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ABSTRACT2

Hopfield networks are a variant of associative memory that recall patterns stored in the3
couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the4
network dynamics that correspond to energetic minima of the spin state. We show that memories5
stored in a Hopfield network may also be recalled by energy minimization using adiabatic6
quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow7
us to quantify AQO recall accuracy with respect to the number of stored memories and noise8
in the input key. We investigate AQO performance with respect to how memories are stored in9
the Ising model according to different learning rules. Our results demonstrate that AQO recall10
accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy11
landscapes. Consequently, learning rules offer a family of methods for programming adiabatic12
quantum optimization that we expect to be useful for characterizing AQO performance.13
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1 INTRODUCTION

Content-addressable memory (CAM) is a form of associative memory that recalls information by value16
[1]. Given an exact or approximate input value, a CAM returns the closest matching key stored in memory.17
This is in contrast to random access memory (RAM), which returns the value stored at a provided key18
or address. CAMs are of particular interest for applications tasked to quickly search large databases19
including, for example, network switching, pattern matching, and machine vision [2]. An auto-associative20
CAM is a memory in which the key and value are the same and partial knowledge of the input value21
triggers complete recall of the key.22

Auto-associative CAMs have proven of interest for modeling neural behavior and cognition [3]. This23
is due partly to their properties of operating in massively parallel mode and being robust to noisy24
input. These features motivated Hopfield to propose a model for an auto-associative CAM based on a25
network of computational neurons [1, 4]. The Hopfield neural network stores memories in the synaptic26
weights describing the connectivity between the neurons. An initial state of the neural network propagates27
discretely by updating each neuron based on the synapses and states of the other neurons. Hopfield showed28
that memories stored in the network become fixed point attractors under these Markov dynamics. The29
Hopfield network functions as an auto-associative CAM in which the initial network state represents30
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the input value and the final state represents the recovered key or memory. The memory capacity for a31
Hopfield network depends strongly on how the synaptic weights are set [5, 6, 7].32

The theoretical underpinning of the Hopfield network is a classical Ising model in which each binary33
neuron is mapped into a spin-1/2 system [3]. The synaptic weights define the couplings between these34
spins and the susceptibility for a neuron to become activated is set by the applied bias. The energy of the35
Ising model represents a Lyapunov function and stochastic dynamics guarantees convergence to a fixed36
point attractor in the asymptotic limit [1]. Conventionally, Hopfield networks are formulated in terms of37
an update rule governed by the Ising energy. However, finding stable points of this Lyapunov function38
can also be viewed as minimization of the network energy [8]. In the case of the Hopfield network, spin39
configurations that minimize the network energy are fixed point attractors representing stored memories.40

A fundamental concern for accurate memory recall is the likelihood for the network dynamics to41
converge to the correct memory state. Although stored memories are guaranteed to reside at minima42
in the network energy, the number of stored memories greatly influences the radius of attraction for each43
stable point [9]. The radius of attraction determines how close (measured by Hamming distance) an initial44
network state must be in order to converge to a fixed point. As the number of stored memories increases,45
the radius of attraction for each fixed point decreases due to interference between memories [8]. The46
initial network state must then start closer to the sought after memory in order to accurately recall it.47
Conventional Hopfield networks rely on gradient descent to recover these stable fixed points. However,48
this method lacks any mechanism for escaping from the local minima that represent interfering memories49
[3].50

In this work, we investigate the recall accuracy of an auto-associative CAM using methods of51
energy minimization by adiabatic quantum optimization (AQO). AQO represents a novel approach to52
optimization that leverages quantum computational primitives for minimizing the energy of a system of53
coupled spin states [10, 11]. In particular, AQO recovers the spin state that corresponds with the global54
minimum in energy. We formulate memory recall in terms of global energy minimization by AQO in order55
to avoid the local minima that undermine gradient descent in conventional Hopfield networks. We apply56
the promise that AQO returns the global network minimum by investigating how accurately a sought-57
after-memory can be recalled. As part of the broader adiabatic quantum computing model, AQO has also58
been investigated for a number of applications, including classification [12, 13], machine learning [14],59
graph theory [15, 16, 17, 18], and protein folding [19, 20] among others [21, 22, 23, 24, 25]. In each of60
these representative applications, the respective problems require reduction first to a discrete optimization61
problem that is only subsequently mapped into the AQO paradigm. By comparison, we show that memory62
recall within a Hopfield network is a direct application of AQO. Moreover, this task may be implemented63
using an Ising model in a transverse field with no reduction in the original problem required [26].64

