
Spatio-Temporal Signal Twice-Whitening Algorithms

on the hx3100™ Ultra-Low Power Multicore Processor

T. S. Humble, P. Mitra, and J. Barhen

Computer Science and Mathematics Division

Oak Ridge National Laboratory

Oak Ridge, Tennessee, United States of America

humblets@ornl.gov

B. Schleck

Coherent Logix, Incorporated

Austin, Texas, United States of America

J. Polcari

Science Applications International Corporation

Washington DC, United States of America

M. Traweek

Maritime Sensing Branch

Office of Naval Research

Arlington, Virginia, United States of America

Abstract—While modern signal detection theory fully accounts

for spatially distributed sensors, exploiting these techniques for

real-time sensing using large, underwater acoustic arrays

requires advances in the spatio-temporal signal processing

algorithms. In particular, the computational complexity of

many spatio-temporal processing techniques is so large that

conventional computer processors lack sufficient throughput to

provide real-time processing of large spatio-temporal data sets.

These limits are exacerbated when constraints, such as power

consumption or footprint, reduce the available computational

resources. In this report, we demonstrate an implementation of

a signal twice-whitening algorithm that is better suited for

processing spatio-temporal data in real time. We emphasize

these advances by implementing data whitening on the

Coherent Logix hx3100

processor, a programmable multicore

processor intended for low-power and high-throughput signal

processing. These results serve as an example of how the novel

capabilities available from emerging multicore processor

platforms can provide real-time, software-defined processing

of large data sets acquired by spatially distributed sensing.

sensor array processing; data whitening; multicore

processors; spatio-temporal detection theory

 I. INTRODUCTION

Underwater sensor arrays offer opportunities for the
spatio-temporal discrimination of acoustic signals, e.g., when
coupled with beamforming or adaptive processing
techniques. The latter capability proves useful for the
detection and tracking of underwater targets in noisy
environments, where the phase-coherent, weighted addition
of independent signals enables greater sensitivity to source
locations. The number of sensing elements, or sensor
channels, and their corresponding geometry are important
factors in beamformer design, and the ultimate spatio-
temporal solution will necessarily vary with geometry.
Indeed, for mobile or configurable arrays, the ability to adapt
the beamforming strategy according to the array geometry
represents a fundamental step, e.g., toward optimal detection
of a moving target [1].

In general, spatio-temporal processing techniques are
computationally costly because of the large size of the
collected data as well as the complexity of the underlying
algorithms. The computational challenges only increase
when constraints on the time-to-solution or the available
computational power are imposed. A typical approach to
enable fast and power efficient computation employs
dedicated digital signal processing hardware, e.g., ASICs and
FPGAs, hardcoded for a given signal processing strategy.
These approaches, however, can necessitate long and costly
development time and, therefore, there is an interest in
alternative, software-defined techniques that would have
faster development times.

One significant challenge to the development of
software-defined processing has been that the throughput and
energy efficiency of general-purpose processors do not
compare well with ASIC or FPGA solutions. Recently,
however, a shift in processor design to various multicore
architectures have enabled a variety of emerging multicore
processors to approach the raw performance and power
consumption goals required for high throughput, power-
efficient signal processing. Consequently, an outstanding
question is whether conventional spatio-temporal processing
algorithms can be implemented efficiency on these emerging
processor platforms and subsequently utilized as for the real-
time processing.

In this paper, we report the implementation of a spatio-
temporal twice-whitening algorithm on an ultra-low-power,
programmable multicore processor [1], [2]. Twice whitening
is a means of decorrelating white noise components in an
observed data set. By whitening the observed data with
respect to the observed noise, the relevant signal can be
decorrelated from the background environment, e.g., prior to
signal detection. Whitening arises frequently within the
context of independent component analysis for blind signal
separation as well as in matched-filter detection strategies.
Spatio-temporal twice-whitening refers to decorrelating the
temporal noise in signals obtained, e.g., from large, spatially
disperse, array sensors. As it is computationally demanding
to perform twice whitening of large, arbitrary data sets on

978-1-4244-5222-4/10/$26.00 ©2010 IEEE

general-purpose processors, we demonstrate a reformulation
of spatio-temporal twice whitening that reduces the
computational complexity many orders of magnitude by
exploiting the spatial structuring of the array data.

