7), becomes

~ spec
3

!!!
"
¼ $spec

ð
d! exp 'Qspec !' "ð Þ2

, -
!3j i ð16Þ

where we define

Qspec ¼
a2spec a2spec þ 1

* +

2(2
1,spec a2spec þ 1' '2spec

* + ð17Þ

$4spec ¼ 2Qspec=*, and " ¼ "!3 ' %'spec=ða2spec þ 1Þ with
aspec¼ (1,spec/(spec the ratio between the bandwidths of
photons 1 and 2 and % ¼ !' "!1 ' "!2 the deviation
of the measured frequency from the mean frequency of
photon 4. It has been shown previously that by
applying a spectral shift D¼ " – "!1 to the prepared
state (17), the corresponding spectral teleportation
fidelity becomes [18]

Fspec ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2specða2spec þ 1Þða2spec þ 1' '2specÞ

ða2spec þ 1Þ2 ' '2spec

h i2

vuuut e'#spec ð18Þ

where the contribution

#spec ¼
a2specða2spec þ 1Þð "!1 þ D' "Þ2

ða2spec þ 1Þ2 ' '2spec

h i
(2
1,spec

ð19Þ

vanishes when the spectral shift D equals the root of the
exponent.

A contour plot of the spectral teleportation fidelity
Fspec with respect to aspec and 'spec is shown in Figure 1
for the case %¼ 0.1(1,spec. Figure 1 is characterized by
the four distinct corners of the contour plot. In the
lower right-hand corner (aspec, 'spec)¼ (1, 0), there is no
spectral entanglement but the input bandwidth
matches the marginal bandwidth of photon 3; hence,
Fspec¼ 1 by coincidence. In the lower left-hand corner
(0, 0), there is no spectral entanglement and the overlap
between the input and output states vanishes as aspec
vanishes. The upper left-hand corner (0,1) corresponds
to the case of infinite spectral entanglement and
infinite marginal bandwidth, cf. Equation (8), such
that Fspec¼ 1. The upper left-hand corner (1, 1) corre-
sponds to the case of infinite spectral entanglement and
identical bandwidths for the input and output states.
The fidelity in this case is not unity, however, as the
high degree of spectral correlation between photons
2 and 3 plus the equal bandwidths of photons 1 and 2
yields a situation in which the preparation and
measurement of the up-converted photon 4 yields
some distinguishing information about the state of
photon 3. This information is not absolute, but
nonetheless produces a non-negligible decrease of the
spectral fidelity as noted by the descending contour
intervals.

Figure 1. Contour plot of the spectral teleportation fidelity
Fspec against the bandwidth ratio aspec¼ (1,spec/(spec and the
linear correlation 'spec for the case of a Gaussian input state
of unknown spectral bandwidth (1,spec using a Gaussian joint
spectral amplitude characterized by marginal spectral band-
widths (spec and linear spectral correlation 'spec. Contours
begin with 0, are spaced by 0.01, and end by enclosing a
region defined by Fspec40.99. The measured frequency is
taken as %¼ 0.1(1,spec.

4 T.S. Humble et al.
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As an example of spectral teleportation applied to
an ensemble of input states, consider a family of
Gaussian spectral amplitudes !n(!) indexed according
to differences in the mean frequency "!1. These differ-
ences in spectral amplitude manifest in the spectral
fidelity via the exponent defined by Equation (19).
It is apparent from Equation (19) that the exponent
vanishes when D ¼ "' "!1. While "!1 and ", which
depends on "!1 via %, are assumed unknown in this case,
the dependence of the root on the explicit value of "!1

cancels whenever a2spec ¼ 1' '2. Satisfying this condi-
tion forces the exponent to vanish and yields an
ensembled-average fidelity of

Fh i "!1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð2' '2Þ
ð4' '2Þ2

s

ð20Þ

which approaches
ffiffiffiffiffiffiffiffi
8=9

p
+ 0:94 as |'| approaches

unity. Although this average fidelity is less than
unity, it does not require any assumption about the
family of spectrally shifted input states. Moreover,
higher average fidelity may be obtained using other
forms of spectral encoding, e.g. phase-modulated
states.

