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ABSTRACT 
 

Recent demonstrations of teleportation have transferred quantum information encoded into either polarization or field-

quadrature degrees of freedom (DOFs), but an outstanding question is how to simultaneously teleport quantum 

information encoded into multiple DOFs. We describe how the transverse-spatial, spectral and polarization states of a 

single photon can be simultaneously teleported using a pair of multimode, polarization-entangled photons derived from 

spontaneous parametric down-conversion. Furthermore, when the initial photon pair is maximally entangled in the 

spatial, spectral, and polarization DOFs then the photon’s full quantum state can be reliably teleported using a Bell-state 

measurement based on sum-frequency generation.  
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1. INTRODUCTION 

1.1 Quantum teleportation protocol 

The quantum teleportation protocol (QTP) is a uniquely quantum-mechanical method for transferring information 

between two spatially separated parties.
[1]

 The QTP requires the presence of a quantum communication channel 

(entanglement) to transmit quantum information and a classical communication channel to correct for the accompanying 

quantum measurement uncertainty. In the logical basis {|0 , |1 }, an arbitrary qubit encoded into particle 1 is specified by  

1 = a 01 + b 11 ,      (1) 

where |a|2+|b|2 =1 and the subscripts denote the corresponding particle label. In the QTP, particles 2 and 3 are prepared in 

one of the four maximally entangled Bell states, i.e., 

23
± =

1

2
02,13 ± 02,13( )      and     23

± =
1

2
02,03 ± 12,13( ) .   (2) 

Quantum teleportation operates on the composite state of the three particles by projecting particles 1 and 2 into one of 

four Bell states. This projective measurement subsequently leads to one of four possible states for particle 3, i.e., 

(a) a 03 + b 13                 (b) b 03 + a 13      (3) 

   (c) b 03 a 13                 (d) a 03 b 13 . 

In order to complete teleportation of the qubit in Eq. (1), the classical information identifying the measurement outcome 

is relayed to the location of particle 3 so that an appropriate local unitary operation can be applied to correct for the 

quantum measurement uncertainty. Two bits of classical information suffice to distinguish between the four possible 

outcomes. (The local unitary operations consist of (a) the identity operator I and the Pauli operators (b) X, (c) i Y, and 

(d) Z.) 

1.2 Experimental Quantum Teleportation 

The formulation of the QTP outlined above has been realized experimentally using various atomic
[2]

 and photonic
[3]

 

systems. In the case of photonic systems, several different degrees of freedom (DOFs) have been used for encoding 

quantum information, including the case that the logical basis is the polarization components of a single photon, e.g., 

|0 |H  and |1 |V . This specific encoding is often used in photonic studies of quantum teleportation because of the 

relative ease with which the polarization degree of freedom can be manipulated (using linear optics) and because a 
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means for generating polarization-entangled photon pairs is readily available through the nonlinear optical process of 

spontaneous parametric down-conversion (SPDC). In particular, the generation of polarization-based analogs of the Bell 

states can be realized, e.g., using a type-I SPDC twin-crystal configuration or a type-II SPDC cross-beam configuration, 

while the Bell-state measurement that underlies teleportation can be implemented in several different ways (this point is 

discussed in Sec. 2.3). 

 

Experimentally, polarization-encoded QTP has lead to very high teleportation fidelities (a measure of how accurately the 

teleported state resembles the initial qubit). Bouwmeester et al. were the first to demonstrate experimental quantum 

teleportation using polarization-encoded qubits and they obtained a fidelity of 0.70±0.03 (including accidentals),
[3]

 while 

in the work of Kim et al., polarization-encoded qubits were teleported with a fidelity of 0.83.
[4]

 Subsequently, Jennewein 

et al. performed a linear optic variant of teleportation on an initially entangled photon with a fidelity of 0.92 (excluding 

accidentals).
[5]

  

 

Notably, these experimental demonstrations have not teleported the total quantum state of a photon, but rather that 

component of the photonic state that encodes a single qubit, i.e., a state of the polarization subspace that belongs to the 

larger Hilbert space of the photon. That is to say, these prior experiments have disregarded the spectral and transverse-

spatial states of the photon, which are treated as non-information carrying DOFs. To wit, it is common in these 

experimental realizations for the spectral and spatial modes of the interfering photons to be strongly filtered, e.g., using 

narrow-bandwidth spectral filters and single-mode collection fibers, respectively.  

