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We formulate two-color nonlinear wave-packet interferometry (WPI) for application to a diatomic molecule
in the gas phase and show that this form of heterodyne-detected multidimensional electronic spectroscopy
will permit the reconstruction of photoinduced rovibrational wave packets from experimental data. Using
two phase-locked pulse pairs, each resonant with a different electronic transition, nonlinear WPI detects the
quadrilinear interference contributions to the population of an excited electronic state. Combining measurements
taken with different phase-locking angles isolates various quadrilinear interference terms. One such term
gives the complex overlap between a propagated one-pulse target wave packet and a variable three-pulse
reference wave packet. The two-dimensional interferogram in the time domain specifies the complex-valued
overlap of the given target state with a collection of variable reference states. An inversion procedure based
on singular-value decomposition enables reconstruction of the target wave packet from the interferogram
without prior detailed characterization of the nuclear Hamiltonian under which the target propagates. With
numerically calculated nonlinear WPI signals subject to Gaussian noise, we demonstrate the reconstruction
of a rovibrational wave packet launched from the A state and propagated in the E state of Li2.

I. Introduction

Time-resolved phase-coherent multidimensional electronic
spectroscopy (MDES) is a powerful tool for understanding
chemical processes. Using phase-stabilized sequences of fem-
tosecond laser pulses resonant with molecular electronic transi-
tions, this form of nonlinear optical spectroscopy1,2 probes
ultrafast chemical dynamics at the level of coherent response
functions and quantum-mechanical amplitudes (wave functions)
rather than their squares (probability densities). In analogy with
multidimensional nuclear magnetic resonance (NMR) tech-
niques, MDES prepares electronic, vibrational, and rotational
populations and coherences and monitors their subsequent time
development.3-6 In contrast with the nanosecond time scale of
NMR, the femtosecond-duration pulses of MDES monitor the
nonlinear optical response as the molecular state evolves on
the fundamental time scale of chemical change.7

As an example of MDES, two-dimensional Fourier transform
electronic spectroscopy excites a third-order nonlinear polariza-
tion using a sequence of three noncollinear pulses.8 A fourth
pulse overlapped with the subsequently emitted electric field
allows heterodyne detection of the nonlinear polarization; by
stabilization of the phases among incident pulses, the real and
imaginary components of the molecular response can be
measured.1,9,10A collection of these measurements, performed
as a function of the interpulse delays, is typically Fourier
transformed to obtain a frequency-domain representation of the
nonlinear optical response.8,11,12 Recent experiments have
implemented phase-coherent MDES techniques to provide
detailed pictures of the spatial and energetic dynamics in
complex molecular systems.13-15

There are additional capabilities in nonlinear optical spec-
troscopy without widely employed analogies in NMR. As noted
earlier, femtosecond-duration pulses allow rovibronic popula-
tions and coherences of an excited system to be time resolved.
For a molecular system, electronic excitation by a broad-
bandwidth pulse prepares time-dependent nuclear states. Thus
the molecule’s response reflects quantum-mechanical interfer-
ence among the nuclear wave packets prepared by the pulse
sequence and propagated under the relevant nuclear Hamil-
tonians. The excited populations and coherences of nuclear spin
states are not usually of immediate chemical significance, and
their explicit determination is not a typical objective of NMR
experiments. From a chemical viewpoint, the nuclear dynamics
set in motion by short-pulse electronic excitation and monitored
by MDES is directly pertinent to the microscopic understanding
of photochemical reactions.

Here we formulate two-color nonlinear wave packet inter-
ferometry (WPI) as an application of MDES employing a
sequence of two phase-locked pulse pairs (see Figure 1). Using
a wave packet description of the nonlinear optical response, we
show that with optical phase control and spectral selection it is
possible to disentangle the multiple interferences of pulse-
induced nuclear wave packets contributing to a measured
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Figure 1. Sequence of two phase-locked pulse pairs used in two-color
nonlinear WPI. The pulses arrive in sequence,t1 < t2 < t3 < t4, and
pulse overlap is neglected. Pulses 1 and 2 have a common carrier
frequencyΩ1 ) Ω2 and an intrapulse-pair optical phase shiftφ )
φ2(ωL) - φ1(ωL) - ωLt21. Pulses 3 and 4 have frequencyΩ3 ) Ω4 and
phase shiftφ′ ) φ4(ω′L) - φ3(ω′L) - ω′Lt43. The delayt43 is the same
for all measurements, whilet21 and t32 are varied.
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electronic-state population. We further demonstrate that the
nonlinear WPI signal provides sufficient amplitude-level infor-
mation to reconstruct a time-dependent target wave packet
propagated under the perhaps ill-characterized nuclear Hamil-
tonian of that excited electronic state.

State reconstruction has served as an organizing concept in
the field of quantum optics16 and could also be of considerable
value for illuminating photochemical reaction dynamics at the
most basic level. For instance, our formulation of molecular
state reconstruction could serve as a diagnostic complement to
closed-loop feedback-controlled pulse-shaping techniques.17-20

Guided by learning algorithms, those methods search for the
spectral amplitudes and phases that shape a broadband pulse
so as to most effectively initiate a targeted molecular response.21

As experiments of this kind are often carried out on systems
whose Hamiltonian is not well-known,22,23 a method to recon-
struct photoinduced states with imperfect knowledge of the
Hamiltonian could provide insight into the quantum dynamics
mediating preparation of the targeted molecular state, which
would otherwise be lacking.

Several groups have used wave packet interferometry to
characterize atomic and molecular wave packets.24-34 In the
original linear WPI experiments, a single pair of time-delayed
phase-locked pulses excited a superposition of nuclear wave
packets in the B electronic level of gas-phase I2.24,25In an optical
analogy with Young’s double-slit experiment,26 Scherer et al.
showed that by measuring the portion of the B-state population
bilinear in the laser fields as a function of intrapulse-pair delay
and phase shift, the complex-valued overlap of the two “one-
pulse” nuclear wave packets could be followed in time.24 The
first of these one-pulse packets, here termed the target state,
propagates on the B-state potential for the intrapulse-pair delay,
while the second wave packet, termed the reference state,
remains in the X state and is transferred to the B state by the
second pulse. In the short-pulse limit, their bilinear interference
directly reveals the time-dependent kernel familiar from Heller’s
formulation of linear absorption.25,35

Girard and co-workers applied linear WPI to gain temporal
coherent control over the population of both atomic27-29 and
diatomic30 electronic levels, while Ohmori et al. took a similar
approach in controlling the population dynamics of a van der
Waals complex.31 Gühr et al. used linear WPI to monitor and
control vibrational decoherence of diatomic halides trapped in
rare gas matrixes.32 In another condensed phase application,
Milota et al. investigated homogeneous dephasing processes in
conjugated polymers by measuring fluorescence interference.33

Martı́nez-Galicia and Romero-Rochı´n explored linear WPI from
the viewpoint of the incident fields, which, in a quantum
mechanical analysis, become entangled with the excited mo-
lecular system.34

Leichtle et al. have shown how measurements of the bilinear
interference can characterize a shaped vibrational wave packet
using quantum state holography (QSH).36 In this application of
linear WPI, the target state is prepared by the first (possibly
shaped) pulse and propagation under the excited-state Hamil-
tonian, while the reference state is created by the time-delayed
second pulse and an interval of forward or backward propagation
on the same presumably well-known excited-state potential.
With measurements of the wave packet interference as a function
of intrapulse-pair delay and phase-locking angle along with
knowledge of the prepared reference states, QSH expresses the
interferogram as a set of linear algebraic equations that can be
numerically inverted to yield expansion coefficients for the target
state in a basis of nuclear eigenfunctions of the excited electronic

state. Experimentally, Bucksbaum and co-workers have imple-
mented QSH to reconstruct electronic Rydberg wave packets
in cesium atoms and to guide the shaping of quantum states
with closed-loop feedback control.37