Our analysis is also directed at quantifying the influence that learning rules have on AQO recall accuracy.65
Although learning rules are well understood to influence memory capacity of Hopfield networks, these66
rules have not been applied to the study of AQO dynamics. Learning rules define the synaptic couplings67
that store memories and thus shape the energy landscape of the Ising model. It is an outstanding question68
to understand how the shape of the energy landscape determines the computational complexity of AQO,69
and we use these learning rules as a means of comparing performance between different AQO programs70
that implement the same recall task. This is possible due to the one-to-one correspondence between the71
Hopfield network and the Ising model. We ensure that the AQO dynamics are always adiabatic by using72
sufficiently long annealing times in our simulated networks. This enables us to focus on quantifying73
the relative recall accuracy of AQO under three different learning rules as opposed to questions about74
adiabaticity. We analyze changes in AQO recall accuracy with respect to the number of stored patterns75
and type of learning rule employed. We defer to future studies the question of how AQO performs relative76
to the absolute scaling of the minimum spectral gap. This question for Ising models in a traverse field77
is presently addressed by many others [27, 28, 29, 30]. Our interest is in assessing how learning rules78
influence recall accuracy in the limit of sufficiently long annealing times. By guaranteeing the adiabatic79
condition, we avoid trapping in local minima but not interference between memories and the formation of80
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spurious states. We use numerical simulations to quantify the conditions under which AQO may be useful81
for memory recall.82

The use of AQO for performing memory recall in a Hopfield network has been investigated previously by83
Neigovzen et al. in the context of pattern recognition [31]. Specifically, they employed AQO to minimize84
the energy of a Hopfield network expressed as an Ising Hamiltonian. Neigovzen et al. performed an85
experimental demonstration of these ideas using a 2-neuron example in the context of NMR spin-based86
encoding. Their results confirmed that AQO provided accurate recall for that small network and invited87
questions as to how details of the Hopfield network influence performance. Our investigation addresses88
those questions by quantifying how different network parameters, including size, memories, and learning89
rules, influence recall accuracy.90

Hopfield networks are tasked with finding an unknown value within an unsorted database, i.e., the91
network memory. There is a strong connection between this type of tagged search and Grover’s search92
algorithm, which is formulated in terms of a quantum oracle. Previous work by Farhi et al. as well93
as Roland and Cerf using AQO to perform search tasks makes this point clear [32, 33]. Both have94
shown that Grover’s search algorithm can be cast in terms of AQO by mapping the oracle operator to95
the terminal Hamiltonian. A Hopfield neural network using AQO for memory recall is equivalent to96
these implementations of Grover’s search when the oracle expresses a one-memory network. However, a97
Hopfield network extends the search task to a more general context in which the oracle must discriminate98
between both tagged and untagged keys. This requires a more complex implementation of the oracle that99
we find plays a role in overall recall performance. This increase in oracle complexity likely undermine100
the optimal scaling reported by Roland and Cerf, i.e., O(2n/2), which stores only a single pattern in an101
n-qubit network. Our statistical analyses of multi-memory instances suggest that the optimal annealing102
schedule is dependent on both the learning rule and the number of stored memories.103

In Sec. 2, we define the task of memory recall using a conventional Hopfield network and describe the104
Hebb, Storkey, and projection learning rules for preparing the synaptic weights. In Sec. 3, we introduce105
adiabatic quantum optimization, its use for memory recall, and the basis for our numerical simulation106
studies. In Sec. 4, we present results for example instances of Hopfield networks that demonstrate the107
behavior of AQO for memory recall while in Sec. 5 we present calculations of the average recall success108
for an ensemble of different networks. We present final conclusions in Sec. 6.109