Current SPDC sources of spectrally entangled
photons are capable of generating spectral Schmidt
numbers on the order of 600 and potentially greater
[36–39]. Using Equation (14), this value of Kspec

corresponds to a linear spectral correlation
'spec¼ 0.999999. As apparent from Figure 1, current
SPDC sources of spectrally entangled biphoton states
are capable of providing sufficient entanglement for
demonstrating high fidelity spectral teleportation. Two
such demonstrations are possible with respect to how
photon 4 is measured. The first is a deterministic
protocol that requires a collection of narrowband,
non-overlapping detectors to span the entire frequency
range populated by the up-converted photon. The
second is a probabilistic protocol in which a smaller
frequency range is monitored. In both cases, a non-
zero bandwidth of the detector is anticipated to
represent a source of noise for teleportation; however,
the effect of this noise depends on the detector
bandwidth relative to the spectral bandwidth of
photon 4.

3. Transverse-spatial teleportation

We next consider a protocol for teleportation of the
angular spectrum of a single-photon state. The
transverse-momentum state of a single photon may
be expressed as

 spat
1

!! "
¼

ð
u qð Þ q1

!! "
dq ð21Þ

where q is the two-dimensional transverse-wave vector,
u(q) is the normalized angular spectrum (probability
amplitude), and |q1i is the state in which photon 1 has
transverse-wave vector q. Walborn and co-workers
have proposed teleportation of the angular spectrum
by making use of a photon pair entangled in the
transverse-spatial dimension [8]. Specifically, photons
2 and 3 are prepared in the state

’spat23

!! "
¼

ð
dq

ð
dq0# q, q0ð Þ q2, q03

!! "
ð22Þ

where #(q, q0) is the joint angular spectrum (amplitude)
for photon 2 to have wave vector q and photon 3 to
have wave vector q0. Similar to the joint spectral
amplitude, the joint angular amplitude is entangled
when the spatial Schmidt decomposition of #(q, q0)
requires more than one term and the amount of
transverse-spatial entanglement can be quantified in
terms of the spatial Schmidt number Kspat.
Experimental measures of transverse-spatial entangle-
ment suggest that spatial Schmidt numbers on the
order of 600 are obtainable by tuning the SPDC phase-
matching conditions [41].

As part of the angular teleportation protocol,
photons 1 and 2 are prepared in an intermediate
entangled state. For example, second-harmonic gener-
ation (SHG) of photons 1 and 2 may be used to
prepare

#spat34

!! "
¼ c

ð
dq

ð
dq0

ð
dq00u qð Þ# q0, q00ð Þ q003, ðqþ q0Þ4

!! "
ð23Þ

where c is a normalization factor. The generated photon
4 is subsequently measured with respect to the trans-
verse wave vector to invoke transformation of photon 3.
In particular, Walborn and colleagues proposed a
spatial measurement scheme that maps the momentum
of photon 4 into a position on a plane array of point
detectors using a lens of focal length f [8]. Since focusing
is a unitary transformation, it does not increase or
decrease the degree of spatial entanglement. The
detected position vector qD determines the wave
vector qD through the relation qD¼jqD/f, where j is
the wave-vector magnitude. Following this measure-
ment, the state of photon 3 reduces to

~ spat
3

!!!
"
¼ $spat

ð
dq

ð
dq0u qð Þ# qD ' q, q0

/ 0
q03
!! "

: ð24Þ

In the limit the joint spatial amplitude approaches
the delta distribution, i.e. #(q, q0)! %(2q0 – q – q0), the
transverse-spatial amplitude of Equation (24) is found
to depend on the momentum shift Q¼ qD – 2q0.
In direct analogy with spectral teleportation, the
momentum shift Q is determined from the measure-
ment information and defines the auxiliary condition

Journal of Modern Optics 5

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
u
m
b
l
e
,
 
T
r
a
v
i
s
 
S
.
]
 
A
t
:
 
1
9
:
2
3
 
1
3
 
J
a
n
u
a
r
y
 
2
0
1
1



needed to locally transform the state (24) in order to
prepare the state

 spat
3

!! "
¼ $spat

ð
dq

ð
dq0u qð Þ# qD ' q, q0 'Q

/ 0
q03
!! "

: ð25Þ

This transformation can be achieved, e.g. through
difference frequency generation or a spatial light
modulator [8,22].