Our approach to state reconstruction via nonlinear WPI has
some features in common with QSH but aspires to extend wave
packet reconstruction to situations where the relevant excited-
state Hamiltonian is unknown, or at best ill-characterized. In
nonlinear WPI,38-45 one detects the interference contributions
to an excited-state population generated bytwo pairs of phase-
locked pulses. The quadrilinear contribution to the excited-state
populationsthat portion linear in all four applied fieldssarises
from quantum-mechanical interference between various one-
pulse and three-pulse wave packets. As shown in previous
studies of one-color nonlinear WPI,39-41 in which both pulse
pairs drive the same electronic transition, there are four overlaps
contributing to the quadrilinear interference, which can be
grouped according to their dependence on the optical phase
shifts: two overlaps depend on the sum of the phase-locking
angles, while the other two depend on the difference. Shifting
the phase-locking angles allows the phases of the two types of
terms to be changed independently; by combining WPI mea-
surements with different phase-locking angles, the two sums
can be experimentally isolated. Although certain dynamical
features (such as a dissociative potential surface or multiple
incommensurable mode frequencies) can minimize the simul-
taneous occurrence of overlaps with the same phase signature,
individual quadrilinear overlaps are not isolable in general in
one-color nonlinear WPI experiments.39-41 A more fundamental
limitation is the fact thatsas with QSHswave packet recon-
struction based on one-color WPI data requires quantitative
characterization of the common excited-state nuclear Hamilto-
nian under which both the target and reference states propagate.

The situation is different in two-color nonlinear WPI,39,43,45

where the first pulse pair drives transitions between the initial
and intermediate electronic levels, while the second pulse pair
drives transitions between the initial and final levels. In this
situation, the final-state population contains only two quadri-
linear overlapsseach with a different phase signaturesand these
two overlaps can be separately isolated. The one taking the form
of an overlap between a one-pulse target state that propagates
under the unknown final-state nuclear Hamiltonian and a three-
pulse reference state that propagates only in the well-character-
ized potentials of the initial and intermediate electronic levels
provides the necessary information for reconstruction of the
sought-after target state.

We recently examined one- and two-color nonlinear WPI for
bound43 and photodissociative45 model systems supporting a
single, vibrational, degree of freedom. We explored reconstruc-
tion of target states shaped by chirped pulses from calculated
nonlinear WPI signals and investigated the effects of both signal
noise and finite temperature. In this paper, we continue our
investigation of two-color nonlinear WPI for the reconstruction
of optically prepared nuclear wave packets by performing
rigorous numerical calculations on a three-dimensional molec-
ular system, namely, a vibrating and rotating diatomic molecule
in the gas phase. We chose the lithium dimer for this study, in
part because accurate ab initio potentials and transition dipole
moments are available for several electronic levels.46 In addition,
Li 2 has been the subject of recent coherent-control experiments
by Leone and co-workers,47-51 who monitored the dynamics
of rovibrational wave packets in the E state of Li2 by pump-
probe photoionization spectroscopy and demonstrated control
over their time evolution with shaped optical pulses. These
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features suggest that the lithium dimer is a suitable test bed for
theoretical and experimental studies of two-color nonlinear WPI
and molecular state reconstruction.

Section II outlines the basic theory of two-color nonlinear
WPI and shows how optical phase shifting can be used to isolate
the quantum-mechanical overlaps needed for molecular state
reconstruction. Section III explains our state reconstruction
technique, and section IV specializes the theoretical treatment
to the case of a rotating diatomic molecule. State determination
for Li2 is carried out in section V using numerically calculated
interference signals. We determine the extent to which state
reconstruction can be successfully effected despite a lack of
quantitative knowledge of the final-state potential and transition
dipole moment. In section VI we discuss our findings and the
correspondence between nonlinear WPI and other forms of
MDES. We conclude by commenting on the prospects for future
applications of nonlinear WPI.

II. Two-Color Nonlinear WPI

The field-free Hamiltonian of the molecule is

whereHg, He, andHf are the nuclear Hamiltonians of the ground,
intermediate, and final electronic states,|g〉, |e〉, and |f〉,
respectively. Our reconstruction scheme requires thatHg and
He be well characterized but does not assume such information
for Hf (which governs the time evolution of the target state).
This situation may occur when g and e are low-lying electronic
levels accessible to experimental or computational characteriza-
tion and f is a higher-lying, less easily characterized electronic
level.

In the proposed experiment, the system evolves under the
time-dependent HamiltonianH(t) ) H + V(t). The interaction
between the molecule and two pairs of phase-locked pulses is
written as

where

The dipole moment operator

couples electronic levels a and b through the nuclear-coordinate-
dependent transition dipole moment vectorµba. H.c. stands for
Hermitian conjugate. Thejth electric field

has arrival timetj, linear polarization vectorej, envelope function
Aj(t), and temporal phaseΦj(t). We assume that the pulses arrive
in sequence,t1 < t2 < t3 < t4, and do not overlap in time; the
delay between pulsesj andk is tjk ) tj - tk. The first and second
pulses constitute one phase-locked pulse pair, and the third and
fourth pulses constitute a second. The first pulse pair drives
the eT g electronic transition, and the second pulse pair drives
the f T g transition. Neither pair is resonant with fT e. In our
state determination scheme, the intrapulse-pair delayt43 is held
constant, as this interval specifies the f-state propagation time
of a target wave packet. The remaining time delays,t21 andt32,

are varied and specify the members of a family of reference
wave packets.

Phase locking each pulse pair fixes the relative spectral phase
of the two pulses at a selected locking frequency. The Fourier
component of thejth pulse at frequencyω is

whereRj(ω) and φj(ω) - ωtj are the spectral amplitude and
phase, respectively. In the last line of eq 6, we make the slowly
varying envelope approximation by assuming that the pulse
duration, though perhaps abrupt compared to nuclear motion,
is many times an optical period (andΦj(t) is defined to increase
monotonically). Phase locking the first pulse pair at the locking
frequencyωL requires that the optical phase shift

be held constant as the intrapair delayt21 is scanned. Phase
locking the second pulse pair atω′L similarly specifies a phase
shift

We solve for the amplitude of the molecular state using time-
dependent perturbation theory, and truncate the expansion at
third order in the incident fields because higher terms are
presumed negligible or would not contribute to the fourth-order
f-state population. The molecular state before the arrival of the
pulses is

where |ng〉 is an eigenstate ofHg with energyEg(ng), and we
set p ) 1. To follow the time evolution, we switch to the
interaction picture

and solve the corresponding equation of motion

for the state-ket well after the fourth pulse through third order
in the interaction

Projecting out the f-state amplitude gives

As detailed in the Appendix, this general expression can be made
more explicit by accounting for the finite spectral bandwidth
of the pulses. The resulting f-state amplitude is a linear
superposition of 2 one-pulse and 10 three-pulse nuclear wave
packets (but no two-pulse wave packets, because none of the

H ) |g〉Hg〈g| + |e〉He〈e| + |f〉Hf〈f|, (1)

V(t) ) ∑
j)1

4

Vj(t) (2)

Vj(t) ) -µ̂‚Ej(t) (3)

µ̂ ) µfg|f〉〈g| + µeg|e〉〈g| + µfe|f〉〈e| + H.c. (4)

Ej(t) ) ejAj(t - tj) cosΦj(t - tj) (5)

Rj(ω)e-iφj(ω)+iωtj ) ∫-∞

∞
dteiωtAj(t - tj) cosΦj(t - tj) (6)

= eiωtj

2 ∫-∞

∞
dteiωtAj(t)e

-iΦj(t)

φ ) φ2(ωL) - φ1(ωL) - ωLt21 (7)

φ′ ) φ4(ω′L) - φ3(ω′L) - ω′Lt43 (8)

|Ψ(t,t1)〉 ) |g〉e-iHg(t-t3)|ng〉 (9)

|Ψ̃(t)〉 ) eiH(t-t3)|Ψ(t)〉 (10)

i
∂|Ψ̃(t)〉

∂t
) Ṽ(t)|Ψ̃(t)〉 (11)