2 HOPFIELD NETWORKS

We define a classical Hopfield network of n neurons with each neuron described by a bipolar spin state110
zj ∈ {±1}. Neurons i and j are symmetrically coupled by synaptic weights wij = wji while self-111
connections are not permitted, i.e., wii = 0, to ensure dynamic stability. Different choices for the weights112
are described below, but in all cases the energy of the network in a spin state z = (z1, z2, . . . , zn)T is113

E(z; θ) = −1

2

n∑
i,j=1

ziwijzj −
n∑
i=1

θizi, (1)

with θ = (θ1, θ2, . . . , θn)T and θi the real-valued activation threshold for the i-th neuron. This form for the114
energy represents a classical Ising model in which the spin configuration describes the orientation of the115
n-dimensional system. The dynamics of the Hopfield network are conventionally modeled by the discrete116
Markov process117

zi =

{
1 if

∑
j wijzj > θi

−1 otherwise
(2)

where the state of the i-th neuron may be updated either in series (asynchronously) or in parallel118
(synchronously) with all other neurons in the network. The network is initialized in the input state zi = z0,i119
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and subsequently updated under repeated application of Eq. (2) until it reaches a steady state120

zi = sign
(∑

j

wijzj

)
(3)

Steady states of the Hopfield network represent fixed point attractors and are local minima in the energy121
landscape of Eq. (1) [3]. The stable fixed points are set by the choice of the synaptic couplings wij and122
the network converges to the memory state closest to the initial state z0. However, the network has a123
finite capacity to store memories and it is well known that the dynamics converge to a spurious mixture of124
memories when too many memories are stored [5, 6, 7]. The emergence of spurious states places a limit125
on the storage capacity of the Hopfield network that depends on both the interference or overlap between126
the memories and the learning rule used to set the synaptic weights.127

2.1 SYNAPTIC LEARNING RULES

Learning rules specify how memories are stored in the synaptic weights of a Hopfield network and they128
play an important role in determining the memory capacity. The capacity cn = p/n is the maximum129
number of patterns p that can be stored in a network of n neurons and then accurately recalled [9].130
Different learning rules yield different capacities and we will be interested in understanding how these131
differences influence performance of the AQO algorithm. Setting the synaptic weights wij for a Hopfield132
network is done using a specific choice of learning rule that in turn generates a different Ising model.133
Learning rules represent a form of unsupervised learning in which the memories are stored in the network134
without any corrective back-action. We make use of three learning rules that have been found previously135
to yield different capacities for Hopfield networks in the classical setting.136

2.1.1 Hebb Rule The Hebb learning rule defines the synaptic weights137

wij =
1

n

p∑
µ=1

ξµi ξ
µ
j (4)

for a set of p memories {ξ1, ξ2, . . . , ξp}, each of length n with bipolar elements ξµi ∈ {±1}.138
Geometrically, each summand corresponds to the projection of the neuron configuration into the µ-th139
memory subspace. These projections are orthogonal if all p patterns are mutually orthogonal. More140
generally, the Hebb rule maps non-orthogonal memory states into overlapping projections. This leads141
to interference during memory recall as two or more correlated memories may both be close to the input142
state. In the asymptotic limit for the number of neurons, the capacity of the Hebb rule is cn = n/2 lnn143
under conditions of perfect recall, i.e., no errors in the retrieved state. By comparison, under conditions144
of imperfect recall the asymptotic capacity is cn ≈ 0.14 [5]. It is worth noting that the Hebb rule is145
incremental as it is a sum over individual patterns. The rule is also local since the synaptic weights depend146
only on the value of the adjacent neurons.147

2.1.2 Storkey Rule The Storkey learning rule defines the synaptic weights in an iterative fashion as148

wνij = wν−1ij +
1

n
ξνi ξ

ν
j −

1

n
ξνi h

ν
ji −

1

n
hνijξ

ν
j (5)

where ξν is the memory to be learned in the ν-th iteration for ν = 1 to p and149

hνij =
∑

k=1,k 6=i,j
wν−1ik ξνk (6)

is the local field at the i-th neuron [7]. The final synaptic weight storing p memories is given by wij =150
wpij . The Storkey rule is found to more evenly distribute the fixed points and increases the capacity of151
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the network. The asymptotic Storkey capacity under prefect recall is n/
√