The transverse-spatial teleportation fidelity is
defined as

Fspat ¼ $spat

ð
dq

ð
dq0u qð Þ# qD ' q,Q' q0

/ 0
u qð Þ(

!!!!

!!!!
2

: ð26Þ

Notably, this expression strongly mimics the fidelity
for spectral teleportation and is expected to behave
similarly with respect to entanglement, cf. spectral
fidelity of Equation (11). Indeed, Walborn and col-
leagues have performed the numerical calculation of
Equation (26) to reveal the dependence of the fidelity
on the relative bandwidths of the pump and SPDC
phase-matching function, i.e. the joint angular ampli-
tude [8].

We extend that earlier analysis of transverse-spatial
teleportation by Walborn and colleagues by consider-
ing a Gaussian joint angular amplitude of the form

# q, q0ð Þ ¼ Nspat exp

&
'1

2&2
spat

'
q' q2
/ 02þ q0 ' q3

/ 02

'2'spat q' q2
/ 0

q0 ' q3
/ 0()

, ð27Þ

where &2
spat ¼ (2

spatð1' '2spatÞ with (spat the marginal
angular bandwidth of photons 2 and 3, 'spat 2 ½1, ' 1*
is the linear correlation between transverse momenta,
and the Nspat is the normalization factor. Joint angular
amplitudes of this form arise within the context of
SPDC when both the pump and phase-matching
function are approximated by Gaussian forms.
Similarly, we take the normalized angular state of
photon 1 as the Gaussian

u qð Þ ¼ *(2
1,spat

* +'1=2
exp

' q' q1
/ 02

2(2
1,spat

" #

: ð28Þ

For this case, the intermediate angular state is
expressed as

~ spat
3

!!!
"
¼ $spat

ð
dq exp 'Qspat q' eð Þ2

, -
q3
!! "

ð29Þ

where

Qspat ¼
a2spat a2spat þ 1

* +

2(2
1,spat a

2
spat þ 1' '2spat

/ 0 ð30Þ

and e ¼ q3 ' d'spat=ða2spat þ 1Þ with aspat¼ (1,spat/(spat
the ratio between the angular bandwidth of photons 1
and 2 and d ¼ qD ' q1 ' q2 the deviation of the
measured momentum with respect to the mean value
of transverse momentum for photon 4. Assuming the
transverse-momentum shift Q ¼ e' q1 is applied to
the angular state of photon 3, the resulting analytical
expression for the transverse-spatial teleportation
fidelity is

Fspat ¼
4a2spatða2spat þ 1Þða2spat þ 1' '2spatÞ

ða2spat þ 1Þ2 ' '2spat
, -2 e'#spat ð31Þ

where the contribution

#spat ¼
a2spatða2spat þ 1Þ Qþ q3 ' q1

!! !!2

ða2spat þ 1Þ2 ' '2spat
, -

(2
1,spat

ð32Þ

vanishes when the magnitude of momentum shift Q
equals the root of the exponent.

A contour plot of the transverse-spatial (angular)
teleportation fidelity Fspat with respect to aspat and 'spat
is shown in Figure 2 for the case |Q|¼ 0.1(1,spat. The
behavior of the transverse-spatial teleportation fidelity
Fspat in Figure 2 is very similar to that of the spectral
teleportation fidelity Fspec shown in Figure 1. The four
corners of the plot corresponding to the four limiting
behaviors of aspat and 'spat can be rationalized in terms
of the finite and infinite cases of bandwidth and
entanglement. Note that the dependence of Fspat on

