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Molecular State Reconstruction by Nonlinear Wave Packet Interferometry
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We show that time- and phase-resolved two-color nonlinear wave packet interferometry can be used
to reconstruct the probability amplitude of an optically prepared molecular wave packet without prior
knowledge of the underlying potential surface. We analyze state reconstruction in pure- and mixed-state
model systems excited by shaped laser pulses and propose nonlinear wave packet interferometry as a
tool for identifying optimized wave packets in coherent control experiments.
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Several groups have demonstrated that adaptive laser
control can influence a variety of photochemical pro-
cesses [1-4]. Those experiments determine the optical
waveform needed to drive a chemical reaction to a de-
sired product. But optimization of an incident waveform
neither directly elucidates the light-induced reaction
mechanism nor identifies the optically prepared initiating
state, especially if the relevant electronic potential en-
ergy surface(s) are ill characterized. Therefore, methods
for directly determining an optically prepared molecular
state are being sought [5—9]. Here we propose reconstruc-
tion by two-color nonlinear wave packet interferometry
(WPI) as a means for determining an initial dynamical
state in which detailed prior knowledge of the excited-
state Hamiltonian is not required.

Linear WPI [10,11] measures the interference contribu-
tion to an excited-state population arising from the
overlap between nuclear wave packets prepared by a
phase-locked pulse pair. By shifting the optical phase
difference, the real and imaginary components of the
overlap are isolated. State reconstruction by linear WPI
has been suggested as a form of quantum state holography
(QSH) [7,8]. In QSH, one isolates the complex overlap
between shaped target and short-pulse reference wave
packets and reconstructs the target by inverting a set of
linear algebraic equations.

Nonlinear WPI [9,12] is more powerful than its linear
realization in several respects. This heterodyne-detected
interference spectroscopy [13,14] employs a pair of
phase-locked pulse pairs to create an excited-state popu-
lation quadrilinear in the electric field amplitudes. In the
two-color case, the first pulse pair accesses an intermedi-
ate electronic state (e), while the second transfers ampli-
tude from the ground state (g) to a final state (f). Overlaps
between a shaped target wave packet launched in the f
state by the third pulse and a family of variable reference
wave packets prepared in f via the g and e states through
the combined action of the first, second, and fourth pulses
can be measured by combining signals taken with differ-
ent phase-locking angles. In the short-pulse limit, the
reference states are faithfully copied to the final surface

060402-1 0031-9007/04/93(6)/060402(4)$22.50

PACS numbers: 03.65.Wj, 33.80.-b, 42.50.Md, 42.87.Bg

regardless of its spatial form, and the isolable overlaps
enable determination of the target state probability am-
plitude (as opposed to the probability density [5,6]) with-
out detailed knowledge of that surface. This feature
contrasts with other forms of molecular state reconstruc-
tion [5-8].

We consider the nuclear Hamiltonians H, and H, to be
known, while the f-state Hamiltonian H f need not be.
The electronic transition dipoles w,,, M., and ws, are
independent of nuclear coordinates (Condon approxima-
tion) and are here taken parallel with the polarization of
the electric field. The latter comprises four pulses, which
have arrival times ¢, (t; <, < t; <ty), envelopes A;(1),
and phases ®;(z). In the slowly varying envelope approxi-
mation, the Fourier component of the jth field at w >0
has spectral amplitude «;(w) and phase ¢;(w) — wt;.
The first pulse pair drives e < g and is phase locked at
w; with locking angle ¢, = ¢s(w;) — ¢ (w;) —
w by, (t;; = t; — t;), while the second pulse pair drives
f+<g and is phase locked at ) with angle
bas = ba(w}) — b3(w)) — W) 143,