More important, we demonstrate that twice-whitening
can be implemented on a Coherent Logix ultra-low-power
processor [3]. Notably, the hx3100 processor is capable of a
peak power efficiency of 16 GFLOPS/W and a peak
performance of 25 GFLOPS. The results of this work
support the prospect that future multicore processors will be
capable of implementing fully software-defined acoustic
signal processing techniques in the backend of a sensing
array.

In Sec. II, the novel formulation of spatio-temporal twice
whitening is presented, while Sec. III introduces the hx3100
processor and describes its key features. The implementation
of twice-whitening on the hx3100 processor is presented in
Sec. IV and a summary of the observed performance is
provided in Sec. V. In Sec. VI, we discuss the implications
of these results and offer final conclusions.

 II. SPATIO-TEMPORAL TWICE WHITENING

Consider a collection of Ne acoustic channels having
some associated spatial distribution. In addition, assume each
sensor channel collects Nt complex-valued samples with the
output defined in the temporal domain. This yields a total of
N! = Ne " Nt samples for the array which is represented

collectively by the vector r. The vector r is constructed from
Ne ordered partitions, e.g., r

(i)
 represents data from the i

th

channel, such that

r =
r
(1)

M
r
(N

e
)

!

"
#

$

%
& . (1)

The i
th

 partition of samples r
(i)

 corresponds to either the sum
of a sought after signal and the associated noise, i.e.,

r
i() = s

i() +!
i()
, (2)

or to the absence of any signal and, therefore, only the
background noise. A fundamental goal of detection theory is
to discriminate between these two hypotheses [1].

Following Eq. (2), the spatio-temporal noise covariance
matrix for the array of Ne sensor channels is represented by

! =
! (1,1)

L !(1,N
e
)

M L M
!(N

e
,1)

L !(N
e
,N

e
)

"

#
$

%

&
' (3)

where

#(i,j) = $(i) $(j)† (4)

represents an Nt " Nt submatrix formed by the outer product

of the noise vectors for the i
th

 and j
th

 sensor channels.
Whitening of the signal vector r refers, mathematically, to

the application of the square-root inverse of #, i.e., z=#
-1/2

r.

Twice-whitening, i.e.,

x = #
–1

r (5)

forgoes the square root operation; this can prove sufficient,
for example, when computing statistical descriptions of the
signal where the whitening operation reduces mathematically

to effect of twice-whitening, e.g., z
†
z = r

†
#

-1
r.

As an example of the dimensions attributed to these
tensors, we note that for very large arrays the number of
acoustic channel may be on the order Ne ~ 10

3
. Assuming

each sensor collects Nt ~ 10
4
 samples, the resulting N! " N!

noise-covariance matrix # has on the order of 10
14

entries.

As noted above, constructing the inverse of # is essential in

the theory of the optimum receiver [1]. The computational
complexity of inversion scales as O(N!

3
), and, due to the

symmetric positive semi-definiteness of #, can often be

efficiently obtained by Cholesky decomposition [4].
However, even then, direct calculation of the twice-whitened
signal vector x is exceedingly expensive for very large
arrays.

To overcome the poor scaling associated with direct

computation of the inverse of #, we reformulate the data-

whitening algorithm to exploit the spatio-temporal
organization of array data. First, we limit consideration of
the noisy background to spatially diffuse noise that is wide-
sense stationary. This imposes the restriction that the

submatrices of # be Toeplitz and that the full matrix be

block Toeplitz. Consequently, due to the Hermitian form of
following Eq. (4), the noise covariance matrix exhibits the

block-diagonal structure illustrated in Fig. 1.

Figure 1. Block structure of the inter-channel covariance matrix # .

Symmetry arises from the condition of spatially diffuse noise sources. Note

that the diagram neglects differences due to conjugations, e.g., #(i,j) = #(i,j)†.

The Fourier transform reveals the block-digaonal submatrix %.