Figure 2. Contour plot of the transverse-spatial (angular)
teleportation fidelity Fspat against the bandwidth ratio
aspat¼ (1,spat/(spat and the linear correlation 'spat for the
case of a Gaussian input state of unknown angular
bandwidth (1,spat using a Gaussian joint angular amplitude
characterized by marginal angular bandwidth (spat and linear
momentum correlation 'spat. Contours begin with 0, are
spaced by 0.01, and end by enclosing a region defined by
Fspat40.99. The measured transverse momentum is taken as
|d|¼ 0.1(1,spat.
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bandwidth and entanglement is stronger than Fspec.
This is the consequence of the two-dimensional coor-
dinate space describing the angular probability ampli-
tude; teleportation along either of the individual
coordinate dimensions produces a dependence on
these parameters similar to the spectral case, but in
the two-dimensional case this dependence is squared.

4. Polarization teleportation

As noted in the Introduction, teleportation using the
polarization degree of freedom is a widely referenced
example of how teleportation has been achieved in
practice. Several different physical mechanisms have
been established for performing the requisite Bell-state
measurement. Among these is the nonlinear optical
implementation pioneered by Kim and colleagues that
enables a complete Bell-state measurement to be
performed, i.e. all four Bell polarization states can be
distinguished by the measurement apparatus [7].
We will adopt this approach in Section 5, since the
physical process underlying the complete polarization-
encoded BSM complements the up-conversion
required by the spectral and spatial protocols.

Briefly, Kim and colleagues teleport the polariza-
tion state of photon 1

 pol
1

!!!
E
¼ a h1j iþ b v1j i ð33Þ

where a and b are complex numbers specifying the
amplitude for the horizontally (h) and vertically (v)
polarized states, respectively. A maximally polariza-
tion-entangled state of photons 2 and 3 mediates
teleportation, e.g.

’pol23

!!!
E
¼ 1ffiffiffi

2
p h2, v3j iþ v2, h3j ið Þ: ð34Þ

Kim and colleagues use sequential pairs of type-I and
type-II SFG crystals to measure photons 1 and 2 in a
polarization Bell state, cf. figure 1 of [7]. The first type-
I SFG crystal transforms a pair of vertically polarized
photons into a single, horizontally polarized photon,
while the second type-I SFG crystal transforms a pair
of horizontally polarized photons into a single, verti-
cally polarized photon. Similarly, the first and second
type-II SFG crystals transform biphoton states that are
orthogonally polarized into a horizontally and verti-
cally polarized photon, respectively. As originally
noted by Kim and colleagues, the means for distin-
guishing between these two type-II SFG events rests on
the fact that photons 1 and 2 need not have the same
mean frequency. Consequently, the wavelengths of
these photons can be chosen so that phase-matching
requirements for the two type-II SFG events are

distinct. A dichroic beam-splitter then routes the
photon from the type-I and type-II crystal pairs to
one of two detector stages identified by the spatial
modes A and B. The biphoton polarization state
prepared by these processes is

#pol34

!!!
E
¼ a v3j iþ b h3j ið Þ h4,A

!! "
þ a v3j i' b h3j ið Þ v4,A

!! "

þ a h3j iþ b v3j ið Þ h4,B
!! "

' a h3j i' b v3j ið Þ v4,B
!! "

:

ð35Þ

Each detector stage performs a polarization resolv-
ing measurement by first erasing which-path informa-
tion about the crystal that gave rise to the up-converted
photon using a half-wave plate. Then, one of the four
detectors denoted by the labels hA, vA, hB, and vB,
signals the detection of the up-converted photon. This
information alongside Equation (35) determines the
unitary transformation necessary to transform the
state of photon 3 to the initial qubit.

Unlike the continuous-variable spectral and trans-
verse-spatial degrees of freedom, the discrete polariza-
tion degree of freedom carries at most a finite degree of
entanglement. In particular, the polarization Schmidt
number has a maximum value of Kpol¼ 2. The
experimental effort to realize or nearly realize this
finite degree of polarization entanglement can be
regarded as feasible. Consequently, in the subsequent
section we consider only a maximally polarization
entangled state of the form presented in Equation (34).

