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Abstract Adiabatic quantum programming defines the time-dependent mapping of a
quantum algorithm into an underlying hardware or logical fabric. An essential step is
embedding problem-specific information into the quantum logical fabric. We present
algorithms for embedding arbitrary instances of the adiabatic quantum optimization
algorithm into a square lattice of specialized unit cells. These methods extend with fab-
ric growth while scaling linearly in time and quadratically in footprint. We also provide
methods for handling hard faults in the logical fabric without invoking approxima-
tions to the original problem and illustrate their versatility through numerical studies
of embeddability versus fault rates in square lattices of complete bipartite unit cells.
The studies show that these algorithms are more resilient to faulty fabrics than naive
embedding approaches, a feature which should prove useful in benchmarking the
adiabatic quantum optimization algorithm on existing faulty hardware.
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1 Introduction

Adiabatic quantum optimization (AQO) applies the principles of quantum computing
to solve unconstrained optimization problems. In particular, the AQO algorithm inter-
polates between two quantum logical Hamiltonians in order to adiabatically transform
an initial quantum state to a computational solution state [16]. This specialized appli-
cation of adiabatic quantum computing has been used to solve a variety of problems
including, for example, instances of satisfiability (SAT) [15] and exact cover [16],
finding Ramsey numbers [18], classifying binary images [21], training classifiers for
machine learning [23] and finding the lowest free-energy configuration in folded pro-
teins [22].

Benchmarking the efficiency of the AQO algorithm is currently of significant inter-
est in quantum computer science. Whereas some studies of optimization problems have
uncovered runtimes that scale polynomially in problem size, others suggest worst-case
exponential behavior, or even trapping in local minima [2]. Interpreting these analyses
are difficult, in part, because of the manner in which instance-specific information
alters the implementation of the algorithm, i.e., programming. As emphasized by oth-
ers [2,11,12,15], choices made in programming the AQO algorithm greatly impact its
runtime and, consequently, the observed scaling behavior.

Benchmarking adiabatic algorithms is further complicated when the design of the
logical Hamiltonians is constrained. Because the AQO algorithm uses a reduction of
the classical optimization problem to a quantum logical representation, i.e., a Hamil-
tonian, any constraints placed on this underlying logical fabric can only limit perfor-
mance. Understanding the impact of the logical fabric is especially pertinent since
existing AQO hardware supports a specific topology over a relatively modest number
of qubits [14,19].

Adiabatic quantum programming has been described previously as requiring two
steps: parameter setting [9] and minor embedding [10]. Minor embedding, in particular,
uses explicit information about the logical fabric as well as the problem to generate
the implementation of the AQO algorithm. Choi has demonstrated how an arbitrary
input graph can be minor-embedded within one type of highly regular fabric, a square
lattice of K4,4s, complete bipartite graphs with eight vertices. In the current paper, we
also present algorithms for minor embedding into additional logical fabrics, namely,
square lattices of Kc,c with c ≥ 1. We present an attempt at a brute force embedding via
graph isomorphism in maximal minors (henceforth called maximal minor embedding)
as well as an algorithm for complete-graph embedding. We compare these algorithms
in terms of their complexity as well as the scaling of the embedding result. The second
step in adiabatic quantum programming, parameter setting, has also been previously
addressed [9]. Those results, which show how the Hamiltonian parameters of the
embedded program are defined by the original problem, are immediately applicable
to the current context.

Notwithstanding algorithms for the unit-cell lattice, an open question in adiabatic
quantum programming is how to handle fabrics containing randomized hard faults.
Hard faults refer to defects in the logical fabric that compromise its regularity. As their
locations are random, the embedding algorithm must handle a variety of target graphs.
In the current paper, we present methods for minor embedding that use heuristics
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to adapt to random faults in the logical fabric (hardware). We analyze algorithmic
performance in terms of the maximum embeddable complete graph obtained using
numerical simulations. These studies quantify the impact of faults on the required
logical footprint and provide performance expectations for hard fault-tolerant adiabatic
quantum programming.

The paper is organized as follows: Sect. 2 defines the role of minor embedding
in AQO; Sect. 3 briefly reviews previous work; Sect. 4 defines nomenclature and
presents implications of treewidth on graph embeddability; Sect. 5 recounts properties
of the unit-cell lattice; Sect. 6 determines treewidth for hardware graphs F ; Sect. 7
presents embedding of a complete graph in F ; Sect. 8 presents two algorithms for
embedding with hard faults and numerical tests of these algorithms using randomized
fault placement; finally, Sect. 9 presents our conclusions.

2 Adiabatic quantum optimization

The AQO algorithm is based on the reduction of an unconstrained optimization prob-
lem to a quantum logical Hamiltonian that is diagonal in the computational basis [16].
The reduction most naturally begins in terms of binary variables that can then be
mapped to the qubits of a logical Hamiltonian HF . For AQO, the problem Hamil-
tonian takes the form

HF =
∑

i∈VF

αi Zi +
∑

(i, j)∈EF

βi, j Zi Z j , (1)

where αi is the weight on the i-th qubit, βi, j is the coupling between qubits i and j ,
and the sets VF and EF denote the vertices and edges of the graph F describing the
logical fabric; a more formal definition of the hardware graph is found in Sect. 4.
In this setting, the Pauli Zi operator defines the computational basis for the i-th
qubit.

The 2-local form of Eq. (1) restricts the optimization problems that can be mapped
directly into HF . Specifically, any binary optimization problem can be recast to have
at most quadratic interactions, i.e., as a quadratic unconstrained binary optimization
(QUBO) problem. This reduction can be done by, e.g., substituting the product of
two variables with a new one and adding a corresponding penalty term [8]. The AQO
program input is therefore defined as the QUBO problem

arg min
x∈Bn

xTPx, (2)

where x is a vector of n binary variables and P is an n-by-n symmetric real-valued
matrix.