The spectral theorem yields the eigenvalues of each Nt "

Nt submatrix #
(i,j)

 with i, j = 1 to Ne, and the Fourier analysis

of the full covariance matrix # may be factored as

= F % F†, (6)

where % is an N! " N! band-diagonal matrix composed of

diagonal submatrices %
(i,j)

 representing the eigenvalues of the

corresponding noise covariance between channels i and j,
and F symbolizes the block-diagonal form of the discrete

Fourier transforms applied to each block. The resulting

structure of ! is illustrated in Fig. 1. Elements of the matrix

! then may be permuted to form a block-diagonal matrix

" = # ! #T, (7)

where # symbolizes the orthogonal permutation matrix and

the k
th

 block "
(kk)

 is Ne $ Ne for k = 1 to Nt. See Fig. 2.

Figure 2. Permutation of the band-diagonal matrix ! yields the block-

diagonal matrix ", where each diagonal block "(kk) is Ne $ Ne in size.

The inversion of % can now be recast as

%–1 = F # "–1 #T F
†
. (8)

The cost of computing the inverse of % from the inverse of "

is then reduced from O(N&
3
) to O(Nt Ne

3
), where the inversion

of the Nt submatrices of " each carry O(Ne
3
) cost. With

respect to the resource estimates cited at the beginning of
Sec. II, exploiting the spatial structure of the noise
covariance matrix reduces the overall complexity of
inversion by ~8 orders of magnitude.

Given the block-diagonal structure of " illustrated in Fig.

2, twice-whitening of the spatio-temporal data reduces to a
system of Nt uncoupled equations, i.e., for k = 1 to Nt

"(kk) y(k) = d(k), (9)

where y
(k)

 and d
(k)

 represent Ne $ 1 ordered partitions of the

transformed vectors

y = #T F† x (10)

and

d = #T F† r, (11)

respectively. Solutions to the latter equations are obtained to
recover the twice-whitened signal vector x. Denoting the

Cholesky decomposition of "
(kk)

 as

"(kk) = L(k) L(k)†, (12)

with L
(k)

 a lower triangular matrix, then the twice-whitened
partition y

(k)
 can be recovered from Eq. (9) by first solving

for the intermediate result b
(k)

, defined by

L(k) b(k)
 = d(k), (13)

using forward elimination, before solving the subsequent
equation

L(k)† y(k) = b(k). (14)

This result can then be permutated and inverse transformed
according to Eq. (10) in order to obtain the twice-whitened
signal vector x.

 III. HYPERX HX3100

A. HyperX Architectural Overview

The hx3100 processor is the latest entry in the HyperX
family of ultra low power, massively parallel processors
produced by Coherent Logix, Inc. The hx3100 processor is a
10-by-10 array of processing elements (PEs) embedded on
an 11-by-11 array of data management and routing units
(DMRs). At the typical system clock frequency of 500
MHz, the maximum chip-level throughput of for 16-bit
integer operations is 50 GMACS. For 32-bit floating-point
operations, 25 GFLOPS may be achieved. Alternatively,
when power consumption is prioritized, performance can be
measured as 32 16-bit GMACS/Watt or 16 32-bit
GFLOPS/Watt. This translates into energy consumption on
the order of 10 picoJoules (pJ) per instruction, and rivals that
of dedicated ASIC designs.

Figure 3. Layout of the Coherent Logix hx3100 processor, a 10-by-10

array of processing elements (PEs) inleaved by an 11-by-11 array of data

management and routing units (DMRs). An exapnded view of four PEs

surrounded by 9 DMRs demonstrates the degree of connectivity. HyperIO

references the input/output ports used by the hx3100 processor to
community with off-chip memory (DRAM) or other hx3100 processors.

The DMR network provides Direct Memory Access
(DMA) for the PEs to both on-chip and off-chip memory.
Each DMR has 8 kB of SRAM and operates at a read/write
cycle rate of 500 MHz, while the eight independent DMA
engines within a DMR may act in parallel. A PE directly
accesses data memory in four neighbouring DMRs, such
that 32 kB of data is addressable by any given PE. In
addition, when a subset of PEs shares direct access to the
same DMR, the associated memory space may act as shared
memory between PEs. This inter-connectedness between
cores and memory provides for a mixture of shared and
distributed memory hierarchies. Data movement is managed
by the programmer through a series of receive and send
calls.