5. Simultaneous teleportation

In Sections 2–4, component protocols for teleporting
the spectral, transverse-spatial, and polarization states
of a single-photon state were outlined. As each
protocol destroys the photon during the measurement
process, implementing teleportation across the differ-
ent degrees of freedom cannot be performed sequen-
tially. Instead, these individual protocols must be
combined into a single procedure capable of simulta-
neously teleporting all three degrees of freedom. As all
three of the described approaches depend on the up-
conversion of photons 1 and 2, we propose the
experimental setup shown in Figure 3 to synthesize
together these implementations.

Consider the complete initial state of photon 1
to be

 1

!! "
¼

ð
d!

ð
dq A !, qð Þ h !, qð Þ1

!! "
þ B !, qð Þ v !, qð Þ1

!! ", -

ð36Þ

where A(!, q) and B(!, q) are the probability ampli-
tudes that photon 1 has frequency ! and transverse
wave vector q with horizontal and vertical
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polarization, respectively. The hyperentangled state for
photons 2 and 3 is

’23
!! "

¼ 1ffiffiffi
2

p
ð
d!

ð
d!0

ð
dq

ð
dq0P !, q,!0, q0ð Þ

, h !, qð Þ2, v !0, q0ð Þ3
!! "

þ v !, qð Þ2, h !0, q0ð Þ3
!! "-,

ð37Þ

where P(!, q,!0, q0) is the joint probability amplitude
determining the properties of the hyperentangled
photon pair. Hyperentangled states of this form can
be generated directly from SPDC using, for example,
bulk crystals pumped by broad bandwidth pulses
[23,24]. The joint amplitude P is considered to be
separable with respect to physical degrees of
freedom, i.e.

’23
!! "

¼ ’spec23

!! "
- ’spat23

!! "
- ’pol23

!!!
E

ð38Þ

although this need not be the case [28,31].
To invoke simultaneous teleportation in each

degree of freedom, photons 1 and 2 are up-converted
to generate photon 4, e.g. using spectrally and spatially
phase-matched SFG. The latter process is subsequently
detected by a spectrally and spatially resolving mea-
surement apparatus. In particular, photons 1 and

2 pass through the sequence of type-I and type-II SFG
crystals as shown in Figure 3, where the polarization
Bell state is identified by which detector observes the
photon. Assuming detection of frequency !, trans-
verse-wave vector qD and polarization hB, the projected
state of photon 3 is

~ 3

!!!
"
¼ $

ð
d!

ð
d!0

ð
dq

ð
dq0P !' !, qD ' q,!0, q0

/ 0

, A !, qð Þ H !0, q0ð Þ3
!! "

þ B !, qð Þ V !0, q0ð Þ3
!! ", -

ð39Þ

where $ is the normalization factor. Detections at the
remaining measurements stations give similar results.
The classical measurement information given in terms
of !, qD and hB permits recovery of the intended
quantum state. For these measurement outcomes, the
identity operator is the local unitary transformation
for the polarization component, while D and Q are the
shifts applied to the spectral and spatial modes,
respectively. These operations transform the state
(39) of photon 3 to

 3

!! "
¼ $

ð
d!

ð
d!0

ð
dq

ð
dq0P !'!,qD'q,!0'D,q0'Q

/ 0

, A !,qð Þ H !0,q0ð Þ3
!! "

þB !,qð Þ V !0,q0ð Þ3
!! ", -

: ð40Þ

The total teleportation fidelity of this state with respect
to Equation (36) is then given by

F ¼ $j j2
!!!!
ð
d!

ð
d!0

ð
dq

ð
dq0P

/
!'!,qD'q,!0'D,q'Q

0

, A !,qð Þ(A !0,q0ð ÞþB !,qð Þ(B !0,q0ð Þ½ *
!!!!
2

: ð41Þ

5.1. Separable single-photon states

When the single-photon state factorizes into spectral,
spatial, and polarization components, e.g. when

A !, qð Þ ¼ a ! !ð Þu qð Þ ð42Þ

etc., then the teleportation fidelity (41) becomes the
product of the individual fidelities, i.e.