2 lnn, which represents an152
improvement over the Hebb rule. As with the Hebb rule, the Storkey rule is incremental and permits the153
addition of new memories.154

2.1.3 Projection Rule The projection rule defines the synaptic weights for p memories as155

wij =
1

n

p∑
µ,µ′=1

ξµi C
−1
µµ′ξ

µ′

j (7)

where Cµµ′ = 1
n

∑n
k=1 ξ

µ
k ξ

µ′

k is the covariance matrix and C−1 is the inverse of C. This rule has a156
theoretical capacity of n for linearly independent patterns and approximately n/2 for interfering memories157
[6, 34]. The projection rule is neither local nor incremental as adding memories to the network requires158
resetting each element using knowledge of all other memories. In the limit of orthogonal memories, all159
three learning rules reduce to the Hebb rule.160

3 MEMORY RECALL BY ADIABATIC QUANTUM OPTIMIZATION

The learning rules defined in Sec. 2.1 offer different methods for preparing the synaptic weights and161
the fixed points of a Hopfield network. Conventionally, the network finds those states that satisfy the162
equilibrium condition of Eq. (3) by evolving under the discrete Markov process of Eq. (2). However, the163
fixed points of a Hopfield network are also minima of the energy function known as stable fixed points.164
The stability of these solutions is due to the quadratic form of the energy function E(z; θ), which is165
a Lyapunov function that monotonically decreases under updates of network state [3]. As an example,166
consider that the k-th spin in the state z updates, i.e., zk → z′k. The relative change in unbiased energy is167
then168

∆E(z′, z) = −2(z′k − zk)
∑
j

wjkzj ≤ 0 (8)

The sign of the summation always correlates with the change in the spin state, cf. Eq. (2). Thus, network169
energy never increases with respect to updates in the state z. More importantly, the Lyapunov stability of170
the Hopfield network guarantees that the stochastic dynamics converge to fixed points representing stored171
memories.172

As an alternative to fixed point convergence under stochastic update, we apply the principle of173
optimization for finding the global minima of the energy function and for recalling a stored memory.174
We are motivated by the stability analysis of the Ising model under Markov dynamics, which guarantees175
that memories represent fixed point attractors and, more importantly, energy minima. Our formulation176
uses the same synaptic weight matrix and underlying Ising model of a conventional Hopfield network.177
However, we set the activation thresholds θi in place of initializing the network to a known initial state z0.178
This feature casts recovery of an unknown memory in terms of minimizing the energy of the network. We179
formally define the energy minimization condition as180

z = arg min
z′

E(z′; θ). (9)

in which the vector θ represents the activation thresholds θi = Γz0,i and Γ is an energy scale for the181
applied bias. The activation threshold θ serves as an energetic bias towards network states that best match182
the input z0. The behavior for a classical Hopfield network is recovered by initializing the state of all183
neurons to an indeterminate value, i.e., zi = 0, and using the first update to prepare the state z0.184

In the absence of any bias, finding the global minima of E(z, 0) is equivalent to computing the lowest185
energy eigenstates of the synaptic weight matrix wij with the constraint zi ∈ {±1} (indeterminate values186

Frontiers in Frontiers in Physics 5



Seddiqi and Humble AQO for Associative Memory Recall

are not valid output states). Due to the symmetry of the unbiased energy, the complement of each memory187
is also an eigenstate. If the network stores p memories, then the ground state manifold is 2p degenerate188
subspace. However, the presence of a non-zero bias breaks this symmetry and leads to a lower energy for189
only one memory state relative to the other stored memories.190

In the presence of bias, global minimization of E(z, θ) returns the spin configuration that encodes a191
recalled memory. The promise that the encoded memory is a global minimum depends on several factors.192
First, if the applied bias is too large then the input state itself becomes a fixed point and the global193
minimum becomes z0. This behavior is unwanted since it does not confirm whether the input or its closest194
match were part of the memory. This effect can be detected by decreasing Γ and monitoring changes in the195
recall. However, we can also compute an upper bound on Γ by comparing network energies of a memory196
state ξk with a non-memory state z0, e.g., for the projection rule197