Each DMR consists of 8 16-bit DMA engines that route
memory requests from neighbouring PEs and support
routing memory requests managed by other DMRs. In
addition to supporting on-chip DMAs, the DMRs handle
requests to off-chip memory, including the eight DDR2
DRAM ports. Other off-chip IO ports are also available,
including CMOS or LVDS interfaces. Moreover, the 24 IO
ports surrounding (six per side) the chip can be wired to
connect together multiple HyperX chips. In the latter
context, the size of the computational resource would
seamlessly scale with inter-chip routing handled by the
associated IO controllers.

B. Integrated Sofware Development Environment

Programming the HyperX entails writing an ANSI C
program, which defines the parallelism in the algorithm
through the use of the industry standard Message Passing
Interface (MPI) protocol.

The Coherent Logix software tools automatically assign
individual tasks to PEs, and create routing to support the
movement of data between PEs. Tasks may be both
parallelized and pipelined across multiple cores, while
DMAs are controlled explicitly in software. The latter steps
provide opportunities for designing the flow of program
execution such that resource constraints and programming
requirements are met.

C. Power Management

The current version of the HyperX architecture provides
the capability to power down quadrants of the PE grid that
are unneeded by a designed application. As a result,
programs can be optimized with respect to energy usage (of
the chip) as well as the computational speed and memory
bandwidth usage. Wake-up signals can be triggered by
external events, such that the processor may be shutdown
during period of computational idle time. These features,
i.e., the extensible multi-core architecture and economical
power consumption, suggest that the HyperX should be an
interesting candidate for low-powered signal processing
applications, such as long-range unmanned undersea
vehicles.

 IV. TWICE-WHITENING ON HX3100

The large number of individually programmable cores
and multiple IO ports in hx3100 benefit our implementation
of the twice-whitening algorithm discussed in Sec. II.
Labels for the hardware components are defined in Fig. 3.

A. Program Design

Our implementation of twice-whitening on the hx3100
organizes the algorithm into multiple programs occupying
multiple computational cores. Refer to Fig. 5 for the
location of the program described below. First, prior to any
data processing, simulated input data is loaded into off-chip
DRAM memory banks. Here, the data represents single-
precision, complex-valued signal vectors stored in sample-
consecutive order in DRAM 1. At runtime, the program
IOPE 1 fetches one input vector from DRAM 1 and copies
the data onto the chip via a series of 4 routing programs

labeled RPEs. The latter programs manage and synchronize
the input data for a complex-to-complex FFT program.

Upon completion of the FFT of one input vector, the
Router programs request IOPE 2 to store the transformed
data off-chip in DRAM 2. Storage of the intermediate
results is required to free on-chip memory for processing the
FFT of the next input vector. The copying process occurs
directly from the DMRs used by the FFT cores and, specific
to our algorithm, requires a substantial amount of
processing time. This overhead results from the use of a
write operation in which each complex-valued sample is
written to DRAM with a stride of Ne. The purpose of this
strided write operation is to perform the permutation

denoted by ! in Sec. II. A diagram illustrating this point is

shown in Fig. 4.

Figure 4. Illustration of the how input vectors are sequentially

transformed and then permutated using a sample-by-sample strided write to

DRAM. As a result, the vector d(k) read directly from DRAM can be
immediately used for the twice-whitening operation defined by Eq. (9).

Although this method of permutating the data requires a
nontrivial amount of the processing time, the cost per input
vector is independent of the stride size Ne. By comparison,
approaches that permutate the input vector on-chip should
be expected to have processing times that scale, at best,
linearly with Ne. Ultimately, such an approach would reach
a natural limit due to the finite size of on-chip memory.
Indeed, for the size of the simulated data set, cf. Sec. IIB,
this approach is not possible.