 

The use of spectral and spatial filtering has proven experimentally beneficial for achieving high fidelities in polarization-

encoded teleportation because the non-information carrying DOFs have often served to distinguish the photons and, 

consequently, degrade the entanglement between them.
[6]

 Filtering the spectral and spatial states selects only those 

photons that are in (nearly) single spectral and spatial modes, for which the polarization encoding approaches the 

theoretical ideal of indistinguishable qubits. 

 

The success of these arrangements notwithstanding, we are motivated to ask whether the total quantum state of a single 

photon, i.e., the polarization, spectral, and transverse-spatial probability amplitudes, can be teleported. If so, may it then 

also prove possible to treat the spectral and spatial DOFs as information carriers that stand on equal ground with the 

polarization? As we report below, total teleportation of a single-photon state can be accomplished when sufficient 

entanglement exists in all three photonic DOFs. We propose an experimentally feasible scheme for implementing the 

idea of total teleportation, and we describe the conditions under which unit fidelity can be achieved. 

2. TOTAL TELEPORTATION 

2.1 Spectral teleportation 

We first describe our proposal for teleporting the spectral state 

1 = ( ) 1 d ,      (4) 

where the complex-valued function ( ) is normalized to unity and | 1  is the state in which photon 1 has frequency . 

In subsequent sections, we combine the idea of spectral teleportation with existing techniques for teleporting the 

transverse-spatial and polarization states. The quantum channel used for teleporting the spectral state (4) is a pair of 

spectrally entangled photons 2 and 3 in the normalized state 

23 = d d   f ,   ( ) 2,   3 ,     (5) 

where the joint spectral amplitude f( , ) is the probability amplitude of photon 2 with frequency  and photon 3 with 

frequency , and the tensor product state | 2, 3  = | 2 | 3  is the corresponding biphoton state. The joint spectral 

amplitude is characterized using the Schmidt decomposition of f( , ),[7], [8]
 i.e., 

f ,   ( ) = n
1/ 2un ( )vn   ( )

n=0

,     (6) 
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where the n
th

 Schmidt coefficient n  0 measures the relative population of the n
th

 pair of Schmidt modes un( ) and 

vn( ) for photons 2 and 3, respectively. Normalization implies that the Schmidt coefficients sum to unity, i.e., n n=1, 

while the Schmidt modes form a complete biorthonormal basis for expanding the joint spectral amplitude that satisfy 

um( )un ( )
*
d = mn      and     vm   ( )vn   ( )

*
d   = mn .   (7) 

Inseparability of the joint spectral amplitude, i.e., the spectral entanglement, can be measured using the Schmidt number 

K = n n
2( )

1
,      (8) 

where a Schmidt number greater than unity indicates that the expansion in Eq. (6) contains more than a single term and, 

therefore, the spectral states of photons 2 and 3 are entangled. Alternatively, we can measure the spectral entanglement 

using the von Neumann entropy of the single-photon density matrices corresponding to Eq. (5), i.e.,  

S = Tr 2 log2 2[ ] = Tr 3 log2 3[ ] = n log2 n

n

,   (9) 

where 

j = d d   j ,   ( ) j   j   (j = 2, 3)   (10) 

with the kernel for photon 2 defined as 

2 ,   ( ) = f ,    ( ) f   ,    ( )
*
d    = nun ( )un   ( )

*

n

,   (11) 

and a similar expression holds for photon 3. 