In programming the QUBO problem, the interactions between variables represented
by P must be mapped into the quantum logical fabric. We interpret P as a weighted
version of the adjacency matrix of an input (problem) graph P describing these depen-
dencies. Hence, programming the AQO algorithm requires embedding P in the graph
F representing the logical fabric. We defer the formal definition of minor embedding
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to Sect. 4, but it suffices to say that this yields a graph F∗ = (V ∗, E∗) contained
within the logical fabric, over which a Hamiltonian HF∗ is defined as

HF∗ =
∑

i∈V ∗
α∗

i Zi +
∑

(i, j)∈E∗
β∗

i, j Zi Z j (3)

with α∗
i and β∗

i, j the corresponding weights and couplings. Setting these parameters
requires both the matrix P and the embedding into the logical fabric specified by F∗ [9].

The program for the AQO algorithm is then expressed by the time-dependent Hamil-
tonian

H(t; T ) = A(t; T )HI + B(t; T )HF∗ , (4)

where A(t) and B(t) control the time-dependent interpolation between an initial
Hamiltonian HI and the final embedded problem Hamiltonian HF∗ . The time T repre-
sents the quantum annealing time of the algorithm, such that H(T ) = HF∗ . Running
the program H(t) requires initializing the quantum register state to be a ground state of
H(0). This is followed by annealing to the time T after which the register is measured.
Provided the conditions of the adiabatic theorem are met, the state of the register at T
will be a ground state of HF∗ and a solution to the QUBO problem. In order to meet
these conditions, T must scale inversely with the minimum spectral gap of H(t) [16].
The gap, of course, depends on the programmed implementation and we may expect
that the choice of embedding plays a role in satisfying this condition.

3 Previous related work

In [10], Choi described a hardware graph for minor embedding a large clique, Kn , in
a limited number of qubits. This layout was called TRIAD. Choi also discussed using
the TRIAD scheme on a 128 qubit hardware made up of a 4 × 4 grid of K4,4 cells
to achieve the embedding of K17. We note the figure in [10] corresponding to this
description in that paper only embeds a K16, but it is possible to embed K17 using the
TRIAD scheme. It is also worth noting that while the text claimed a requirement of
only 6 physical vertices for each logical qubit, this is not achievable with the given
hardware (and is not realized in the example given). Our work results in the same
embedding for K17 on the 4 × 4 grid, but then extends the algorithm to work on a
large family of related logical fabrics. We also provide a straightforward algorithm
for extending an embedding from an n × n grid to an (n + 1) × (n + 1) grid of Kc,c

cells. This paper additionally determines the treewidth of the family of fabric graphs,
which enables better screening of QUBOs for feasible embeddability. Perhaps most
importantly, prior work did not consider the case of faulty fabric, which we address
with two algorithms and a set of simulations to demonstrate performance.

4 Graph minors and tree decomposition

A graph G = (V, E) is a set of vertices V and a set of edges E formed by unordered
pairs of vertices. In this paper, all graphs are finite, simple (no loops or multiple
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edges), and undirected. A graph H = (W, F) is a subgraph of G, denoted H ⊆ G, if
W ⊆ V and F ⊆ E .

A path in G = (V, E) is a sequence of vertices v1, v2, . . . , vk such that for 1 ≤ i <

k, (vi , vi+1) ∈ E . A cycle is a path where v1 = vk . If there are no repeated vertices,
the path (cycle) is a simple path (cycle).

A graph is connected if there is a path from u to v for every pair of distinct vertices
u, v in V . A tree is a connected graph which does not contain any simple cycles as
subgraphs. We say a graph H is a subtree of G if H ⊆ G and H is a tree.

Programming adiabatic quantum computing hardware to solve a specific problem
requires embedding a problem graph P = (VP , EP ) representing the QUBO problem
(elements of VP correspond to QUBO variables and EP = {(i, j)| Pi, j �= 0}) into
a hardware graph F = (VF , EF ) whose vertices representing the qubits and edges
are determined by couplings in the logical fabric. In some cases, this can be done in a
one-to-one manner through subgraph embedding.

Definition 1 A subgraph embedding of P into F is a mapping f : VP → VF such
that:

1. each vertex in VP is mapped to a unique vertex in VF .
2. if (u, v) ∈ EP , then ( f (u), f (v)) ∈ EF .

Note that if such an f exists, P is a subgraph of F, P ⊆ F .

However, due to design constraints on the underlying logical fabric, in order to
consider a large class of QUBO problems, P will need to be embedded into F as a
minor.

Definition 2 A minor embedding of P in F is defined by a mapping φ : VP → VF

such that:

1. each vertex v in VP is mapped to the vertex set of a connected subtree Tv of F .
2. if (u, v) ∈ EP , then there exist iu, iv ∈ VF such that iu ∈ Tu, iv ∈ Tv , and

(iu, iv) ∈ EF .

If such a mapping φ exists, then P is minor-embeddable in F or P is a minor of F ,
written P ≤m F .

Equivalently, P is minor-embeddable in F if P can be obtained from F by a series
of edge deletions and contractions (see [13] for more information on graph minors).
Note that every subgraph embedding is also a minor embedding (since f (v) is a
single node subtree of F). Furthermore, the property of being a minor is transitive:
G ≤m F and P ≤m G implies P ≤m F .