Ṽ(t) ) eiH(t-t3)V(t)e-iH(t-t3) (12)

〈f|Ψ̃(t.t4)〉 ) ( -i ∫-∞

∞
dτ〈f|Ṽ(τ)|g〉 -

∫-∞

∞
dτ ∫-∞

τ
dτ′〈f|Ṽ(τ)Ṽ(τ′)|g〉 +

i ∫-∞

∞
dτ ∫-∞

τ
dτ′ ∫-∞

τ′
dτ′′〈f|Ṽ(τ)Ṽ(τ′)Ṽ(τ′′)|g〉)|ng〉 (13)
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pulses is resonant with fT e). Returning to the Schro¨dinger
picture, we have

Equation 14 adopts an abbreviated notation to indicate the
sequence of pulse action and free evolution giving rise to each
wave packet. For example, the nuclear wave packet of first order
in the third pulse alone is

while the wave packet trilinear in the first, second, and fourth
pulses is

Equations 15 and 16 use pulse propagators, with electronic
matrix elements52

to describe the shaping and transfer of nuclear amplitude by
the jth pulse during the upward br a electronic transition. The
downward bf a transition is governed byPj

ab ) -Pj
ba†. Since

the dependence of each term in eq 14 on the optical phase shifts
(7) and (8) is indicated explicitly, the individual amplitudes are
to be evaluated with both phase angles set to zero.53 The
sequences of pulse action and free propagation leading to|(3)f〉
and|(421)f〉 are illustrated in Figure 2. Expressions for the other
terms in the f-state amplitude are given in the Appendix.

The f-state population is the measured quantity in a WPI
experiment. As determined from eq 14, it can be expressed as

a power series in the two optical phase factors

in which the coefficients are

The remaining coefficients follow fromp-m,-n ) pm,n*. Among
these nine coefficients,p-1,1 will be of specific interest for state
reconstruction; it represents the overlap between a one-pulse
wave packet prepared by the third pulse and a three-pulse wave
packet resulting from sequential action of the first, second, and
fourth pulses.

The coefficientspmn of the Fourier series (18) could be
determined according to the inversion formula54

Though formally exact, eq 24 is experimentally impractical, as
it requires continuous sampling of the f-state population with
respect to both optical phase shifts. It is more realistic to imagine
that the f-state population can be sampled at evenly spaced
discrete values of the phase shifts.φ and φ′ can be taken as
integer multiples of∆ ) 2π/K (assumed to be the same for
both phase angles)

with j,k ) 0, 1, 2, ...,K - 1. We “approximate” each integral
(24) as a sum over the evenly sampled phases

There are nine independent quantities on the right sides of eqs
19-23, so populations for at least nine distinct phase combina-
tions (φj,φ′k) should be sufficient. TryingK ) 3 (i.e.,K2 ) 9)
in eq 26, we get

It can be seen that this prescription gives an exact, rather than
approximate isolation ofpmn, due to the absence of higher
multiples of the optical phase on the right hand side of eq 18.

Figure 2. Excitations occurring in a two-color nonlinear WPI
experiment. Vertical arrows denote electronic transitions; horizontal
arrows denote time evolution. The first pulse-pair drives eT g
transitions, while the second drives fr g. Left panel shows preparation
of |(3)f〉 through one-pulse excitation to the f state by the third pulse
followed by propagation fort43. Right panel depicts preparation of the
three-pulse wave packet|(421)f〉: first pulse transfers amplitude into
the e state, where it propagates fort21; a second pulse de-excites the
wave packet to g, where it evolves fort42; and a fourth pulse transfers
the wave packet to the f state. The overlap of these wave packets makes
the sought-after quadrilinear interference contribution to the f-state
population (one of two quadrilinear overlaps).

Pf(φ,φ′) ) |〈f|Ψ(t)〉|2 ) ∑
m)-1

1

∑
n)-1

1

pmne
i(mφ+nφ′) (18)

p0,0 ) 〈(3)f|(3)f〉 + 〈(4)f|(4)f〉 + [〈(333)f|(3)f〉 +
〈(444)f|(4)f〉 + 〈(311)f|(3)f〉 + 〈(411)f|(4)f〉 + 〈(322)f|(3)f〉 +

〈(422)f|(4)f〉 + 〈(443)f|(3)f〉 + 〈(433)f|(4)f〉 + c.c.] (19)

p1,0 ) 〈(421)f|(4)f〉* + 〈(321)f|(3)f〉* (20)

p0,1 ) 〈(4)f|(3)f〉 + 〈(422)f|(3)f〉 + 〈(311)f|(4)f〉* +
〈(433)f|(3)f〉 + 〈(333)f|(4)f〉* + 〈(443)f|(4)f〉* +

〈(411)f|(3)f〉 + 〈(444)f|(3)f〉 + 〈(322)f|(4)f〉* (21)

p1,1 ) 〈(321)f|(4)f〉* (22)

p-1,1 ) 〈(421)f|(3)f〉 (23)

pmn ) 1

4π2 ∫0

2π
dφ ∫0

2π
dφ′Pf(φ,φ′)e-i(mφ+nφ′) (24)

φj ) j∆ and φ′k ) k∆ (25)

pmn )
∆2

4π2
∑
j)0

K-1

∑
k)0

K-1

Pf(φj,φ′k)e
-i(mφj+nφ′k) (26)

pmn )
1

9
∑
j)0

2

∑
k)0

2

Pf(j∆,k∆)e-i(mj+nk)∆ (27)

〈f|Ψ(t.t4)〉 ) e-iHf(t-t4)[|(3)f〉 + |(4)f〉e
-iφ′ +

|(421)f〉e
iφ-iφ′ + |(321)f〉e

iφ + |(411)f〉e
-iφ′ + |(422)f〉e

-iφ′ +

|(311)f〉 + |(322)f〉 + |(333)f〉 + |(433)f〉e
-iφ′ + |(443)f〉 +

|(444)f〉e
-iφ′] (14)

|(3)f〉 ) e-iHft43P3
fg|ng〉 (15)

|(421)f〉 ) P4
fge-iHgt42P2

gee-iHet21P1
egeiHgt31|ng〉 (16)

Pj
ba ) i

2∫-∞

∞
dτAj(τ)e-iΦj(τ)eiHbτµba‚eje

-iHaτ (17)
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The sought-after overlap (23) can be isolated by combining
f-state population measurements

with ∆ ) 2π/3. The ability to isolate the single overlap
〈(421)f|(3)f〉 by phase cycling in two-color nonlinear WPI is an
improvement over the one-color case, where an additional
overlap〈(431)f|(2)f〉 bears the same exp(iφ′ - iφ) phase signature
and need not vanish in general.39,43

III. Target-State Reconstruction

The starting point for state reconstruction is the two-
dimensional interferogram comprising the experimentally isol-
able overlaps〈(421)f|(3)f〉 ) p-1,1 of eq 28 for a range oft21

andt32 delays. These can be expressed as overlaps between an
unknown one-pulse target state and a known three-pulse
reference state

The target state

is the nuclear wave packet prepared by the action of the third
pulse on the initial nuclear state followed by propagation under
the unknown f-state Hamiltonian for a time fixed delayt43. The
spectral phaseφ3(ω′L) is introduced in eq 30 to remove
dependence on the uncontrolled absolute phase of the third pulse,
i.e., Φ3(0). The variable reference states

incorporate the same phase factor appearing in eq 30, and are
otherwise defined by their successive intervals,t21 and t32 +
t43, of e-state and g-state evolution (see Figure 2). Recall that
the isolable overlap is defined withφ′ (andφ) equal to zero, so
that φ4(ω′L) ) φ3(ω′L) + ω′Lt43 from eq 8.

For purposes of target-state reconstruction, the two-dimen-
sional interferogram can be reorganized to formM singly
indexed elementszm ) 〈ref421(ng)|tar3(ng)〉 of a signal vector,
wherem≡ (t21,t32). We represent the target and reference states
in a discrete position basis{|xn〉, n ) 1, 2, ...,N} of uniform
spacing∆x ) xn+1 - xn. With the completeness relation for
position eigenstates, we may express the signal elements as

from where

where the row elements of theM × N reference matrixRmn )
〈ref421|xn〉∆x represent the conjugate wave functions of the
reference states and theN-dimensional target vectortn ) 〈xn|tar3〉
represents the target wave function.