The physical basis for our formulation of the QTP using spectral information is the up-conversion of photons 1 and 2, 

e.g., sum-frequency generation (SFG). The effect of up-conversion is to entangle the frequencies of photons 1 and 2 by 

adding them together. A schematic of the implementation is shown in Fig. 1, where photons 1 and 2 are both incident on 

a nonlinear optical crystal in which they combine into a higher-energy photon 4. As a result, this transformation takes the 

initial triphoton state into a biphoton state, i.e., 

1 23 34 = c d d   d    ( ) f   ,    ( )    3, ( +   )4 ,   (12) 

where the constant c ensures normalization. 

 

 
 

Fig. 1. A physical implementation of the spectral teleportation of photon 1 that uses a pair of spectrally entangled photons 
from an SPDC source (photons 2 and 3) and that up-converts photons 1 and 2 into photon 4, where the latter is detected to 
have frequency , e.g., using a narrow bandwidth spectral filter. This classical measurement information provides 
knowledge about the spectral shift = 2 0 (with 2 0 the mean frequency of the SPDC pump field) that is subsequently 
used to correct the spectral state of photon 3. 
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In general, the probability for up-conversion (SFG) to occur is small, especially when only a pair of photons are 

involved. The mechanism, however, motivates the idea of the following teleportation protocol. Specifically, photon 4 is 

subjected to a spectrally-resolved projective measurement onto the spectral state | 4 , where  is the detected frequency. 

As shown below, the classical measurement information  is required by the recipient of photon 3 in order to recover 

the intended state. This measurement implies that the state of photon 3 is 

          4 34
˜  3 = d d   ( ) f ,   ( )   3 .    (13) 

where the norm of this state is 

  
2 = d d   ( ) 2 ,   ( )   ( )

*
.    (14) 

Continuing the analysis, we consider that an initially entangled photon pair (2, 3) generated by broad-bandwidth 

pumping of SPDC, for which a general form of the joint spectral amplitude is
[9]

 

f ,   ( ) = A +   ( ) ,   ( ) ,     (15) 

where A( ) is the spectrum of the pump pulse and the phase-matching function is  

,   ( ) =
L

2
sinc k ,   ( )

L

2

 

 
 .     (16) 

The length of the SPDC crystal is L (the transverse dimensions being much larger than the beam waist), and the wave-

vector mismatch (for collinear down-conversion) is determined by 

k ,   ( ) = kp +   ( ) k2( ) k3   ( ) ,    (17) 

where the wave vector magnitudes of the pump pulse, photon 2 (signal), and photon 3 (idler) are kp( ), k2( ), and k3( ), 

respectively. By substituting Eq. (15) into Eq. (13), the state of photon 3 becomes 

   ˜  3 = d d   ( )A( +   ) ( ,   )   3 .   (18) 

For a cw-pump pulse of frequency 2 0, the pump spectrum is A( + ) = (2 0 ) and Eq. (18) simplifies to 

  ˜  3 = ( ) ( , ) ( )3     (19) 

with  =  - 2 0 the difference between the up-converted frequency and the pump frequency. Thus,  represents the 

spectral offset between ( ) and the frequency eigenstates |( + )3 , and if this discrepancy is corrected, e.g., by 

difference-frequency generation (DFG) using photon 3 and a field of frequency , the state of photon 3 becomes 

  3 = d d   ( ) ,   ( )   3 ,   (20) 

where absence of the tilde signifies the correction has been applied. The teleportation fidelity 

  F = d d   ( ) ,   ( )   ( )
*

   (21) 

approaches unity when the phase-matching function approaches the delta function ( ). This condition implies that 

photons 2 and 3 should have infinite bandwidth and, per the cw limit, be highly entangled.  

 

The example above clarifies the role of the measurement information, namely, this information complements the 

quantum channel by specifying the local (nonlinear) operator needed to recover the state. For an arbitrary joint spectral 

amplitude, the corrected spectral state of photon 3 is 

3 = d d   ( ) f ,   ( )   3 ,   (22) 

while the fidelity is 

Fspectral = d d   ( ) f ,   ( )   ( )
*

.   (23) 
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2.2 Transverse-spatial teleportation 

The scheme we have devised in Sec. 2.1 for teleporting the spectral amplitude of a single photon can be applied, largely 

unchanged, to the cause of teleporting the transverse-spatial amplitude. This approach has been suggested independently 

by Walborn et al.
[10]

 In that proposal, the angular spectrum of photon 1 is defined by the state 

  1 = u q( ) q1 dq ,      (24) 

where q is the two-dimensional transverse wave vector, u(q) is the normalized probability amplitude (angular spectrum), 

and |q1  is the state in which photon 1 has transverse wave vector q.  