Closely related to the idea of a graph minor is the concept of a tree decomposition,
a combinatorial way of measuring how “tree-like” a graph is. Many early results on
graph minors were first proved for trees [13]. Additionally, certain problems which
have exponential complexity on arbitrary graphs have been shown to have polynomial
complexity on graphs of bounded treewidth. More importantly, certain properties of
tree decompositions, including upper bounds on treewidth (the definition of which
can be found below), are closed under the taking of minors. Understanding the tree
decomposition of the hardware graph gives us information about the properties of the
minors the graph has and thus what sort of QUBO problems can be embedded.

123



C. Klymko et al.

Definition 3 Given a graph G = (V, E) let T = (I, D) be a tree, and V = {Vi }i∈I

be a family of vertex sets (also called bags) with Vi ⊆ V indexed by the elements of
I . The pair (T,V) forms a tree decomposition of G if the following hold:

1. V = ∪i∈I Vi .
2. if (u, v) ∈ E , then there exists i ∈ I such that {u, v} ⊆ Vi .
3. for i1, i2, i3 ∈ I , if i3 lies on the path in T between i1 and i2, then Vi1 ∩ Vi2 ⊆ Vi3 .

Equivalently, for any vertex v ∈ V, {i : v ∈ Vi } forms a connected subtree of T .

To avoid confusion, the elements of V are referred to as the vertices of G and the
elements of I as the nodes of T . The width of a tree decomposition (T,V) is given
by maxi∈I {|Vi | − 1}. The treewidthτ(G) of a graph G is the minimum width over all
tree decompositions of G. Note that the width of any tree decomposition of G gives
an upper bound on τ(G). The following lemmas are well-known in graph theory and
are useful for using treewidth to analyze the quantum hardware graphs described in
Sect. 5.

Lemma 1 If H is a minor of G (i.e., H is minor-embeddable in G), then τ(H) ≤ τ(G).

Thus, given the treewidth of a logical fabric F , it is possible to automatically narrow
down the class of QUBO problems for which it may be possible to find an embedding.
The treewidth of several classic families of graphs is known exactly:

Lemma 2 Let Kn be the complete graph on n vertices and Kn,n the complete bipartite
graph on 2n vertices.

1. τ(Kn) = n − 1.
2. τ(Kn,n) = n.
3. The treewidth of an n × m 2-D planar grid is given by min{m, n}.

For more information on tree decomposition and graph minors (including the proofs
of the above lemmas), see [5], chapter 12 of [13], and [17].

5 Description of hardware graph

In this section, we review the hardware graph that has been the basis for several
proposed or demonstrated experimental studies [4,14,18,22]. The building blocks of
this graph are 8-qubit unit cells whose internal couplings form K4,4 [19]. Unit cells
are tiled together with each qubit on the left half of a K4,4 connected to its image in the
cells directly above and below, and each qubit on the right half of the K4,4 connected
to its image in the cells directly to the left and right. A representation of the graph
formed by sixteen cells is shown in Fig. 1. Note that due to the way the qubits are
physically connected [19], when there is a failure, it will be the failure of a qubit and
not an individual coupler. In terms of the hardware graph, this means vertices (and all
their adjacent edges) will fail, not individual edges.

In our analysis, we consider extensions of the unit-cell design to include an increase
in the number of qubits forming a cell. We also parameterize the hardware fabric to
allow for expanding the grid of unit cells. In general, our results are applicable in the
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Fig. 1 A 4 × 4 array of K4,4
unit cells coupled as in the
hardware graph from [19]

setting where cells consist of 2c qubits forming a Kc,c and are attached to form an
m × m grid in the same manner as described above. We denote a hardware graph of
this form as F(m, c). For example, the hardware graph shown in Fig. 1 corresponds
to F(4, 4).

For ease of reference, we define a labeling on VF(m,c). First, we number a single
cell: the vertices on the left half of the Kc,c as 1, 2, . . . , c from top to bottom, and
the vertices on the right half of the Kc,c as c + 1, c + 2, . . . , 2c, again from top to
bottom. See Fig. 5b for an example of this numbering in a K4,4 cell. Each vertex in
VF(m,c) is then given a label of the form vd

a,b where (a, b) is the (row, column) position
of the cell containing the vertex in the m × m grid—with cell (1,1) in the upper left
corner—and d corresponds to the position of the vertex inside the individual cell, as
described above.

6 Treewidth of the hardware graph

As seen in Lemma 1, if the treewidth of the hardware graph is known, it can be used
to a priori rule out the possibility of embedding certain classes of QUBOs.

However, in general, determining the treewidth of an arbitrary graph G is NP-
complete [6,7]. In [6], Bodlaender describes a linear time algorithm to determine
whether a graph has treewidth at most k, for a given fixed k. However, the constants
for the algorithm are extremely large (and grow exponentially with k), making it
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impractical for most graphs, including the hardware graphs of interest here. Amir
describes a polynomial-time algorithm which finds a factor-O(log(τ (G))) approxi-
mation of the treewidth of a graph G [3]; however, we have tighter bounds for the
treewidth of the hardware graph F(m, c), as presented below.

Theorem 1 Let F(m, c) be a hardware graph made up of an m × m array of cells,
attached as described in Sect. 5, where each cell contains 2c qubits connected to form
a Kc,c. Then,

1. the treewidth of a single cell (m = 1) is c.
2. cm ≤ τ(F(m, c)) ≤ cm + c − 1 for m ≥ 2.

Corollary 1 Any QUBO problem P of treewidth τ(P) ≥ cm + c is not minor embed-
dable in the hardware graph F(m, c).

Corollary 2 Any QUBO problem which contains a Kcm+c+1 (either as a subgraph
or as a minor) cannot be embedded into the hardware graph F(m, c).