Γ <

∑
i,j ξ

k
i wijξ

k
j − z0,iwijz0,j

2(n−
∑

i z0,iξ
k
i )

(10)

ensures that the network does not become over biased. In the limit that the memories are orthogonal to198
each other as well as the input key, this reduces to the result Γ < 1/(2n) previously noted by Neigovzen199
et al. [31].200

Interference between memories prevents their discrimination when insufficient knowledge about the201
sought-after memory is provided. The number of memories stored in the network may also exceed the202
network capacity and lead to erroneous recall results. As an example, perfect recall is observed when203
using the Hebb rule in a classical network storing p orthogonal memories provided p ≤ n, since there204
is no interference in these non-overlapping states. However, the capacity for non-orthogonal memories is205
much lower and varies with learning rule, as described above. In our optimization paradigm, interference206
manifests as degeneracy in the ground state manifold. These degeneracies are formed from superpositions207
of stored memory states and the applied bias. These states are valid energetic minima that correspond to208
the aforementioned spurious states. Differences between learning rules seek to remove the presence of209
spurious states while also increasing the network capacity.210

3.1 ADIABATIC QUANTUM OPTIMIZATION ALGORITHM

Adiabatic quantum optimization (AQO) is based on the principle of adiabatically evolving the ground state211
of an initial well-known Hamiltonian to the unknown ground state of a final Hamiltonian. By defining the212
final Hamiltonian in terms of the Ising model representing a Hopfield network, we use AQO to recover the213
ground state expressing a stored memory. The Ising model for AQO will use the same synaptic weights214
and activation thresholds discussed in Sec. 2 for the Hopfield network. The recall operation begins by215
preparing a register of n spin-1/2 quantum systems (qubits) in a superposition of all possible network states216
and adiabatically evolving the register state towards the final Ising Hamiltonian. Assuming the adiabatic217
condition has remained satisfied, the qubit register is prepared in the ground state of the Ising Hamiltonian.218
Upon completion of the evolution, each qubit in the register is then measured and the resulting string of219
bits is interpreted as the network state, zi.220

Formally, we consider a time-dependent Hamiltonian221

H(t) = A(t)H0 +B(t)H1 (11)

with piece-wise continuous annealing schedules A(t) and B(t) that satisfy A(0) = 1, B(0) = 0 and222
A(T ) = 1, B(T ) = 1. Together, the initial Hamiltonian223

H0 = −
n∑
i

Xi (12)
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and the final Hamiltonian224

H1 = −
n∑
i,j

JijZiZj −
n∑
i

hiZi (13)

represent an Ising model in a transverse field. In the latter equations, the Pauli Zi and Xi operators act on225
the i-th qubit while the constants hi and Jij denote the qubit bias and coupling, respectively. Of course,226
the latter quantities are exactly the activation threshold and synaptic weights of the Hopfield network, i.e.,227
hi = θi and Jij = wij , and we use the symbols interchangeably. We choose the computational basis228
in terms of tensor product states of the +1 and −1 eigenstates of operators Zi denoted as |0〉 and |1〉,229
respectively. In this basis, the correspondence between the binary spin label si ∈ {0, 1} and the bipolar230
spin configuration label is zi = 2si − 1.231

The quantum state of an n-qubit register is prepared at time t = 0 in the ground state of H0,232

|ψ(t = 0)〉 =
1√
2n

2n−1∑
x=0

|s〉, (14)

with |s〉 = |s1〉 ⊗ |s2〉 . . .⊗ |sn〉 and233

s =
n∑
i=1

si2
i−1, si ∈ {0, 1} (15)

the binary expansion of the state label s. The register state ψ(t) evolves under the Schrodinger equation234

i
d |ψ(t)〉
dt

= H(t) |ψ(t)〉 (16)

from the initial time 0 to a final time T . We set ~ = 1. The time scale T is chosen so that changes in the235
register state ψ(t) are slow (adiabatic) relative to the inverse of the minimum energy gap of H(t), which236
has instantaneous eigenspectrum237