To reconstruct the target from the measured interference
signal, we invert eq 33 using our knowledge of the reference
matrix. As the reference matrix may be singular or nearly so,
this inversion is performed using singular value decomposition.56

The reference matrix is partitioned as

where theN × N matrix V is unitary, theM × N matrix U is
row unitary, and the realN × N matrix W is diagonal with
singular valuesWjj g 0. If any singular value is zero, the inverse
of R is not defined, but a pseudoinverse ofR can be constructed
as

WT
-1 is a modified inverse with elements

where Wmax is the largest singular value andT is a chosen
tolerance.57 The solution to eq 33 obtained by applying the
pseudoinverse of the reference matrix to the signal vector

minimizes the norm|r | and the residual|z - Rr |.56 To quantify
the accuracy of the reconstructed wave packet, we define the
fidelity

which lies between 0 and 1.
Our signal isolation and state reconstruction procedure can

be extended to a mixed-state system described by an initial
density matrixFg ) ∑wng|ng〉〈ng|.45 Here the f-state population
comprises the simultaneous contributions of multiplePf

ng akin
to eq 18, each originating from a different initial rovibrational
level ng and weighted by its populationwng

All of the terms in eq 39 exhibit the same phase-shift
dependences as in the pure-state case, so the phase-cycled signal
combination (28) now yields an initial-population-weighted sum
of quadrilinear interferences of the form (29). The elements of
a signal “vector” analogous to eq 32 can now be written as

Reconstruction of the mixed-state targets proceeds as before,
but with the ensemble of target states represented by aKN-
dimensional vectortl ) 〈xk|tar3(ng)〉, and the reference states
stored in aM × KN matrix Rml ) wng〈ref421(ng)|xk〉∆x, whereK
is the number of populated initial states andl ≡ (k,ng). Inverting
eq 40 yields aKN-dimensional reconstructed vector of the same
structure as the target, whose quality can be characterized by
an average fidelityf ) ∑wng fng.

IV. Diatomic Molecule

A diatomic molecule in the gas phase with accurately known
internuclear potentials would be a natural candidate for initial
experiments testing state reconstruction by nonlinear WPI. In

p-1,1 ) 1
9
(Pf(0,0)+ Pf(0,∆)e-i∆ + Pf(0,2∆)ei∆ +

Pf(∆,0)ei∆ + Pf(∆,∆) + Pf(∆,2∆)e-i∆ + Pf(2∆,0)e-i∆ +

Pf(2∆,∆)ei∆ + Pf(2∆,2∆)) (28)

〈(421)f|(3)f〉 ) 〈ref421(ng)|tar3(ng)〉 (29)

|tar3(ng)〉 ) eiφ3(ω′
L)+iω′

Lt43|(3)f〉 (30)

) eiφ3(ω′
L)+iω′

Lt43e-iHft43P3
fg|ng〉

|ref421(ng)〉 ) eiφ4(ω′
L)|(421)f〉 (31)

) eiφ4(ω′
L)P4

fg e-iHgt42P2
ge e-iHet21P1

eg eiHgt31|ng〉

zm ) ∑
n

〈ref421(ng)|xn〉〈xn|tar3(ng)〉∆x (32)

z ) Rt (33)

R ) UWV† (34)

RT
-1 ) VWT

-1U† (35)

(WT
-1)jj ) {1/Wjj if Wjj/Wmax > T

0 otherwise
(36)

r ) RT
-1z (37)

f ) |r†‚t|
|r ||t| (38)

Pf(φ,φ′) ) ∑ wng
Pf

ng(φ,φ′) (39)

zm ) ∑
ng

∑
n

wng
〈ref421(ng)|xn〉〈xn|tar3(ng)〉∆x (40)
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this section, we obtain expressions for the rovibrational target
and reference states of a diatomic molecule, specializing to the
case of zero electronic angular momentum, i.e.,1Σ electronic
levels. The nuclear Hamiltonian of thea electronic level (a )
g, e, f) may be written as58

whereUa(R) is the internuclear potential,J is the total angular
momentum operator, andµ is the reduced mass. The angular
momentum satisfiesJ2|J,M〉 ) J(J + 1)|J,M〉 and Jz|J,M〉 )
M|J,M〉, with J a nonnegative integer andM taking integral
values from-J to J. As Ha andJ2 commute, the eigenstates of
(41) are tensor products of rotational and vibrational components

where|V(J)〉 is an eigenstate of the vibrational Hamiltonian

To evaluate the target and reference states (30) and (31), we
calculate rotational matrix elements of the pulse propagators
(17)

With the polarization vector along the space-fixedz axis, we
have

in which µba(R) specifies the internuclear coordinate de-
pendence of the transition dipole moment andc(J,M) )

x(J2-M2)/(4J2-1). Insertion in eq 44 gives

with J-dependent vibrational operators

and

Using eq 46, we can express the target state as

where

and

The centrifugal potential differs in the (f,J+1) and (f,J-1) states,
and because of the small resulting difference in transition energy
from the (g,J) state, the starting wave packetsR3

fg(J)|V(J)〉 and
P3

fg(J)|V(J)〉 may not exactly coincide. Greater differences
between the target components|ø+(V,J)〉 and|ø-(V,J)〉 can arise
from their propagation fort43 under these differing potentials.

Reference states found from eqs 31 and 46 have (J ( 1) and
(J ( 3) components, but the latter can be omitted due to their
orthogonality with the target state:

The vibrational wave packets accompanying different sequences
of rotational transitions are given by

Note that for the downward transitions,Rj
eg(J) ) - Pj

eg(J +
1)† and Pj

eg(J) ) -Rj
eg(J - 1)†, as is consistent with eq 17

and the comments following. Expressions similar to (53-58)
can easily be given for the vibrational amplitudes|δ1〉 and|δ8〉
accompanying the unusedJ + 3 and J - 3 components,
respectively.

The overlap of target and reference states is given by

with M-dependent weighting factors

|ø-(V,J)〉 ) ei(φ3(ω′
L)+ω′

Lt43)e-iHf(J-1)t43P3
fg(J)|V(J)〉 (51)

|ref421(V,J,M)〉 ) {c(J+1,M)c(J,M)2|δ2(V,J)〉 +

c(J+1,M)3|δ3(V,J)〉 + c(J+1,M)c(J+2,M)2|δ4(V,J)〉}|J+

1,M〉 + {c(J,M)c(J-1,M)2|δ5(V,J)〉 + c(J,M)3|δ6(V,J)〉 +

c(J,M)c(J+1,M)2|δ7(V,J)〉}|J-1,M〉 (52)

|δ2(V,J)〉 ) eiφ4(ω′
L)R4

fg(J)e-iHg(J)t42R2
ge(J -

1)e-iHe(J-1)t21P1
eg(J)eiHg(J)t31|V(J)〉 (53)

|δ3(V,J)〉 ) eiφ4(ω′
L)R4

fg(J)e-iHg(J)t42P2
ge(J +

1)e-iHe(J+1)t21R1
eg(J)eiHg(J)t31|V(J)〉 (54)

|δ4(V,J)〉 ) eiφ4(ω′
L)P4

fg(J + 2)e-iHg(J+2)t42R2
ge(J +

1)e-iHe(J+1)t21R1
eg(J)eiHg(J)t31|V(J)〉 (55)

|δ5(V,J)〉 ) eiφ4(ω′
L)R4

fg(J - 2)e-iHg(J-2)t42P2
ge(J -

1)e-iHe(J-1)t21P1
eg(J)eiHg(J)t31|V(J)〉 (56)

|δ6(V,J)〉 ) eiφ4(ω′
L)P4

fg(J)e-iHg(J)t42R2
ge(J -

1)e-iHe(J-1)t21P1
eg(J)eiHg(J)t31|V(J)〉 (57)

|δ7(V,J)〉 ) eiφ4(ω′
L)P4

fg(J)e-iHg(J)t42P2
ge(J +

1)e-iHe(J+1)t21R1
eg(J)eiHg(J)t31|V(J)〉 (58)