 

Fig. 2. A physical implementation of the angular teleportation of photon 1 that uses a pair of transverse-spatially entangled 

photons from an SPDC source (photons 2 and 3) and that up-converts photons 1 and 2 into photon 4. Walborn et al. have 

suggested that the transverse wave vector of photon 4 can be imaged onto a two-dimensional planar detector array by using 

a lens to map the momentum vector qD onto the position vector D.
[11]

 This classical measurement information then 

provides knowledge that is used to correct the transverse-spatial state of photon 3, e.g., using a spatial light modulator.
[10]

 

 

The resource for teleporting the transverse-spatial amplitude is a pair of spatially entangled photons 2 and 3 in the state 

23 = dq d  q q,  q ( ) q2,  q 3 ,     (25) 

where (q, q ) is the angular spectrum (amplitude) with photon 2 having transverse wave vector q and photon 3 having 

q . Walborn et al. also employ up-conversion (second harmonic generation, SHG) to entangle the transverse wave 

vectors of photons 1 and 2 and produce the state 

34 = dq d  q d   q u q( )  q ,   q ( )   q 3 , (q +  q )4 ,    (26) 

which is analogous to the discussion of Sec. 2.1 on spectral teleportation. Walborn et al. suggest the use of a lens to map 

the momentum of the up-converted photon onto a planar array of point-like detectors, such that detection of photon 4 at a 

planar location defined by the vector D implies a detected transverse wave vector qD = D/f, where  is the magnitude 

of the up-converted photon wave vector and f is the focal length of the lens.
[10], [11]

 The suggested physical 

implementation is sketched in Fig. 2. The resulting unnormalized state of photon 3 is 

     ˜  3 = dq d  q u q( ) qD q,  q ( )  q 3 .     (27) 

As for the previously considered case of spectral teleportation, Walborn et al. have shown that under idealized 

conditions, namely, when the joint angular spectrum approaches a delta function, then unit teleportation fidelity can be 

achieved when a shift Q is applied to the angular state of photon 3. This yields the fidelity 

Fspatial = dq d  q u q( ) qD q,  q Q( )u  q ( )
*

,    (28) 

where Q is the difference between the detected transverse wave vector and the mean wave vector of the pump. In the 

work of Walborn et al., numerical calculations have shown that the relative ratio of the pump spectrum to the phase 

matching function is largely responsible for determining the observed fidelity, i.e., quantum teleportation is successful 

only for a highly entangled joint spatial amplitude. 
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2.3 Polarization teleportation 

The teleportation of quantum information encoded into the polarization DOF of a single photon has been extensively 

discussed in the literature.
[3]-[5]

 The focus of this section is to review the scheme of Kim et al. for performing 

polarization-encoded teleportation using a complete Bell-state measurement (BSM).
[4]

 Whereas several linear optic 

methods exist for performing incomplete, or probabilistic, polarization-encoded BSMs, the scheme of Kim et al. relies 

on the nonlinear process of up-conversion (sum frequency generation, SFG) to distinguish between all four possible Bell 

states.  

 

 
Fig. 3. A physical implementation of performing a complete BSM based on a series of potential up-conversion events, 

following the experimental design of Ref. [4]. 