Once all Ne input vectors have been transformed and
written to DRAM 2, IOPE 2 changes state and begins to
fetch the permutated, length-Ne vectors that represent the
partitions d

(k)
 introduced in Eq. (11). Simultaneously, IOPE

3 fetches the corresponding, precomputed Cholesky
decomposition from DRAM 3. The latter is represented by
the Ne (Ne – 1) / 2 elements of the upper triangular, complex
valued matrix obtained by an offline decomposition of the

matrix "
(kk)

. Future versions of this program will implement

the Cholesky decomposition of each "
(kk)

 matrix alongside

the transformation and permutation of the signal vectors.
Both sets of data are moved to the DMRs of the Whitening
program. It is within this program that that forward
elimination (13) and back substitution (14) are used to solve
Eq. (9), both requiring O(Ne

2
) operations to complete. The

resulting output of this program is then written back to
DRAM 4 via IOPE 4. Again, a strided-write operation is
used, with the Ne components of the output spaced by Nt

positions, so that once all Nt solutions are obtained, DRAM
4 stores, in consecutive order, the Ne partitions of y defined
in Eq. (10). Ultimately, upon completion of the program,
this output is written to file for post-processing analysis.

 An important programming consideration for this
platform is the synchronization between individual cores to
ensure continuity and correctness of data movement. The 8
kB memory available from each DMR necessitates precise
accounting for the size, location, and timing of each data
segment. This inter-core communication is performed using
a proprietary API written for the C language. For example,
blocking variants of DMA send and receive functions
provide a basic communication mechanism for data
synchronization, while similar techniques are available for
reading and writing to DRAM.

The placement and routing of individual processing
tasks, e.g., the input server or the FFT cores, with respect to
the layout of available cores is also an important
consideration for program performance. While this level of
detail can be programmed explicitly, the accompanying
development environment, cf. Sec. III.B, provides a global
optimizer and scheduler to perform placement and routing.
For example, routing constraints ensure the IO server
programs are placed adjacent to the off-chip IO ports.
Similarly, placement and routing ensures that on-chip DMA
routes do not collide, e.g., transferring data between PEs.

Figure 5. Layout of the twice-whitening program on the hx3100

processor. Boxes circumsscribe the participating PEs and relevant DMRs
for each individual program.

B. Program Results

As implemented, the full program processes a series of
8192-complex-point input vectors, each representing a noisy
sinusoidal typically of a monotone acoustic source collected
against a diffusive (thermal) background. When running on
both the simulator and the hx3100 processor, multiple input
vectors are loaded into one of the off-chip DDR2 memory
banks. Vectors are stored in deinterleaved, bit-reversed
order, with a single input vector representing 64 kb of
memory. Eight DMA transfers are required to load a
collection of 8, on-chip DMR elements. This IO service
requires 1 core for managing request to the DDR2 and, in a
double buffering approach, 3 neighboring DMRs to optimize
timing of the data transfer.

An 8192-point, complex-to-complex decimation-in-time
FFT code is used to transform the input vector data. Each
instance of the FFT employs 8 processing elements. The FFT

algorithm requires bit-reversed-order input data, and this
reordering of the input is done prior to loading the DRAM.
The subsequently transformed output is transferred via DMA
to an output server core that writes the data to DRAM 2
using a second off-chip IO port. The input and output servers
are synchronized to avoid overwriting data stored in the FFT
processing cores.

We have implemented the above program on the HyperX
hx3100, and we have profiled the program elements using
the Integrated Software Development Environment. The
results below refer to version 3.0.1 of the HyperX ISDE
tools for the case of eight 8192-pt complex samples.

Table 1. Summary of program elements and resources used, including the

number of PEs, the number of DMRs, and the number of cycles per

processed quantity.

Program PEs DMRs Cycles

IOPE 1 1 4 374,94/vector

RPE’s 4 16 N/A

FPE’s 8 18 137,741/vector

IOPE 2 (write) 1 4 565,749/vector

IOPE 2 (read) 1 1 136/vector

IOPE 3 1 2 358/vector

LPE 1 4 4,384/vector

IOPE 4 1 3 539/vector

TOTAL 17 52 42,014,925

The cycle counts recorded for individual program
elements are shown in Table 1. For the purposes of
bookkeeping, we identify the number of resources
contributing to each program. For example, the resource
contributing to the FFT, i.e., the FPEs, consist of the 8 PEs
and 16 DMRs, cf. Fig. 5. Similarly, 4 PEs and 16 DMRs
comprise the Routing program (RPEs). The remaining
program elements utilize a single PE and various numbers of
DMRs.