For t < t;, the molecular state is |W¥(r)) = |g) X
exp[—iH,(t — 13)]|y), where |y) is a g-state vibrational
eigenstate and /7 = 1. Following the last pulse, the final-
state amplitude linear and trilinear in the weak electric
fields is a superposition of four wave packets [15]; two
wave packets result from the first-order action of pulses 3
and 4, while another two result from the sequential action
of pulses 1, 2, and 3 or 4. The nonlinear WPI signal is the
f-state population quadrilinear in the fields:

S(¢a1, a3) = 2Re[(refyy tary)e (4217 ¢x)
+ (refy [tary)e (27 40)], (1

The complex quantities (ref,,; |tar;) and (refs,, |tar,) are
independent of the phase-locking angles and can be iso-
lated by combining signals with different optical phase
shifts [10,16]:
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Both isolated components are overlaps between a one-
pulse target state and a three-pulse reference state. The
overlap (3) is between a nearly momentumless target state
prepared in f by the fourth pulse and a reference that
propagates in all three electronic levels. Of greater inter-
est here is the overlap (2) between the target,

(refyy; |tar;) = %[S(O, 0) + S(Z 77)}

|tar;) = e—iafugp.gg|y>ei¢3(w2)+iwgz43’ 4)

generated by the third pulse and propagated for time #43 in
the f state, and a reference,

|refyo;)
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which propagates only in g and e. The pulse propagator,

P;lb — l% ] dtAj([)e—iq)j(t)eiHate—iHbt’ (6)

transfers nuclear amplitude from electronic state b to the
higher-lying state a, while Pj-‘bf governs the reverse tran-
sition. In scans of fixed 43 and varying (¢,, f3,), mea-
surements of (ref,,|tar;) provide amplitude-level
information on the target wave packet in terms of well-
characterized reference states [17]. Reconstruction of the
target can then be performed by inverting the resulting set
of linear algebraic equations by singular value decom-
position (SVD) [18].

To test our reconstruction procedure, we calculated the
nonlinear WPI signal for a one-dimensional system com-
prising harmonic g and e states and a dissociative f state.
The f-state potential is V(x) = De™** + &, with D =
2ar¢ (1000 cm™') and a = 9.124 A~'. Both harmonic
potentials have frequency w = 27¢ (210 cm™!) and re-
duced mass m = 63.5 amu, with the e-state minimum g,
displaced by x, = 0.0614 A relative to the g state [19].
We take @;(1)=®; +Q;t+c;”?/2 and A;(1) =
Ejexp[—1*/207?], with (uncontrolled) absolute phase
®;, carrier frequency (};, temporal chirp rate c¢;, peak
amplitude E', and pulse width ¢ [20]. The interferogram
(2) was calculated for a system initially in the ground
vibrational state using grid-based propagation techniques
for time evolution under the nuclear Hamiltonians and
split propagators to evaluate the pulse propagators (6) in
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the position representation [21]. Delays t,; and t3, were
scanned over one vibrational period, 7, = 158.8 fs, in
3.17-fs steps and the target-defining delay 43 = 25.4 fs.
T was varied to maximize the fidelity [18].

We first consider the target state prepared by a
transform-limited third pulse. Using the interferogram
shown in Fig. 1, with the addition of Gaussian random
noise (standard deviation 5% of signal maximum), the
target wave packet is reconstructed with fidelity 0.988
(T = 0.0137). The deviation from unity results mainly
from the absence of reference amplitude far from the
Franck-Condon point, where the difference between the
g and the f potentials is in the red wing of the pulse
bandwidth [22].

To explore reconstruction of optically shaped target
states, we use a chirped third pulse. The target states for
the cases of maximal positive and negative temporal
chirp are shown in Fig. 2. The collection of delay-
dependent reference states is the same in both cases;
differences in the interferograms (not shown) result en-
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FIG. 1. Real and imaginary components of the interferogram
(2) with all four pulses transform limited. Solid (dashed)
contours represent regions of positive (negative) interference.
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FIG. 2. Amplitude (solid line) and phase (dashed line) of
target (fine line) and reconstructed (heavy line) wave packets
from positively and negatively chirped pulses.

tirely from the different target states (which have a
mutual normalized overlap of 0.942). With addition of
5% noise to the signals, the reconstructed states in Fig. 2
have fidelities 0.984 and 0.979, respectively (T = 0.0137).
Accurate reconstruction in the presence of noise is a
consequence of preparing many overlapping reference
states (analogous to overcomplete coherent states), so
that the nonlinear WPI signal contains highly redundant
information.