F ¼ FspecFspatFpol: ð43Þ

In the separable case of Equation (43), the fidelity and
the entanglement in each degree of freedom must be
high for reliable teleportation of the total state.
However, if only a single state component is relevant,
e.g. the polarization state, then poor fidelity in the
spectral and transverse-spatial modes does not effect
the polarization-teleportation fidelity. For example,
when the joint spectral and spatial amplitudes each
represent bivariate Gaussian distributions, the fidelity,

Figure 3. A conceptual experiment capable of simultaneous
teleportation of the spectral, transverse-spatial, and polari-
zation quantum states. An input photon 1 in a presumably
unknown state and one member of the biphoton state
generated by SPDC (black box) are mixed in a series of type-I
and type-II SFG crystals for performing biphoton up-
conversion in the spectral, angular, and polarization degrees
of freedom to generate photon 4. A dichroic beam-splitter
(DBS) distinguishes the output of the crystals by routing it to
separate detector stations (gray boxes). At each detector
station, the photon 4 is subjected to a frequency, momentum,
and polarization resolving measurement. The measurement
outcomes are the frequency !, the wave vector qD, and the
polarization state, for example hB in the figure. This
measurement information is then forwarded to the post-
processing stage, where transformations required to recover
the initial single-photon state are applied, for example
polarization rotation Uj and difference frequency generation
(DFG). (The color version of this figure is included in the
online version of the journal.)
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Equation (41), is the product of the individual spectral
and spatial fidelities given in Equations (18) and (31),
respectively, with the polarization fidelity Fpol

assumed unity.

5.2. Non-separable single-photon states

When the single-photon state is not separable with
respect to the spectral, spatial and polarization degrees
of freedom, then a more general expression for the
composite fidelity arises. Specifically, consider the case
that the single-photon spatio-spectral amplitudes do
not factorize but are represented by a spatio-spectral
superposition, e.g.

A !, qð Þ ¼ a
XN

n

cn!n !ð Þun qð Þ ð44Þ

where the coefficient cn weights the contribution of the
nth spectral amplitude !nð!Þ and the nth transverse-
momentum amplitude unðqÞ. For the case where these
states comprise a biorthogonal basis, Equation (44)
would represent a Schmidt decomposition of the
spatio-spectral amplitude for photon 1; however, this
condition does not hold in general. Neglecting Bð!, qÞ
and the polarization state for simplicity, the composite
fidelity for the spatio-spectral entangled input state
is cast as

F ¼
X

m,n

c(mcnG
m,n
specG

m,n
spat

!!!!!

!!!!!

2

ð45Þ

in which

Gm,n
spec ¼

ð
d!

ð
d!0!(

m !ð Þ f !' !,!0 ' Dð Þ!n !
0ð Þ ð46Þ

and

Gm,n
spat ¼

ð
dq

ð
dq0u(m qð Þ# qD ' q, q0 'Q

/ 0
un q0ð Þ ð47Þ

represent complex-valued overlaps between the mth
initial component and the nth teleported component
for the spectral and spatial states, respectively. In the
limit of infinite spectral and spatial entanglement and
broad bandwidths, unit teleportation fidelity occurs
and the quantities Gm,n

spec and Gm,n
spat represent overlaps

between the non-orthogonal basis elements of the state
(44). More important, it is these quantities and not the
individual fidelities of isolated components that deter-
mine the composite fidelity of the state. This has the
expected consequence that teleportation of the spatial
and spectral components must occur simultaneously.

As an example of the spatio-spectral teleportation
fidelity in Equation (45), we present the teleportation
fidelity of an input state composed from the

superposition of two equally weighted Gaussian ampli-
tudes, each having the form !(!) u(q). The component
amplitudes differ in the value of the bandwidths (1,spec
and (1,spat, cf. Equations (15) and (28). In particular,
we consider the second component of the superposition
to have spectral and spatial bandwidths 10 times that
of the first component but the same mean values. This
yields an overlap (squared magnitude) between the two
spectral states of %0.19, while the overlap between the
different spatial components is %0.039. The product of
these overlaps is %0.0015 and measures the non-
orthogonality of the spatio-spectral components. The
real-valued coefficients c0¼ c1¼ 0.677871 represent
the normalized spatio-spectral superposition state.