The number of cycles normalized to the relevant input
type are shown for each program in Table 1. For example,
the first input/output server, IOPE 1, requires 37,494 clock
cycles to read one input vector from DRAM 1 and
synchronize transfer of that vector to the RPEs memory
space. This accounting of clock cycles highlights the
processing bandwidth associated with each program; data
transfer is not computationally complex, but a moderate
amount of time is needed to bring the data on to the chip.
Regarding IOPE 1, note that the reported clock cycles
includes sending the data to the RPE’s, while the clock
cycles reported for the FPEs incorporates the read operation
from the RPE memory space. Thus, no clock cycles are
reported for the RPE program as this is their sole function
(apart from some minor transfer scheduling instructions).

For IOPE 3 serves to read the transformed and
permutated vectors d

(k)
 from DRAM 3; recall the latter

vectors are identified by the sample index k and, therefore,
there are a total of 8192 vectors to process. The other
program elements have similar interpretations of the reported
cycle counts.

From Table 1, we note that IOPE 2 represents the most
costly operations, per iteration, in the implementation. As

stated in Sec. IV.A and illustrated by Fig. 4, IOPE 2 is
performing a sample-by-sample strided write of the FFT
output. Many samples (8192) must be processed this way
and the cost associated with strided writes to DRAM is high.
More important, the IOPE 2 write operation represents a
significant bottleneck in this implementation as the write
operation takes significantly more time than the FFT
processing. However, as noted earlier, the size of the
processed data set (8 ! 8192 samples = 512 KB) prohibits

the possibility of performing the transposition step within the
on-chip memory space. The cost of the strided write
operation employed here is constant with respect to the
number of input vectors.

Table 2. Program power consumption with respect to PE clock frequency

and operating voltage.

Tunable PE Clock Frequency (MHz)

Voltage(V) 200 300 400 500

1.00 V 914.29 1162.15 1410.01 1657.89

0.95 V 865.95 1089.65 1313.35 N/A

0.90 V 820.09 1020.86 1221.64 N/A

Table 2 reports the total power consumption for the
program with respect to the tunable PE clock frequency and
operating voltage. The clock frequencies, tuned here from
200 MHz to 500 MHz, determine the overall time-to-solution
of the program. Based on the total clock cycles reported in
Table 1, this implies a range of 84.2 ms at 500 MHz to 210
ms at 200 MHz. Lowering the operating voltage, from 1.0 V
to 0.95 V to 0.9 V, provides corresponding decreases in the
power usage. A two-fold increase in power occurs between
the case of 0.90 V at 200 MHz and the 1.0 V at 500 MHz.
Depending on the specific application and performance
requirements, twice-whitening on the HyperX can be tuned
to meet satisfy both power and timing constraints.

 V. CONCLUSIONS

We have presented an implementation of spatio-temporal
twice-whitening on the hx3100 processor. We have been
motivated by the prospects of performing real-time signal
processing of spatio-temporal data. Our implementation of
twice-whitening has exploited the properties of spatially
diffuse noise to reduce the complexity of the twice-whitening

algorithm form O(Nt
3
 Ne

3
) to Nt ! O(Ne

3
). This reduction in

complexity can amount to many orders of magnitude
improvement. We have also demonstrated a programmed
implementation of this twice-whitening algorithm on the
ultra-low-power hx3100 processor. The hx3100 processor
provides a platform capable of simultaneously handling
multiple instruction multiple data (MIMD) processing and an
ability for block-stream processing of the simulated acoustic
data. Moreover, the high throughput, low-power
consumption features of this realization suggest an
opportunity to employ adaptive signal processing techniques
in reprogrammable platforms of relatively small footprints
and power conscious designs.

ACKNOWLEDGMENT

This work was supported by the United States Office of
Naval Research. Oak Ridge National Laboratory is managed
for the US Department of Energy by UT-Battelle, LLC under
contract DE-AC05-00OR22725.

REFERENCES

[1] H. L. van Trees, Detection, Estimation, and Modulation Theory, Vol.

1, New York: John Wiley & Sons, Inc., 2001.

[2] R. N. McDonough and A. D. Whalen, Detection of Signals in Noise,
San Diego, CA: Academic Press, 1995.

[3] www.coherentlogix.com

[4] G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore,
ND: John Hopkins University Press, 1996.