〈ref421(V,J,M)|tar3(V,J,M)〉 ) qM(J+1,J)〈δ2(V,J)|ø+(V,J)〉 +
qM(J+1,J+1)〈δ3(V,J)|ø+(V,J)〉 +
qM(J+2,J+1)〈δ4(V,J)|ø+(V,J)〉 +

qM(J,J-1)〈δ5(V,J)|ø-(V,J)〉 + qM(J,J)〈δ6(V,J)|ø-(V,J)〉 +
qM(J+1,J)〈δ7(V,J)|ø-(V,J)〉 (59)

qM(J1,J2) ) c(J1,M)2c(J2,M)2 (60)

Ha ) - 1
2µR

∂
2

∂R2
R + J2

2µR2
+ Ua(R) (41)

|na(V,J,M)〉 ) |V(J)〉|J,M〉 (42)

Ha(J) ) 〈J,M|Ha|J,M〉 )

- 1
2µR

∂
2

∂R2
R +

J(J + 1)

2µR2
+ Ua(R) (43)

〈J′,M′|Pj
ba|J,M〉 )

i
2∫-∞

∞
dτAj(τ)e-iΦj(τ)eiHb(J′)τ〈J′,M′|µba‚ej|J,M〉e-iHa(J)τ (44)

〈J′,M′|µba‚ej|J,M〉 ) µba(R)〈J′,M′|cosθ|J,M〉 (45)

) µba(R)δM′,M[c(J + 1,M)δJ′,J+1 +
c(J,M)δJ′,J-1]

〈J′,M′|Pj
ba|J,M〉 ) c(J + 1,M)Rj

ba(J)δJ′,J+1δM′,M +

c(J,M)Pj
ba(J)δJ′,J-1δM′,M (46)

Rj
ba(J) ) i

2∫-∞

∞
dτAj(τ)e-iΦj(τ)eiHb(J+1)τµba(R)e-iHa(J)τ (47)

Pj
ba(J) ) i

2∫-∞

∞
dτAj(τ)e-iΦj(τ)eiHb(J-1)τµba(R)e-iHa(J)τ (48)

|tar3(V,J,M)〉 ) c(J + 1,M)|ø+(V,J)〉|J + 1,M〉 +
c(J,M)|ø-(V,J)〉|J - 1,M〉 (49)

|ø+(V,J)〉 ) ei(φ3(ω′
L)+ω′

Lt43)e-iHf(J+1)t43R3
fg(J)|V(J)〉 (50)
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The quadrilinear overlap (59) is the desired nonlinear WPI signal
from a pure (V,J,M) initial state. Even at the low temperatures
common to molecular beams, multiple rotational levels are
ordinarily populated, and we must sum over contributions from
thermally occupied (J,M) states to obtain the measured signal.
Initial states with the sameV and J make an aggregate
contribution

The effective vibrational reference packets appearing in eq 61
are defined by

and

where59

For the general case of a homonuclear diatomic molecule at
thermal equilibrium, we can obtain the interference signal as a
Boltzmann-weighted sum over eq 61

HerewVJ ) gJ(I)e-âEg(V,J)/Z, â ) 1/kT, andgJ(I) is a degeneracy
factor dependent on the nuclear spinI.60

V. Li 2

To test our reconstruction method, we calculate the nonlinear
WPI signal for the lithium dimer and demonstrate the direct
determination of a rovibrational target state from this signal.
Accurate ab initio potentials for the X(1Σg

+), A(1Σu
+), and

E(1Σg
+) electronic levels46 are shown in Figure 3. At large

internuclear distances, the E-state potential exhibits a shelf
region where the spacing between vibrational and rotational
energy levels can become similar in size. Even at the slightly
smaller range of distances traversed by our target wave packet,
vibration-rotation coupling significantly influences the dynam-
ics. Since rotational and vibrational motion cannot be separated,
the dynamics of the target wave packet that we seek to
reconstruct is genuinely multidimensional, rather than being
describable as a product of independent rotations and vibrations.

In our calculations, the initial states are the (VA ) 8, JA )
18,MA) eigenstates of the A electronic level, whose vibrational
component is shown in Figure 3. Leone and co-workers have
used such “launch states” as precursors for time-dependent wave
packet studies.47-51 In those experiments, a continuous-wave
laser excites a selected Ar X rovibronic transition to populate

a launch state, and a subsequent (shaped) ultrashort laser pulse
excites a rovibrational wave packet on the E-state potential
curve.

We choose the center frequency of the first (second) pulse
pair to selectively excite electronic transitions at the inner (outer)
turning point of the launch state. Thejth field has amplitude
Aj(t) ) Aj exp(-t2/2σj

2) and phaseΦj(t) ) Φj + Ωjt. The first
pulse pair has carrier frequencyΩ1,2 ) 2πc(15384 cm-1),
resonant with AT X at 2.56 Å. Withσ1,2 ) 10.00 fs, the full
width at half-maximum (fwhm) of the temporal envelope is
23.55 fs (spectral bandwidth 2πc (1250 cm-1) fwhm in the
amplitude). The second pulse pair hasΩ3,4 ) 2πc (12738 cm-1),
which is resonant with Er A at 4.09 Å. The third pulse is of
durationσ3 ) 15.62 fs (36.78 fs temporal amplitude fwhm, 2πc
(800.3 cm-1) spectral amplitude fwhm). We use a shorter fourth
pulse, withσ4 ) 6.01 fs (14.15 fs temporal amplitude fwhm,
2πc (2080 cm-1) spectral amplitude fwhm). Figure 4 uses the

∑
M)-J

J

〈ref421(V,J,M)|tar3(V,J,M)〉 ) 〈δ + (V,J)|ø+(V,J)〉 +

〈δ-(V,J)|ø-(V,J)〉 (61)

|δ+(V,J)〉 ) bJ(J+1,J)|δ2〉 + bJ(J+1,J+1)|δ3〉 +
bJ(J+2,J+1)|δ4〉 (62)

|δ-(V,J)〉 ) bJ(J,J-1)|δ5〉 + bJ(J,J)|δ6〉 + bJ(J+1,J)|δ7〉
(63)

bJ(J1,J2) ) ∑
M)-J

J

qM(J1,J2) )
1

(4J1
2 - 1)(4J2

2 - 1)
×

[J1
2J2

2(2J + 1) - (J1
2 + J2

2)
J

3
(J + 1)(2J + 1) +

J

15
(J + 1)(2J + 1)(3J2 + 3J - 1)] (64)

zm ) ∑
V

∑
J

wVJ[〈δ+(V,J)|ø+(V,J)〉 + 〈δ-(V,J)|ø-(V,J)〉] (65)

Figure 3. X, A, and E potential energy curves of Li2, interpolated
from the data of ref 46. In our calculations, the initial states are the (VA

) 8, JA ) 18, MA) nuclear eigenstates of the A electronic level. The
radial component of the launch states is plotted asR〈R|VA(JA)〉 and
vertically displaced by its eigenenergy. Vertical arrows at the inner
and outer turning points indicate the electronic transitions driven by
the first (red) and second (blue) pulse pairs, respectively.

Figure 4. Spatial ranges of electronic resonance for pulses 1, 2, and
3. The A minus X (solid blue line) and E minus A (solid red line)
difference potentials are plotted, along withR〈R|VA(JA)〉 (solid black
line). Members of the first pulse-pair resonate with the Ar X
difference potential from 2.4 to 2.7 Å, near the inner turning point of
the launch state as denoted by the dashed (blue) lines. The third pulse,
which prepares the target wave packet, is resonant with Er A from
3.8 to 4.2 Å, near the launch state’s outer turning point as denoted by
the dashed (red) lines. The fourth pulse is shorter than the third and
has a correspondingly broader range of resonance due to its increased
spectral bandwidth (see text). Solid vertical lines indicate the equilibrium
positionsRX, RE, andRA.
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reflection principle to identify the spatial range of resonance
for pulses 1, 2, and 3.