Figure 4 presents the composite teleportation
fidelity for the spatio-spectral superposition state as a
function of the bandwidth ratio a¼ aspec¼ aspat and the
linear correlation '¼ 'spec¼ 'spat. The bandwidths and
linear correlations (entanglement) in the spectral and
spatial degrees of freedom are taken as identical for the
sake of simplicity. Apparent from Figure 4 are local
saddle points in the composite fidelity at '¼ 0 and
both a¼ 1.0 and a¼ 0.1. These points correspond to
cases where the initial state of photon 3 equals one or
the other components in the superposition state
defining photon 1. It is only for large values of
entanglement ('40.9999) and bandwidth (a40.04)
that the composite fidelity becomes large (F40.99).

Figure 5 also presents the composite teleportation
fidelity for the spatio-spectral superposition state
but plots this quantify with respect to the bandwidth
ratio a and the Schmidt number K; recall from
Equation (14) the relationship between K and '.

Figure 4. Contour plot of the composite teleportation
fidelity F with respect to the bandwidth ratio a and the
linear correlation ' for a spatio-spectral entangled input
state. Contours begin with 0, are spaced by 0.01, and
increment toward the upper left-hand corner, cf. Figure 5.
The measured frequency and transverse momentum of
photon is taken as %¼ 0 and |d|¼ 0.
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In this representation, high fidelity teleportation
(F40.99) occurs for large but finite bandwidth
(a50.04) and moderate Schmidt number (K4300).
These thresholds should be interpreted as the require-
ment for each degree of freedom, i.e. Kspec4300 and
Kspat4300. As noted in Sections 2 and 3, current
SPDC sources are capable of preparing biphoton states
with these spatial and spectral Schmidt numbers.

6. Conclusions

We have presented a conceptual experiment for
performing simultaneous teleportation of multiple
photonic degrees of freedom. We have shown that the
seemingly disparate protocols for teleporting single-
photon spectral, angular, and polarization states may
be unified through the mechanism of biphoton
up-conversion. By describing a common experimental
platform based on biphoton up-conversion, we
have shown that these three protocols can be
implemented simultaneously and, consequently, that
the multiple photonic degrees of freedom characteriz-
ing a single-photon state may be simultaneously
teleported.

We have also analyzed the fidelities for the
individual protocols. We have shown that the com-
posite teleportation fidelity is equivalent to the product
of the individual fidelities when the single and joint
probability amplitudes are separable with respect to
the physical degrees of freedom. We have further
shown that when the single-photon amplitude is
a superposition of spatial and spectral states, i.e.

spatio-spectral entangled, a high composite fidelity
requires strong entanglement in both degrees of
freedom.

The presented approach to simultaneous teleporta-
tion of the spectral, transverse-spatial (angular), and
polarization degrees of freedom relies on biphoton up-
conversion. Due to the inherently small field strength
of the two photons and the small optical nonlinearities
that typically mediate this process, the conversion
efficiency for the platform presented is calculated to be
rather low. An alternative approach would be stimu-
lated biphoton up-conversion, e.g. a four-wave mixing
process in which up conversion of the biphoton state is
mediated by a strong coherent pulse and a +(3) optical
medium. This can be viewed as an extension of current
methods for up-converting single-photon states that
use a strong pump pulse to stimulate the up conversion
process in +(2) media [40,42]. The planned analysis of
this approach is anticipated to yield similar, although
slightly more complex, results for the teleported states.

Finally, the ability to simultaneous teleport multi-
ple photonic degrees of freedom has the potential to
greatly expand the size of the Hilbert space accessible
in quantum optical implementations of quantum
information protocols. Of particular interest is the
ability to encode larger alphabets into these different,
potentially entangled, physical modes as well as the
possibility of using the different degrees of freedom to
selectively address the components of a multi-qubit
quantum state encoded into a single photon. Several
experimental approaches have already demonstrated
the utility of hyperentanglement for these types of
information processing applications [19,20,24–27]. The
present contribution has demonstrated the feasibility
of using quantum teleportation for assisting these
forms of communication and computation.
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