Corollary 3 Any QUBO problem which contains a c(m + 1) × c(m + 1) grid (either
as a subgraph or as a minor) cannot be embedded into the hardware graph F(m, c).

Thus, even though the hardware graph described in Corollary 2 contains 2 cm2

qubits, a Kcm+c+1, which would need only c(m + 1) + 1 logical qubits (if they were
all coupled in the fabric), is shown to not be embeddable, due to its treewidth.

Proof of Theorem 1 The proof of (1) follows directly from Lemma 2. Furthermore,
the lower bound of (2) follows from using the algorithm in Sect. 7.2 to embed a Kcm+1
into G, since by Lemma 2, τ(Kcm+1) = cm, and Lemma 1 implies

cm = τ(Kcm+1) ≤ τ(F(m, c)).

The upper bound is slightly harder to compute. The proof consists of constructing
a tree decomposition of F(m, c) with width cm + c − 1. Then, since the treewidth of
F(m, c) is the minimum width over all tree decompositions, cm + c − 1 is an upper
bound.

To form a tree decomposition (T,V) of width cm + c − 1, we start with V1
= {vc+1

1,1 , vc+2
1,1 , . . . , v2c

1,1, v
c+1
1,2 , vc+2

1,2 , . . . , v2c
1,2, v

c+1
1,m , vc+2

1,m , . . . , v2c
1,m, v1

1,1, v
2
1,1, . . . ,

vc
1,1}. That is, V1 contains the right half of every cell in the first column of the grid

plus the left half of the (1, 1) cell.
The idea is to create all other bags of the decomposition by sequentially drop-

ping/adding the left/right halves of individual cells. Each new bag will be formed by
removing one of these sets of four vertices from an existing bag, and adding a (dif-
ferent) set of four—specifically one that is not yet contained in any existing bag. The
large amount of overlap between the bags is to ensure that the third requirement of
Definition 3 is satisfied.

The bags V2, . . . , Vm of the decomposition are formed by dropping the right sides
of cells in the first column and picking up the left sides, one-by-one. That is, Vi

contains the right half of cells i + 1 through m in the first column, the left half
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of cells 1 through i − 1, and all of cell i . More formally, for 2 ≤ i ≤ m, Vi =
{vc+1

i,1 , . . . , v2c
i,1, . . . , vc+1

m,1 , . . . , v2c
m,1, . . . , v1

1,1, . . . , v
c
1,1, . . . , v1

i,1, . . . , v
c
i,1}. In the

tree being formed, T , the first m nodes form a path.
The next m bags are formed by (again) starting with V1 but adding the right hand

sides of the cells in the second column: for Vm+1 we drop the remaining four vertices
in the left half of the first column and add the top four in the right half of the second;
for Vm+i with 2 ≤ i ≤ m, we add vc+1

2,i , . . . , v2c
2,i , and remove vc+1

1,i−1, . . . , v
2c
1,i−1. Bag

V2m+1 is then formed by dropping the last four vertices from the first column and
adding the four left vertices of the top cell in the second column. Note that V2m+1 is
the exact same “shape” as V1, only one column over. There is an edge between node
1 and node m + 1 in T , then nodes m + 2 through 2m continue the path.

At this point, the tree decomposition branches, with two new bags attached to
V2m+1 (analogous to V1). The first is V2m+2, which starts the branch consisting of
V2m+2, . . . , V3m , with V2m+i dropping vc+1

2,i−1, . . . v
2c
2,i−1 and adding v1

2,i , . . . v
c
2,i . Note

this is equivalent to how V1, . . . , Vm were created. Also attached to V2m+1 is V3m+1,
formed by removing the four righthand vertices from the top cell and adding the top
four vertices from the right half of the third column. This branch continues to form
V3m+2, . . . , V4m analogously to Vm+2, . . . , V2m , so that V4m has the same shape as
V2m , only one column over.

The remainder of the tree decomposition is created starting from V4m+1 (formed
analogously to V2m+1), until each column has been covered with a set of bags which
are formed like V1, . . . , Vm . This generates a total of 2m2 − m bags, each containing
exactly cm + c vertices of F(m, c). A small example of the beginning of this process
on a 3 × 3 grid of K4,4 cells can be seen in Fig. 2. The tree associated with this tree
decomposition can be found in Fig. 3b, along with the trees associated with the tree
decompositions of the 2 × 2 and the 4 × 4 grids in Fig. 3a, c, respectively. Note that
these three trees have the same general shape, with only the length of their branches
changing, dependent on m.

We now show why (T,V) satisfies the three properties of a tree decomposition
from Definition 3:

1. every vertex of F(m, c) is in at least one bag.
2. every edge is contained in at least one bag. This can be verified by noticing that

every cell is fully contained in exactly one bag, covering all edges within Kc,c.
Additionally, for each column, there is a bag containing all of the left side vertices
of the cells in the column, and thus, all the vertical intercell edges in the column.
Finally, as the bags move from one column to the next, the right halves of each
pair of horizontally adjacent cells are contained in a unique bag, thus covering all
horizontal intercell edges.

3. Let v be an arbitrary vertex in F(m, c) and let Vk be the lowest index bag in which v

appears. Then, as we walk along T starting at node k and traveling in the direction
of increasing node labels, once v is dropped from the bag (on any branch) it is
never picked up again. Thus, the nodes of T which correspond to bags that contain
v form a connected subtree of T .