 

The scheme of Kim et al. for performing a complete BSM is shown in Fig. 3, where a sequence of type-I and type-II 

SFG  events leads to four distinct measurement outcomes. The first type-I SFG crystal transforms a pair of vertically 

polarized photons into a single, horizontally polarized photon, while the second type-I SFG crystal transforms a pair of 

horizontally polarized photons into a single, vertically polarized photon. For the sequence of type-II SFG crystals, the 

first crystal transforms a state in which photon 1 is horizontally polarized and photon 2 is vertically polarized to a single, 

horizontally polarized photon, whereas the second type-II SFG crystal transform a vertically polarized photon 1 and 

horizontally polarized photon 2 into a vertically polarized photon 4. As originally noted by Kim et al., the means for 

distinguishing between these two type-II SFG events rests on the fact that photons 1 and 2 need not have the same mean 

frequency.
[4]

 Consequently, the wavelengths of these photons can be chosen so that phase-matching requirements for the 

two type-II SFG events are distinct. 

 

In between the type-I and type-II crystal pairs, a dichroic beam splitter picks off the up-converted photon generated by a 

type-I SFG event. In front of both detection stages, a half-wave plate erases information about which crystal gave rise to 

the up-converted photon; otherwise, sufficient information exists at each detector stage to identify how the photon was 

generated. Then, depending on which detector registers the up-converted photon, the state of photon 3 is equivalent to 

the initial qubit, up to a local unitary transformation that is determined by the measurement outcome, cf. Sec. 1.1. As 

mentioned earlier, this setup has been implemented experimentally by Kim et al., who obtained a fidelity of 0.83 while 

using spatial filtering (pin holes).
[4]

 

2.4 Total teleportation 

In the preceding sections, we have outlined the component protocols for teleporting different DOFs of a single photon 

state, i.e., the spectral, transverse-spatial, and polarization states. To the extent that these different DOFs belong to 

uncoupled physical systems, the three distinct acts of teleportation can be implemented separately. However, it is 

interesting to ask if these three protocols can be combined into a single setup so that all three DOFs of a single photon 

are teleported simultaneously. We believe that the role of up-conversion in all three implementations provides a route to 

the design of such a setup. Shown in Fig. 4 is a composite experiment in which all three protocols are implemented. 
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Fig. 4. A composite implementation of the spectral, transverse-spatial, and polarization-encoded quantum teleportation 
protocols. The total state of photon 1 carries the quantum information of interest, while photons 2 and 3 are simultaneously 
entangled in the spectral, transverse-spatial, and polarization DOFs. The blue boxes represent up-conversion (SFG) crystals 
that are cut and oriented to generate specific polarization states. A dichroic beam splitter (DBS) isolate an up-converted 
photon from type-I SFG and directs it to detector stage A, while a photon generated by type-II SFG is analyzed at detector 
stage B. Each detector stage uses a half-wave plate to erase information about which SFG event lead to up-conversion, and a 
polarizing beam splitter to analyze components of the rotated polarization state. As part of each individual detector, the 
incoming photon is additionally analyzed with respect to the spectral and angular states. This can be accomplished, e.g., 
using a narrow bandwidth spectral filter and the momentum imaging proposed by Walborn et al.,

 [11]
 though more efficient 

approaches may also be possible. 

 

The execution of the protocol begins by preparing an initial state of photon 1 given by 

1 = d dq A ,q( ) H ,q( )1 + B ,q( ) V ,q( )1[ ]    (29) 

where A( , q) and B( , q) are the probability amplitudes for the horizontally and vertically polarized components of a 

photon with frequency  and transverse-wave vector q. Similarly, photons 2 and 3 are prepared in the state 

23 =
1

2
d d   dq d  q P ,q,   ,  q ( ) H ,q( )2,V   ,  q ( )3 + V ,q( )2,H   ,  q ( )3[ ]  (30) 

where, for simplicity, we have considered the case that the joint polarization states have the same joint spectral-spatial 

probability amplitude P( , q, , q ). The composite biphoton state following the series of SFG events shown in Fig. 4, 

including the erasure of polarization information, is 

34 =
c

2
d d   d    dq d  q d   q P   ,  q ,    ,   q ( )        