These examples of reconstruction have implicitly uti-
lized knowledge of the f-state Hamiltonian via Pf:g . We
may also investigate reconstruction when no such infor-
mation is available, and the fourth pulse is treated as
impulsive despite its nonzero duration [23]. The rows of
the reference matrix then contain scaled copies of the
ground-state wave packets prepared by pulses 1 and 2.
Using this reference matrix and the rigorously calculated
signal from Fig. 1 with 5% noise, the target state was
reconstructed with fidelity 0.985 (T = 0.0258). The loss
in fidelity is due to the approximate reference states’
exaggerated amplitude in spatial regions far from the
resonance point of the fourth pulse. In the absence of
f-state information, accurate reconstruction of an arbi-
trary target state requires an ultrashort fourth pulse, with
spectral amplitude spanning the potential difference
throughout the region where the target state is localized.

Our reconstruction procedure can be extended to sys-
tems with initial equilibrium mixed-state density matri-
ces p =Y w,|yXyl, where w, is the population of level
v. The nonlinear WPI signal is the weighted sum

S(¢a1, ha3) =2Re Z w,, ((ref},, Itar;’>e‘i(¢21 )

+ (ref,, [tar] e~ (2t da)), @)

where the superscript denotes the state from which
the target and reference wave packets originate.
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Reconstruction proceeds as in the pure state case [24]
but with a cumulative fidelity f = 3" w,f,,.

To illustrate mixed-state reconstruction, we use our
previously described model system with thermally popu-
lated g-state vibrational levels. At 298 K, we include the
first five levels, accounting for 99.4% of the total popu-
lation. Figure 3 (left panels) shows the target wave pack-
ets prepared from the lowest three levels by a transform-
limited third pulse. States reconstructed from the calcu-
lated signal with 5% noise are shown in Fig. 3 (right
panels). The individual fidelities in ascending state
order are 0.979, 0.942, 0.837, 0.594, and 0.476 (T =
0.0185). Reconstruction of those targets with initial
population below the noise level is poor. The cumulative
fidelity is 0.935.

State reconstruction by nonlinear WPI could serve as a
diagnostic tool for identifying target wave packets
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FIG. 3. Left: Amplitude (solid line) and phase (dashed line)

of target wave packets prepared from a mixed initial state by a
transform-limited pulse. Right: Same for wave packets recon-
structed from the noisy signal.
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prepared in adaptive laser control experiments, while
requiring only rudimentary information about the elec-
tronic potential energy surface on which the photochem-
istry occurs. Although similar in spirit to linear QSH,
state reconstruction by nonlinear WPI possesses a number
of advantages. QSH detects the overlap between a one-
pulse target wave packet and a one-pulse reference wave
packet; the reference states all traverse a common
phase-space path on the potential that also governs the
target-state dynamics. In nonlinear WPI, the expanded
collection of three-pulse reference states covers a higher-
dimensional phase-space region. In addition, these refer-
ence states are prepared using known g and e states; if the
Condon approximation applies (at least locally) and the
preparation pulses are sufficiently brief, nonlinear WPI
does not require detailed information about the f-state
potential. Reconstruction of target wave packets could
also provide direct information about the final-state
potential-energy surface on which the target state prop-
agates. By using targets reconstructed at multiple 743
delays and evaluation of d¢/d¢ by finite differencing,
three-dimensional scans of the nonlinear WPI signal
could be used to invert the Schrédinger equation and
map the f-state potential in those regions sampled by
the moving target wave packet [25].
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