Since (T,V) is a tree decomposition of F(m, c) where every bag contains cm + c
vertices, it has width cm + c − 1, so

123



C. Klymko et al.

V1

V2

V3

(a)

V4

V5

V6

(b)

V7

V8

V9

(c)

V10

V11

V12

(d)

Fig. 2 The first 12 bags of the tree decomposition of a 3 × 3 cell described in the proof of Theorem 1. The
last 3 bags (not shown) have the same layout as the bags in (c), moved to the third column of cells
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(c)

Fig. 3 Trees of the tree decompositions of the hardware graph with a grid of size, a 2 × 2, b 3 × 3, and
c 4 × 4 which satisfy the upper bound from Theorem 1
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τ(F(m, c)) ≤ cm + c − 1.

While these bounds are not tight for all choices of c, they are best possible when
c = 1, as cm = cm + c − 1 = m.

Determining bounds on the treewidth of the hardware graph is useful because it
allows us to automatically dismiss the possibility of embedding certain classes of
QUBO problems, members of which we might otherwise have spent considerable
time attempting to embed.

If lower bounds on the treewidth of the QUBO problems are known, these can be
combined with the bounds on the treewidth of the hardware graph to rule out even
more QUBO problems. There are many graph-theoretic methods for finding lower
bounds on treewidth, which use various graph properties including smallest degree,
second smallest degree, girth, and spectral radius. Applying lower bounds to classes
of QUBO problems is beyond the scope of this paper, but an overview of common
lower-bound algorithms can be found in [7].

7 Embedding into the hardware graph

In general, determining whether an arbitrary graph H can be minor-embedded into an
arbitrary fabric F is NP-complete. The best-known general algorithms assume a fixed
input graph H [1], which is the opposite of the situation in the quantum programming
problem. Additionally, although there are polynomial- time recognition algorithms for
the existence of an embedding, they do not produce the embedding and, in all cases,
the hidden constants are prohibitively large [6,24]. Algorithms which allow H to vary,
in addition to F , are no longer polynomial [1,25] or are limited to specific classes of
graphs which do not include the hardware graphs described in Sect. 5 [20].

7.1 Maximal minor embedding

Given a fabric F on n vertices, the method for finding and embedding every possible
minor-embeddable problem graph P involves solving an NP-complete problem. First,
all the minors of F must be found and, second, we must determine whether P is a
subgraph of any of them. The first step can be done when fabric is defined but even
once all the minors are known, every new problem graph P must be checked against
them for subgraph containment, which is still NP-complete on arbitrary inputs.

The brute force algorithm for finding all possible minors of F involves finding the
maximal minors: a set of minors of F such that every other minor is a subgraph of
one of the maximal minors. The first maximal minor is F itself. Subsequent maximal
minors are found by contracting an edge in F to form a minor and checking it for
subgraph containment against the list of maximal minors. If it is not a subgraph of
any of these, it is added to the list. Once every minor of size n − 1 is found (i.e., every
possible edge contraction of F has been tested), the process is repeated by contracting
edges in these minors. The process is completed at step k when no new maximal
minors of size n − k are found. An example of a set of maximal minors can be found
in Fig. 4, which shows the four distinct maximal minors of F(4, 4).
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Fig. 4 All minors of a single K4,4 cell are a subgraph of one of these 4 graphs. a K4,4. b 7-wheel plus 3
edges. c K6 minus 2 edges. d K5

Conceptually, maximal minor embedding is very straightforward. The input graph
P is compared with the known list of maximal minors for F . However, the compari-
son requires testing for subgraph containment, which is a combinatorial in the number
of checks that must be performed. Consequently, maximal minor embedding suffers
from two distinct bottlenecks, i.e., finding the maximal minor and finding the embed-
ding. Nonetheless, this method has the benefit of finding the optimal embedding with
respect to the size of the embedded problem. Because smaller embedding sizes may
be expected to contribute favorably to the scaling of the energy gap, the effort required
must be weighed against its advantages.

7.2 Algorithm to embed Kn

Instead of trying to find every possible minor of the hardware graph, we can find
an embedding of Kcm+1. Then, for any QUBO problem of size cm + 1 or smaller,
the embedding problem is solved. The downside of this approach is that it will fail
to embed many problems that are indeed embeddable in the hardware. For example,
although the graphs in Fig. 4b, c are embeddable in a K4,4 cell, they are not embeddable
in K5, which is the largest Kn minor in the cell. Because of this, the complete-graph
embedding algorithm (as described in Sect. 7.2) requires a 2 × 2 array of four cells
in order to find an embedding for QUBO problems corresponding to either of those
graphs.

Unlike maximal minor embedding, the complete-graph embedding algorithm is
computationally simple albeit at the cost of increased usage of the logical fabric.
This illustrates that the two methods described here represent a tradeoff between the
computational complexity of the embedding algorithm and the potential computational
complexity of the quantum program as measured by the area of the computational
fabric.

Given a hardware graph as described in Sect. 5, our algorithm to embed Kcm+1
as a minor in the m × m grid of Kc,c cells is recursive in nature, and constructs the
mapping φ described in Definition 2. For the sake of clarity, in the description of the
algorithm, the elements of the Kcm+1 will be referred to as nodes and the elements of
the hardware graph will be referred to as vertices. Let u1, u2, . . . , ucm+1 be the nodes
of the Kcm+1 that we are trying to embed.

In the description of the hardware graph in Sect. 5, the vertices were given labels
of the form vd

a,b. In the Matlab-style pseudocode found below, they are numbered
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Fig. 5 The embedding of K5 into a single K4,4 unit cell. a The map of each logical qubit in K5 to hardware
vertices. b The explicit embedding of K5 in the unit cell

from 1 to cm2. The numbering starts in the cell in the upper left corner as described
in Fig. 5b and is continued across the row, then across subsequent rows. Given a
node position in the form vd

a,b, the equivalent number in the code below is n =
2cm(a − 1) + 2c(b − 1) + d. Given a node numbered n in the code below, the
equivalent label is given by vd

a,b with a = � n
2cm �, b = � n−2cm(a−1)

2c �, and d = n
mod 2c, with d = 2c if n mod 2c = 0.