In section II, the initial electronic level g was assumed to be
lower in energy than the intermediate and final levels, e and f.
In the case of Li2, the initial level A is of higher energy than
the “intermediate” X level. This difference in the ordering of
the electronic levels changes the phase factor accompanying
the three-pulse wave packet|(421)E〉 in eq 14 from exp(iφ -
iφ′) to exp(-iφ - iφ′). The change occurs because the first pulse
now drives a downward transition and the second drives an
upward transition, rather than vice versa. The factor accompany-
ing |(321)E〉 also changes, from exp(iφ) to exp(-iφ), while the
exp(-iφ′) accompanying|(4)E〉 is unchanged. The desired
quadrilinear overlap

therefore remains isolable by phase cycling, according to the
prescription (26), as it is the only contribution to the E-state
population with exp(-iφ - iφ′) as its phase signature. The
isolated overlap (66) can be rewritten in terms of target and
reference states whose definitions are independent of the
uncontrolled absolute optical phase, as in eq 29. From eq 30
the target wave packet is given by

while from eq 31 the reference states are

The wave packets were propagated using theJ-dependent
vibrational Hamiltonians (43), with X, A, and E potential energy
curves obtained by numerically interpolating the ab initio data
of Schmidt-Mink et al.46 We used a spatial grid of 256 equally
spaced points from 0.1 to 9.0 Å to calculate the wave packets
(50), (51), (62), and (63) contributing on the right hand side of
eq 61. Propagation was carried out using a split-operator
approximation to the time-evolution operator with a time step
of 0.01 fs.55

The pulse propagators (47) and (48) were also calculated in
the discrete position basis. Time integration was approximated
as a sum over the range of nonnegligible field amplitude with
a ∆τ ) 0.01 fs time increment. The time-evolution operators
in the integrand were calculated using the split-operator ap-
proximation, with the free-particle portion expanded through
order∆τ12 and the kinetic energy operator approximated as a
second-order finite difference. The transition dipole moment
functions were obtained by interpolating the data of ref 46 within
the range 1.72-9 Å. The grid used for wave packet propagation
extended beyond these limits, but owing to the finite bandwidth
of the pulses, the pulse propagators transfer amplitude only
within this more limited spatial range.

We choset43 ) 18.84 ps for the target-defining delay,
approximately 100 vibrational periods in the E state. After this
lengthy propagation, the magnitude of the overlap between the
JA ( 1 target vibrational wave packets decays to 3.4% (from
an initial value differing very slightly from unity due to the
small difference in pulse propagators). As shown in Figure 5,
both components of the target occupy the same spatial region,
but their phases have opposite slopes, indicating that theJA +

1 wave packet is traveling to the right and theJA - 1 wave
packet is traveling to the left. Wigner distribution functions for
the target-state components are shown superimposed on phase-
space energy contours for E-state motion in Figure 6. Both
Wigner plots are far from Gaussian and have both positive and
negative regions, in keeping with the highly nonclassical nature
of the target components.

Reference states were calculated fort21 and t32 between 0
and 600 fs at intervals of 4 fs (for a total of 150× 150) 22500
signal points). The calculated reference-state components at
given t21 and t32, |δ+(VA,JA)〉 and |δ-(VA,JA)〉, were stored
together in a row of the reference matrix. To compensate for
overweighting of theJA + 1 component of the reference state
due to rotational selection rules,|δ-(VA,JA)〉 was multiplied by
the scaling factor,aJA, where

bJ(J1,J2) is defined in eq 64. The|ø-(VA,JA)〉 component of the
calculated target state was multiplied by a canceling factor,aJ

-1

(the signal must remain unchanged), and theJA - 1 component
of the reconstructed target state was corrected by removing the
same unwanted factor. This procedure is an approximate means
of balancing the reference and target states so that in both sets
of states the ratio of norms of theJA + 1 andJA - 1 components
is about the same. IntroducingaJ boosts reconstruction accuracy,
particularly for small values ofJ. In our calculations,JA ) 18,
and introducing the balancing factor,a18 ) 1.0274, has a small
favorable effect on the fidelity of reconstruction. It is important
to emphasize that the value ofaJ was chosen on the basis of
rotational selection rules alone; no use was made of dynamical
information specific to the preparation or propagation of the
target wave packet on the E-state surface of Li2.

The nonlinear WPI signal is generated by applying the
calculated reference matrix to the calculated target vector. Figure

〈(421)E|(3)E〉 ) p-1,-1 (66)

|tar3(VA,JA,MA)〉 )

eiφ3(ω′
L)+iω′

Lt43e-iHEt43P3
EA|VA(JA)〉|JA,MA〉 (67)

|ref421(VA,JA,MA)〉 )

eiφ4(ω′
L)P4

EAe-iHAt42P2
AXe-iHXt21P1

XAeiHAt31|VA(JA)〉|JA,MA〉
(68)

Figure 5. Amplitude (solid line) and phase (dashed line) of the target-
state vibrational components after 18.84 ps of E-state propagation. The
slope of the quantum mechanical phase function indicates that theJA

+ 1 (JA - 1) wave packet is traveling to the right (left).

aJ ) (bJ(J+1,J) + bJ(J+1,J+1) + bJ(J+2,J+1)

bJ(J,J-1) + bJ(J,J) + bJ(J+1,J) )1/2

(69)
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7 plots the real and imaginary components of the resulting
interferogram as a function oft21 andt32. Both constructive and
destructive wave packet interference effects are manifested in
the presence of positive and negative regions in the interfero-
gram. The interferogram is quasi-periodic along botht21 and
t32 axes. At fixedt32, the signal peaks roughly every 95 fs along
t21, which agrees with the vibrational period in the X state. This
feature arises from the wave packets in the X level moving in
and out of the spatial window defined by the bandwidth of the
second pulse, as illustrated in Figure 4. The interferogram has
a periodicity of 140 fs alongt32, corresponding with the period
of motion in state A. A double peak consisting of two subpeaks
separated by 44 fs appears with this period. The two subpeaks
signal separate maxima in the magnitudes of〈δ+|ø+〉 and
〈δ-|ø-〉, whose sum constitutes the interference signal. The
spacing between the subpeaks corresponds to the time needed

for a reference wave packet on the A surface to travel from the
phase-space point of theJA + 1 target-state component to that
of the JA - 1 component (see Figure 6). Thus, the temporal
separation of these subpeaks directly reflects the influence of
rotation-vibration coupling on the dynamics of the target state.

Reconstruction of the target state is carried out according to
the procedure of section III. We carried out this procedure with
a range of tolerance values to determine the optimal tolerance
for reconstruction and found that unit fidelity is always
achievable from a noise-free interferogram provided a suf-
ficiently small tolerance (∼10-10) is employed. To provide a
more realistic test of the reconstruction technique, we applied
5% uncorrelated Gaussian noise to the interferogram. The
resulting reconstructed state is plotted along with the target state
in Figure 8.

The reconstructed state agrees very well with the target,
reproducing it with fidelity 0.9980 (using a tolerance of 0.0417)
despite the presence of 5% noise in the signal. Although the

Figure 6. Wigner representations of the target-state vibrational
components overlaid on isoenergy contours of the E electronic surface.
The upper panel represents theJA + 1 component of the target state,
and the lower panel represents theJA - 1 component. Energy contours
are separated by 1000 cm-1. Note that the average position of the two
wave packets is similar but that they have opposite directions of motion.
The differences between the two vibrational components result from
vibration-rotation coupling and underline the genuine multidimen-
sionality of the dynamics. The delocalized and non-Gaussian form of
the Wigner distribution functions, with both positive (solid blue lines)
and negative (dashed red lines) regions, illustrates the nonclassical
nature of the vibrational states.