     A ,q( ) V    ,   q ( )3 + B ,q( ) H    ,   q ( )3[ ]{ H +   ,q +  q ( )4A   

+ A ,q( ) V    ,   q ( )3 B ,q( ) H    ,   q ( )3[ ] V +   ,q +  q ( )4A    

+ A ,q( ) H    ,   q ( )3 + B ,q( ) V    ,   q ( )3[ ] H +   ,q +  q ( )4B    

      A ,q( ) V    ,   q ( )3 B ,q( ) H    ,   q ( )3[ ] V +   ,q +  q ( )4B } . (31) 

Assuming detection of a photon with frequency  and transverse-wave vector qD at the detector labeled hB in Fig. 4, the 

state of photon 3 becomes 

˜  3 = d d   dq d  q P ,qD q,   ,  q ( )       

A ,q( ) H   ,  q ( )3 + B ,q( ) V   ,  q ( )3[ ] .  (32) 
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Detection at the three remaining detectors give similar results. The classical measurement information can be used to 

recover the intended quantum state. For this case, the identity operator is the local unitary transformation for the 

polarization component, while  and Q are the shifts applied to the spectral and angular DOFs, respectively. Performing 

these operations on photon 3 yields the state 

3 = d d   dq d  q P ,qD q,   ,  q Q( )     (33) 

A ,q( ) H   ,  q ( )3 + B ,q( ) V   ,  q ( )3[ ] .    

The composite teleportation fidelity is then given by 

F = d d   dq d  q A ,q( )P ,qD q,   ,q Q( )A   ,  q ( )
*[   (34) 

+B ,q( )P ,qD q,   ,q Q( )B   ,  q ( )
* ] .   

The fidelity in Eq. (34) for total teleportation of the single-photon state can be compared to the fidelities obtained for the 

cases of spectral teleportation (23) and transverse-spatial teleportation (30). When the single and joint probability 

amplitudes factor with respect to the spectral and transverse-spatial DOFs, e.g., 

A ,q( ) = a ( )u q( ) ,       (35) 

B ,q( ) = b ( )u q( ) ,      (36) 

and 

P ,q,   ,  q ( ) = f ,   ( ) q,  q ( ) ,      (37) 

the composite fidelity is the product of the individual fidelities,  

F = FspectralFspatialFpolarization ,      (38) 

as should be expected for uncoupled systems. Incidentally, the conditions for unit fidelity established in each uncoupled 

case carry over to fidelity of the composite system. 

 

For the case the photonic DOFs are coupled, however, the composite fidelity must be determined by the full, joint 

spectral-spatial probability amplitude. In particular, if the amplitude(s) to be teleported (as specified by ( , q) and ( , 

q)) can not be factorized into spectral, spatial, and polarization components, then it is necessary that the spectral and 

spatial DOFs of the mediating photon pair be entangled in order for teleportation to occur.  

3. CONCLUSIONS 

We have proposed a means for teleporting the total quantum state of a single photon, i.e., simultaneous teleportation of 

the spectral, transverse-spatial, and polarization states. This proposals combines together implementations for separately 

teleporting each DOF. The common element in all of three schemes is the use of up-conversion, e.g., adding together the 

frequencies (or wave vectors or polarizations) of two photons, and the subsequent detection of a single photon. We have 

shown that in the limit that photons 2 and 3, which serve as the quantum channel, are perfectly entangled, then unit 

teleportation fidelity can be obtained. Physical constraints, however, preclude the possibility that perfectly entangled 

states will be realized experimentally (the phase-matching functions governs the approximation to the EPR-like state). 

Nonetheless, this limiting case has provided an understanding of how the classical measurement information can be 

incorporated into the implementation. 

 

In regards to the up-conversion process, e.g., SFG, SHG, or DFG, we acknowledge that the efficiency for this process in 

most nonlinear optical crystals is generally too small to be useful for implementing these ideas with current technology. 

However, the physical implementations described here are useful for clarifying that there is an experimental route to 

total teleportation of a single-photon state. Moreover, the potential for future improvements in the efficiency of sources 

and detectors leaves open the questions as to whether these ideas will be experimentally realized. 
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