1 function V = no_failure_embedding(c ,m)
% This function takes an mxm hardware graph of K_{c ,c} cells and

3 % outputs a (2m)x(cm+1) matrix V where the non−zero entries
% of V(: , i ) are phi(u_i) for u_i in the embedded K_{cm+1}

5

V = zeros(2∗m,c∗m+1);
7 %Almost al l the c∗m−2 sets are formed similarly

for i = 1:c∗m+1
9 i f i < c

%First grid row/column, position i in cell
11 r = 1; s = i ;

else i f i > c+1
13 %Calculate row/column of the grid

r = ceil (( i−1)/c) ;
15 %Calculate level within cell

s = mod(( i−1),c) ;
17 i f s==0

s=c;
19 else

continue ; %these are handled below
21

%f i l l in the horizontal members of phi(u_i)
23 for j=1:m

V( j , i )=2∗c∗m∗(r−1)+2∗c∗(j−1)+c+s ;
25 %f i l l in the vertical members of phi(u_i)

for j=1:m
27 V( j+m, i )=2∗c∗(r−1)+2∗c∗m∗(j−1)+s ;

end
29 %At i=c and i=c+1, the sets differ , and have size m

for j=1:m
31 V( j , c)= c + ( j−1)∗2∗c∗m;

V( j , c+1)= j∗2∗c;
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The algorithm begins by embedding the first c + 1 nodes (forming a Kc+1) into
the cell in the upper left corner of the hardware. This is done by pairing left and right
vertices c − 1 times.

That is, for 1 ≤ j ≤ c − 1, φ(u j ) = {v j
1,1, v

c+ j
1,1 }. The next two nodes are each

initially mapped to a set containing a single vertex: φ(uc) = {vc
1,1}, and φ(uc+1) =

{v2c
1,1}. See Fig. 5 for an example of embedding K5 in a K4,4 cell of 8 qubits. We

provide an instance of this algorithm in a Matlab-style pseudocode for a function
which produces an embedding into non-faulty F(m, c) hardware.

After embedding a Kc+1 into the first cell of the hardware graph, the m−1 remaining
steps of the algorithm extend the embedding into the subsequent row and column of
the m × m grid. For each step 2 ≤ i ≤ m, the embedding forms an extendable clique
minor in the i × i grid. We say a minor is extendable if it satisfies two conditions: first
for u j , 1 ≤ j ≤ c(i − 1) + 1 the set φ(u j ) is non-empty. Second, each set has at least
one vertex with an edge into the next row or column.

For all nodes u j , at least one vertex of φ(u j ) is connected to a cell in the next
row and/or column of the grid. These vertices are added to the set φ(u j ). For nodes
uc and uc+1, one vertex is added to φ(uc) and φ(uc+1) at each layer i . For all other
nodes u j , two new vertices are added to φ(u j ).

The sets φ(uc(i−1)+2) through φ(uc(i−1)+c+1) are formed by picking one of the
unclaimed vertices on the right side of cell (1, i). This is extended by following the
edges from cell to cell along row i . When column i is reached, one edge is taken within
the cell, then edges from cell to cell are followed up along column i . At the end of this
process, each of these sets will contain 2i vertices: for 1 ≤ s ≤ c, φ(uc(i−1)+s+1) =
{vc+s

1,i , . . . vc+s
i,i , vs

i,1, . . . , v
s
i,i }.

This process is continued until Kcm+1 is fully embedded in the m × m grid. See
Fig. 6 for an extension of a K13 embedding in a 3 × 3 grid of K4,4 cells to a K17
embedding in a 4 × 4 grid of cells.

8 Embedding with failed qubits

The complete-graph embedding algorithm presented in Sect. 7.2 assumed that there
are no failures in the hardware. However, the hardware may exhibit some percentage
of failed vertices which prevent a full Kcm+1 embedding (e.g., in the case of any
single qubit failure, the biggest clique embeddable is Kcm). Instead of losing a node
from the Kcm+1 for each failed qubit, techniques can be employed to embed in a
way that attempts to minimize the number of sets φ(u) which contain any failed
qubits.

We present two algorithms below in order to handle the case of fabrics with hard
faults. These approaches to embedding test the different starting points available along
both diagonals of the m × m grid and then return the best possible embedding that
results. Additionally, if the largest Kn found is smaller than the largest possible in
an (m − 1) × (m − 1) grid, from each corner, we drop the first row and column and
reattempt the embedding. This “dropping down” procedure continues until a large
enough clique is found or (m − 1) rows and columns have been dropped.
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(a) (b)

Fig. 6 A K13 embedding in a 3 × 3 grid of K4,4 cells extended to a K17 embedding in a 4 × 4 grid. Each
color represents a single logical qubit. a K13 embedded in upper 3 × 3 sub-grid. b K17 embedded in the
4 × 4 grid (Color figure online)

At the same time, the grid is scanned and the largest Kn embeddable in a single
cell (1 ≤ n ≤ c + 1) is found. If a complete cell is found, this is Kc+1. The reported
largest embeddable Kn output by the algorithm is the maximum of the largest clique
embeddable inside a single cell and the four cliques found from starting at the four
corners.