Figure 7. Real (upper panel) and imaginary (lower panel) components
of the calculated interferogram for the lithium dimer as a function of
the interpulse pulse delayst21 and t32 with fixed t43 ) 18.84 ps. Both
positive (solid red lines) and negative (dashed blue lines) contours are
separated by1/10th of the maximum signal. The periodicity along each
time axis reflects the periodic changes in the overlap of the variable
reference state with the fixed target state shown in Figures 5 and 6.
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phase structure of the reconstructed components is nearly perfect
over the full spatial range of the wave packets, small errors in
the amplitude are discernible, mostly at internuclear distances
greater than about 4.0 Å. These amplitude deviations are
attributable to the paucity of reference-state amplitude at large
internuclear distance, due to the fact that the A-state potential
has a more strongly attractive outer wall than the E state, which
limits the outer range of motion of the reference wave packets.
It is a consequence of the added signal noise that the optimal
tolerance is larger than that in the noiseless case. This behavior
is expected, since retaining small singular values in the presence
of signal noise leads to a distortion of the reconstructed state in
a futile attempt to reproduce noise having nothing to do with
the actual target state.

A feature distinguishing nonlinear WPI from linear WPI is
its capacity in principle to reconstruct a target wave packet even
in the absence of complete information about the f-state nuclear
Hamiltonian. Prior to the fourth pulse, the reference wave packet
propagates only on the lower-lying g and e surfaces; although
the fourth-pulse propagator,P4

fg, depends formally uponHf,
this dependence can be suppressed by the brevity of the fourth
pulse, which carries out the last step taken in preparing each
reference state. With a sufficiently brief pulse 4, a crude
approximation to the f-state potential can be sufficient for the
calculation ofP4

fg.45 For the lithium dimer, we investigate wave
packet reconstruction using a propagator for pulse 4 calculated
by assuming a constant E-A difference potential equal to 2πc
(13345 cm-1), the energy difference between the minima of
the actual potentials. A pseudoinverse of the reference matrix
calculated under this approximation is applied to the rigorously
calculated signal in Figure 7 with 5% Gaussian noise added.
The resulting reconstructed state, shown in Figure 9, has fidelity
0.9907 for a 0.0511 tolerance. Reconstruction of the spatial

dependence of the target packet’s phase remains very accurate,
while the reconstructed amplitude shows some additional
inaccuracy compared to the results obtained using the pseudo-
inverse of the rigorous reference matrix (compare Figure 9 to
Figure 8). The reconstructed state overestimates the target-state
amplitude where the reference-state amplitude is underestimated
by the approximateP4

fg and vice versa.
The fact that the∼10% errors in the amplitude of the

reconstructed wave packets visible in Figure 9 lead to only a
∼1% loss in fidelity may seem perplexing at first sight and
deserves explanation. The resolution of this apparent conflict
lies in the near-perfect reconstruction of the phase function
shown in the same figure. Consider normalized target and
reconstructed wave packets,ψtar(x) ) R(x) exp{iθ(x)} and
ψrec(x) ) [R(x) + δ(x)] exp{iθ(x)}, respectively, with different
amplitudes but the same spatial phase functions. Since both wave
packets are normalized, it follows that∫ dxRδ ) -1/2 ∫ dxδ2.
As a result, the amplitude errorδ(x) affects the fidelity only in
second order: f ) ∫ dxψtar*ψrec ) 1 + ∫ dxRδ ) 1 - (1/2) ∫
dxδ2.

In the preceding examples of state reconstruction, our
calculations of the fourth pulse propagator have relied on the
actual dipole moment function for the Er A electronic
transition, a strongly coordinate-dependent function shown in
Figure 10. But for many moleculessand especially for transi-
tions involving at least one high-lying statessuch detailed
information is unavailable. We wish to investigate the extent
to which reconstruction can be performed successfully using
an approximate Er A transition dipole function in calculating
the pseudoinverse of the reference matrix. Assuming a linear
form for µEA(R), we expand the transition dipole about the
A-state equilibrium position. The resulting approximation is
compared with the actual dipole function in Figure 10. With
this linear approximation and the actual difference potential,
we obtained a reconstructed state (not shown) of fidelity 0.9951

Figure 8. The amplitude (solid lines) and phase (dashed lines) of the
JA + 1 and JA - 1 components of the target (red fine lines) and
reconstructed (blue bold lines) wave packets. The left vertical axis
measures amplitude, and the right vertical axis measures phase. The
reconstructed state was obtained using the calculated interferogram of
Figure 7 with 5% Gaussian noise added. The fidelity is 0.9983 with a
tolerance of 0.0417.

Figure 9. Same as Figure 8 except that approximate reference states
calculated by assuming a constant difference potential between the A
and E electronic levels are used in the reconstruction procedure. The
resulting fidelity is 0.9907 with a tolerance of 0.0511.
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(with tolerance 0.0474). This reconstruction is almost as accurate
as that obtained with the actual dipole moment function.

We also carried out state reconstruction by combining the
linear approximation to the transition dipole moment function
with the constant approximation to the Er A difference
potential. As shown in Figure 11, from the rigorously calculated
signal with 5% noise and the pseudoinverse of the doubly
approximated reference matrix, we obtained a reconstructed state
with fidelity 0.9831 (for a tolerance of 0.0602). Not surprisingly,
this crudest approximation resulted in the lowest fidelity. But
this reconstruction based on very rudimentary information about
the potential function and transition-dipole moment function
involving the final electronic state nonetheless yielded quite

accurate wave packet components capturing the distinguishing
features of the target state.

VI. Concluding Discussion

With rigorously calculated interferograms from a spectro-
scopically and theoretically well-characterized diatomic mol-
ecule, we have shown that two-color nonlinear WPI data will
enable the direct reconstruction of time-evolved nuclear wave
packets. The recovered dynamics is authentically multidimen-
sional, as significant rotation-vibration couple precludes the
separation of these degrees of freedom in the target E-state wave
packet of Li2.

Our results further predict that determination of the target
wave packet with high fidelity can be achieved using only
rudimentary information about the transition dipole moment
function governing its preparation and the electronic potential
curve on which it evolves. This feature supports the suggestion
that nonlinear WPI holds promise as a tool for characterizing
shaped nuclear wave packets generated on less-than-fully-
characterized potential surfaces in quantum control experiments
based on adaptive pulse shaping.

The proposed two-color nonlinear WPI experiments are a
logical extension of earlier linear WPI experiments by Scherer
and co-workers24,25 and of our theoretical work on one-color
nonlinear WPI.39,41,43 In each case, the isolated interference
signal is a time-dependent overlap between nuclear wave packets
revealing amplitude-level information about their dynamics. We
described nonlinear WPI signals generated with collinear phase-
locked pulse pairs, detected by fluorescence (or some other
action variable, such as photoionization or photodissociation,
proportional to the population of a final electronic state) and
isolated by optical phase cycling. But the proposed measure-
ments could also be carried out using arrangements common
to other existing applications of MDES.1-15 Such measurements
often use incident pulses in a noncollinear geometry and signal
isolation by wave-vector matching. In those experiments, a third-
order signal field carrying a record of third-order electronic
coherence is heterodyne-detected by interference with an
external local oscillator. In nonlinear WPI as described here,
the relevant third-order coherence is converted into a fourth-
order excited-state population by an internal local-oscillator
pulse. Information obtained by both detection procedures is
therefore essentially similar, but not strictly identical.61 In
contrast to wave-vector-matching methods, population detection
by phase cycling is applicable in principle to nonextended
samples such as single molecules or cells, and to turbid or
optically dense media.