Combining these two procedures yields a “flip and drop-down” method that we
compare with the single, nominal attempt at embedding, i.e., starting in the upper left
corner. In all cases, the worst performance possible is to embed a K1, since we assume
there is at least one working qubit in the hardware. Note details of the corner selection
and drop-down methods are not shown in the pseudocode.

8.1 Dropping to a smaller cell-graph

Given an m × m hardware graph with cells of Kc,c, one way to deal with failed qubits
is to find the largest co, co ≤ c, such that there is a complete m × m grid of Kco,co ’s
and use the algorithm described in Sect. 7.2 to embed into this sub-grid. This will lead
to an embedding of size com + 1 ≤ cm + 1. Once the co has been determined, the
embedding can be found by renumbering the vertices of the hardware graph to reflect
the new cell size and running no_failure_embedding(co, m).
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8.2 Greedy failure algorithm

As can be seen in Fig. 6, given a perfect m ×m grid of Kc,c cells, for each node u of the
embedded Kcm+1 (other than nodes uc and uc+1 started in the first cell), φ(u) contains
2m vertices. These consist of two sets of m vertices: a connected set consisting of one
vertex from the left side of each cell in the a single column in the grid and a connected
set consisting of one vertex from the right side of each cell in the row of the same
number. Due to the pattern in which cells are connected, within both of these sets
every vertex occupies the same position in the cell it comes from.

The greedy failure algorithm works to maximize the size of the complete Kn which
can be embedded in the hardware graph with failed vertices, by attempting to pair up
sets containing failed vertices with other sets containing failed vertices to create full
nodes. These “match-ups” occur in the diagonal cells of the grid. In the case of no
failures, each horizontal set (of vertices from the right halves of cells) is matched with
a vertical set (of vertices from the left halves of cells) whose vertices occupy the same
“height” inside a single cell. When there are errors, however, horizontal sets containing
failed vertices attempt to match with vertical sets that also contain failed vertices,
regardless of the “heights” at which the vertices sit inside a cell. By matching sets
which contain failures, the number of complete nodes (all of which except uc and uc+1
are made up of two sets) containing failures is reduced and, consequently, a larger
embedded Kn is achieved.

The Matlab-style pseudocode for a function which produces the nodes of the embed-
ding described above and outputs the number of nodes containing no errors can be
found on the next page.

8.3 Analysis

A comprehensive set of experiments were run to see how well the fallback and greedy
algorithms from Sects. 8.1 and 8.2, respectively, performed under various conditions
of vertex failure. These experiments were run using a single attempt at embedding that
begins in the upper left corner of the grid of cells as well as a run using the flip and
drop-down scheme described at the beginning of Sect. 8. In all cases, the hardware
graph was an m × m grid of K4,4 cells. The grid sizes tested were m = 4, 8, 16,

and 32. For each of these grid sizes, the algorithms were run with a percentage of
failed vertices of p = 2, 4, 5, 6, 8, 10, 15, 20, and 25. The failed vertices were uniformly
distributed across the hardware graph. In each of the 148 cases (defined by algorithm,
scheme, grid size, and failure rate), 10,000 randomized instances were run to compute
statistical averages.

A comparison of the results shown by Figs. 7 and 8 illustrates that the flip and drop-
down embedding scheme performs better than a single attempt at embedding from
the upper left corner and that the greedy algorithm performs better than the fallback
method. In both schemes, the greedy algorithm embeds a Kn with n approximately
85 % of the optimum value at two percent failure rate.

At fixed failure rate, the percent of the maximum embeddable Kn for both algo-
rithms decreases as the grid size m grows.
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1 function [V,k] = greedy_embedding(c ,m,G)
% This function takes an mxm hardware graph of K_{c ,c} cells and a

3 % l i s t G of failed vertices . Outputs are a (2m)x(cm+1) matrix V
% with non−zero entries of V( : , i ) being phi(u_i) for u_i in the

5 % embedded K_{cm+1}, and k the number of failure−free sets phi(u_i) .

7 % PAIR(s , t ,cv) stores the union of F( : , s ) and F( : , t ) in V(: ,cv)

9 % First , we form all of the half−sets in a matrix F
F = zeros(m,2∗c∗m)

11 for i=1:m
for pos=1:c

13 % determine columns of F to be fi l led
Cnum = 2∗c∗(i−1)+pos

15 Rnum = 2∗c∗(i−1)+pos+c
for j=1:m

17 % half−sets in col i of hardware graph
F( j ,Cnum)=2∗c∗m∗(i−1)+2∗c∗(j−1)+pos+c

19 % half−sets in row i of hardware graph
F( j ,Rnum)=2∗c∗m∗(j−1)+2∗c∗(i−1)+pos

21 end % of for i=1:m

23 % Match row/column half−sets to minimize # of sets with failures .
V=zeros(2∗m, c∗m+1)

25 cv = 1; % f i r s t open column of V
k=0; % number of failure−free sets created

27 for i=1:m
Fi= 2c∗(i−1) % offset for column indices in F

29 % Pair up sets containing failures
for s=1:c

31 i f i==1 and cv==c
break ; % go create size m sets

33 i f F( : , Fi+s) contains a failure in G
for t=1:c

35 i f F( : , Fi+c+t ) contains a failure
PAIR(s , c+t ,cv)

37 cv++
break

39 end % of for s=1:c
% Pair remaining half−sets greedily to form c (c−1 if i=1) total

41 for s=1:c
i f (( i==1 and cv==c) or (cv==c∗i+2))

43 break ; % create size m sets or next i
i f F( : , Fi+s) unpaired

45 for t=1:c
i f F( : , Fi+c+t ) unpaired

47 PAIR(s , c+t ,cv)
cv++

49 i f V( : ,cv) failure−free
k=k+1

51 end % of for s=1:c
% Create two size m sets in row/column 1:

53 for s=1:c
i f F( : , s ) unpaired

55 V( : ,cv) <− F( : , s )
cv++

57 i f F( : , s ) failure−free
k=k+1

59 i f (F: , c+s) unpaired
V(: ,cv) <− F( : , c+s)

61 cv++
if F( : , c+s) failure−free

63 k=k+1
end % of for s=1:c

65 end % of for i=1:m
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Fig. 7 Percent of the maximum embeddable Kn achieved for both the fallback and greedy embedding
schemes for various percentages of failed vertices, averaged over 10,000 trials. This is calculated for both
a single attempt at the embedding (left) and multiple attempts at the embedding, starting in all four corners
and, if necessary, dropping to a smaller grid (right). Both methods also search for a whole cell. a Single
attempt at embedding. b Maximum over flip and drop-down embeddings
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Fig. 8 Percent of the maximum embeddable Kn achieved in both a single attempt at embedding and multiple
attempts (starting in each of the four corners and, if necessary, dropping down) for various percentages of
failed vertices, averaged over 10,000 trials. This is calculated both for the fallback method (left) and for the
greedy method (right). a Fallback embedding algorithm. b Greedy embedding algorithm

Given a 2 % failure rate, this means that any φ(u) on the 4×4 grid (with no attempt
at a “smart” embedding scheme) has a 16 % chance that the set contains at least one
failed vertex (and thus cannot augment the size of the Kn embedded). Similarly, on
the 32 × 32 grid, each φ(u) contains 64 vertices, and for 2 % failure having at least
one failed vertex per cell is highly likely. This is due to the fact that the number of
hardware vertices mapped to a single node of the Kn minor increases linearly with
grid size. On the 4×4 grid, each set φ(u) is made up of 8 vertices (except for 2 special
cases).

At the 2 % failure rate, the greedy embedding scheme with flips and drop-downs
achieves embedding of a complete graph of over 40 % the size of the maximum Kn

embeddable. For the worst-case scenario, and with no attempt at a “smart” embedding,
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Fig. 9 Variances of fault-tolerant embedding algorithms (with flip and drop-down) on the 4 × 4 grid.
a Fallback algorithm. b Greedy algorithm

it would only take one failed vertex to destroy each logical qubit. Even at only a 2 %
failure rate, the 32 × 32 grid has on average 163 failed vertices. If the algorithm did
not adapt, this high failure density would completely destroy the maximum embed-
dable clique, which is a K129. In the case of a 25 % failure rate, the number of failed
vertices jumps to 2,048, yet the greedy failure algorithm is still able to embed a K6 on
average.

We have also analyzed the variances in embeddability from these experiments. In
the case of a single attempt at embedding, the distribution of embeddable graphs tends
to be narrower than when using the drop-down scheme. For larger grid sizes and for
higher percentages of failure, the variance of the single attempt falls to zero. This is
caused by the fact that the algorithm never does better than embedding a K5 into a
single, complete cell. However, this happens less often for the drop-down embedding
scheme, yielding larger average Kn with higher variances. An example of this behavior
is shown in Fig. 9 for the case of F(4, 4) when varying the percent failure rate. It is
notable that while the variance of the fallback method is relatively large for small error
rates, the greedy algorithm maintains a near constant, much lower variance across all
failure rates. In Fig. 10, the distribution of achieved embeddings over 10,000 trials
using the flip and drop-down scheme on F(4, 4), with the percentage of failed vertices
at p = 2, 4, 8, and 10, is shown. The embeddings achieved by the greedy algorithm
are both more clustered and larger than those achieved by the fallback algorithm. With
the added evidence of panel (b) in Figs. 7 and 8, this demonstrates the greedy approach
is more robust in the presence of hard faults.

9 Conclusions

We have presented methods for adiabatic quantum programming that embed problem-
specific information into an underlying quantum logical fabric. Our methods include an
embeddability analysis based on the treewidth of an m-by-m lattice of Kc,c unit cells,
which is a generalization of existing adiabatic quantum hardware. This has provided
bounds on the graphs that can be embedded in a predefined logical fabric and should
be useful for guiding adiabatic quantum-programmed implementations.
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Fig. 10 Histograms for 10,000 trials of the fallback (left) and greedy (right) embeddings with flipping and
drop-down on the 4 × 4 grid at p = 2, 4, 8, and 10 percent node failures. a Fallback embedding algorithm.
b Greedy embedding algorithm

In addition, we have presented two new methods for finding an embedding of a
complete graph in faulty fabric. The first method handles failures by falling back to
a set of smaller available unit cells, while the second searches for embeddings that
minimize the number of affected logical qubits using matching within cells on the
diagonals. The latter was shown to have greater power for programming implemen-
tations of arbitrary QUBO instances. Our approach is heuristic, however, and it is
unclear whether similar ideas can be applied to alternative embedding algorithms.
Nevertheless, numerical studies of embeddability run against randomized failures fur-
ther have shown the relative robustness of the second algorithm and the remarkably
smaller variance in embeddable graphs.

In our study of embedding for adiabatic quantum programming, we have neglected
any question regarding the subsequent computational complexity. The question of
how a particular embedding algorithm impacts the complexity of the resulting AQO
program is a point for future research. The current work, however, is expected to sup-
port uncovering the dependency of the computational complexity on both the embed-
ding and parameter setting methods used. We believe that the embedding algorithms
explored here, which provide a constructive approach to programming, will be useful
for providing a consistent means of comparing the AQO algorithm across different
problem sizes and hardware.
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