In many current applications of phase-sensitive MDES,
interpulse delays and phase shifts are determined by spectral
interferometry and may be passively maintained or prescribed
by a diffractive-optics setup. The measurements required for
wave packet reconstruction from nl-WPI data could be carried
out using any of these arrangements. New techniques with
specific advantages continue to be developed. A method of
acousto-optical phase modulation, recently demonstrated by
Tekavec and Marcus, deserves specific mention. Their approach
to phase-sensitive electronic spectroscopy features both high
sensitivity and a high signal-to-noise ratio.62

Although other multidimensional spectroscopies typically
represent the signal in the frequency domain, our application
of nonlinear WPI is most naturally formulated in a time-domain
description. This approach facilitates interpretation of the
interferogram in terms of wave packet overlaps, for example
by using phase-space diagrams.39,42,43The time-domain repre-

Figure 10. The actual Er A transition dipole moment function (solid
black line) and a linear approximation to it (dashed red line) given by
µEA + µ′EA(R - RA). The constantsµEA ) - 1.798 D andµ′EA )
-1.9811 D/Å are the value and slope of the transition dipole at the
A-state equilibrium position,RA ) 3.09 Å. In the important region
between 2.5 and 5 Å, where the target-state amplitude is nonnegligible
(see Figure 5), the mean relative error is 8%.

Figure 11. Same as Figure 8 but carrying out the reconstruction
procedure with approximate reference states calculated by assuming
both a constant difference potential between the A and E electronic
levels and the linear approximation to the Er A transition dipole
moment function shown in Figure 10. The fidelity is 0.9831 with a
tolerance of 0.0602.
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sentation of the interferogram is also convenient for state
reconstruction, as each signal point goes along with a single
reference state specified by two interpulse delays.

Signal isolation by phase cycling, as summarized by eq 26,
is familiar from NMR63 and has recently been employed in
ultrafast optical experiments by Warren and co-workers.6 In that
work, a phase-coherent pulse-pair produced a nonlinear polar-
ization in an atomic system, and a delayed pulse converted the
relevant portion of that polarization into an excited-state
population. By varying the relative phases among these three
pulses, Tian et al. used combinations of population measure-
ments to isolate the photon echo signal, for example. A
rudimentary application of optical phase cycling was made some
time ago in the context of linear WPI.25

Neither the general treatment of nonlinear WPI in section II
nor the molecular state reconstruction scheme in section III is
specific to diatomic molecules. Some consideration has already
been given to interference measurements of this kind in
polyatomic molecules.39 A recent theoretical study of inter-
molecular energy transfer42 found that nonlinear WPI with
polarized fields can provide amplitude-level information on the
short-time vibrational dynamics accompanying and influencing
coherent excitation transport.

Phase-sensitive fourth-order optical spectroscopies share the
common feature that the molecular response is effectively
linearized with respect to the incoming fields by detecting one
or more quadrilinear signal components. The signal is therefore
sensitive to quantum mechanical probability amplitudes rather
than merely to probability densities. These measurements are
sensitivein first order to the nuclear Hamiltonian that generates
time evolution. Rearranging the time-dependent Schro¨dinger
equation as

indicates how target states reconstructed from nonlinear WPI
signals at a sequence oft43 values (together with finite-difference
approximations for the kinetic energy operator and the time
derivative) should enable direct reconstruction of the potential
energy surfaceV(x) along which wave packet motion proceeds.
Preliminary calculations suggest that this means of excited-state
potential determination could become a useful application of
three-dimensional electronic spectroscopy.64
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Appendix

We can simplify the general expression (13) for the f-state
amplitude by making use of the pulses’ finite spectral bandwidth.
Equations 3-5 and 12 allow the first-order operation of thejth

pulse to be written as

In arriving at the last member of eq A1, we made the rotating
wave approximation and applied the definition (17) of the pulse
propagator matrix elements for an upward electronic transition.

Denoting as|na〉 an eigenstate ofHa with energyEa(na) and
referring to eq 6, we see that the individual vibronic elements
of the first-order pulse propagator are proportional to Fourier
components of thejth pulse

As a result of eq A2 and the finite bandwidths, only pulses 3
and 4 can generate f-state amplitude.

Because none of the pulses is resonant with the fr e
electronic transition, the process fr e r g cannot occur, and
the second-order term in eq 13 makes no contribution to the
f-state amplitude. Several third-order excitations can contribute
though. The first arises from a member of the second pulse pair
(j ) 3 or 4) driving the sequence of transitions fr g r f r g

where electronic elements of the third-order pulse propagator
are defined by

Both members of the second pulse-pair can work together to
traverse the same fr g r f r g sequence. As we are assuming
t4 > t3 and neglecting effects due to pulse overlap, the relevant
operators are

with

and

with

V(x) ) 1
ψ(x,t)[i ∂

∂t
- p2

2µ]ψ(x,t)

-i ∫-∞

∞
dτ 〈f|Ṽj(τ)|g〉 ) i ∫-∞

∞
dτAj(τ - tj) cosΦj(τ -

tj)e
iHf(τ-t3)µfg‚ej e-iHg(τ-t3) = eiHftj3Pj

fge-iHgtj3 (A1)

〈nf|Pj
fg|ng〉 ) i

2
〈nf|µfg‚ej|ng〉 ∫-∞

∞
dτAj(τ) ×
e-iΦj(τ)eiEf(nf)τe-iEg(ng)τ (A2)

) i〈nf|µfg‚ej|ng〉Rj(Ef(nf) - Eg(ng))e
-iφj(Ef(nf)-Eg(ng))

i ∫-∞

∞
dτ ∫-∞

τ
dτ′ ∫-∞

τ′
dτ′′〈f|Ṽj(τ)|g〉〈g|Ṽj(τ′)|f〉〈f|Ṽj(τ′′)|g〉 )

eiHftj3Rj
fge-iHgtj3 (A3)

Rj
fg ) -i

8 ∫-∞

∞
dτ ∫-∞

τ
dτ′ ∫-∞

τ′
dτ′′Aj(τ)Aj(τ′)Aj(τ′′)

e-iΦj(τ)+iΦj(τ′)-iΦj(τ′′)eiHfτµfg‚eje
-iHg(τ-τ′)µgf‚eje

-iHf(τ′-τ′′)

µfg‚eje
-iHgτ′′ (A4)

i ∫-∞

∞
dτ ∫-∞

τ
dτ′ ∫-∞

τ′
dτ′′〈f|Ṽ4(τ)|g〉〈g|Ṽ3(τ′)|f〉 ×

〈f|Ṽ3(τ′′)|g〉 ) eiHft43P4
fge-iHgt43Q3

gg (A5)

Q3
gg ) - 1

4∫-∞

∞
dτ′ ∫-∞

τ′
dτ′′A3(τ′)A3(τ′′)

eiΦ3(τ′)-iΦ3(τ′′)eiHgτ′µgf‚e3e
-iHf(τ′-τ′′)µfg‚e3e

-iHgτ′′ (A6)

i ∫-∞

∞
dτ ∫-∞

τ
dτ′ ∫-∞

τ′
dτ′′〈f|Ṽ4(τ)|g〉〈g|Ṽ4(τ′)|f〉 ×

〈f|Ṽ3(τ′′)|g〉 ) eiHft43Q4
ffe-iHft43P3

fg (A7)

Q4
ff ) - 1

4∫-∞

∞
dτ∫-∞

τ
dτ′A4(τ)A4(τ′)e-iΦ4(τ)+iΦ4(τ′)

eiHfτµfg‚e4e
-iHg(τ-τ′)µgf‚e4e

-iHfτ′ (A8)

L J. Phys. Chem. B Humble and Cina



Another third-order route to f-state amplitude is for a single
member of the first pulse pair and a member of the second to
drive the sequence fr g r e r g. With j ) 3, 4 andk ) 1,
2, these transitions are effected by

whereQk
gg is defined as in eq A6. Alternatively, both members

of the first pulse pair can combine with a single pulse from the
second pair to drive the same sequence

wherej ) 3,4

Now we can evaluate the final-state amplitude. Multiplying
eq 13 by exp{-iHf(t - t3)} ) exp{-iHf(t - t4)} exp{-iHft43}
to revert to the Schro¨dinger picture, and making use of eqs A3,
A5, A7, A9, and A10, we get

This expression provides explicit definitions for the 12 terms
in eq 14 of section II.
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