H(t) |ϕi(t)〉 = Ei(t) |ϕi(t)〉 i = 1 to 2n, (17)

where the i-th eigenstate ϕi has energy Ei. The minimum energy gap ∆min is defined as the smallest238
energy difference between the instantaneous ground state manifold and those excited states that do not239
terminate as a ground state. Provided the time scale T � ∆−αmin for α = 2, 3, then the register typically240
remains in the ground state of the instantaneous Hamiltonian and evolution to the time T prepares the241
ground state of H(T ) = H1. However, the exact scaling for the minimal T with respect to Ising model242
size and parametrization is an open question.243

After preparation of the final register state ψ(T ), each qubit is measured in the computational basis.244
Because the final Hamiltonian H1 is diagonal in the computational basis, measurement results represent245
the prepared (ground) state. The measurements may be directly related to a valid spin configuration of the246
Hopfield network. The state of the i-th qubit is measured in the Zi basis and the resulting label zi is the247
corresponding spin configuration for the i-th neuron.248

Regarding execution time, the average-case time complexity for the AQO algorithm is currently249
observed to require T � ∆−αmin with α = 2, 3 in order to recover the global minimum with negligible250
error. The scaling of energy gap ∆min with respect to n, however, is currently poorly understood except251
in a few cases. For example, some studies have found a gap that shrinks exponentially with increasing252
n [36], whereas others observe polynomial scaling [37]. By comparison, the algorithmic complexity for253
stochastic update in Eq. (3) is dominated by the matrix-vector multiply. Assuming the classical operations254
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are directly proportional to time, the execution time for stochastic update scales as O(n2). If ∆min scaled255
as 1/n, then AQO would at best have the same time scaling as stochastic update. Such weak scaling of256
the energy gap is unlikely for the average case, and it is far more likely that AQO provides a slowdown257
relative to gradient descent. This is because AQO makes a stronger promise than the stochastic update258
rule in Eq. (3), i.e., the latter only finds a local stable fixed point.259

3.2 AQO RECALL ACCURACY

The accuracy with which a memory is recalled using the AQO algorithm can be measured in terms of the260
probability that the correct (expected) network state is recovered. We define a measure of the probabilistic261
recall success as262

fx =

{
1, Pans ≥ x

0, Pans < x
(18)

where Pans is the probability to recover the correct memory and x ∈ [0, 1] is the threshold probability.263
Denoting the correct memory state as φans, the probability to recover the correct memory can be computed264
from the simulated register state as265

Pans = | 〈φans|ψ(T )〉 |2 (19)

We assume in this analysis that the register state is a pure state and therefore neglect sources of noise266
including finite temperature and external couplings.267

From this definition for probabilistic success, we consider average success for an ensemble of N268
problem instances as269

〈fx〉 =
1

N

N∑
i=1

f ix, (20)

where f ix represents the probability for success of the i-th problem instance of n neurons storing p270
memories. This is a binomial distribution with variance 〈∆fx〉 = 〈fx〉(1 − 〈fx〉). We use the statistic271
〈fx〉 to characterize accuracy for the ensemble of simulated recall operations.272

We use several tests of recall accuracy to characterize each learning rule. First, we quantify the recall273
success with respect to the applied bias when recalling a state known to be stored in the network. This274
removes any uncertainty (noise) in the input z0. Second, we quantify recall as the failure rate when the275
input z0 is noisy. This tests the ability for the network to discriminate noisy input from unknown memories.276
We quantify noise in terms of Hamming distance of the input state from the expected memory state. We277
perform these tests for all three learning rules and variable numbers of stored memories.278

3.3 NUMERICAL SIMULATIONS OF THE AQO ALGORITHM

We use numerical simulations of the time-dependent Schrodinger equation in Eq. (16) to compute the279
register state ψ(T ) prepared by the AQO algorithm. These simulations provide the information needed280
to calculate the probabilistic success fx as well as the average success with respect to network size281
and learning rule. Our methods are restricted to pure-state simulations, which provide an idealized282
environment for the AQO algorithm and permit our analysis to emphasize how learning rules influence283
success via changes to the Ising model.284
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Our numerical methods make use of a first-order Magnus expansion of the time-evolution operator285

U(tj+1, tj) = exp

[
−i
∫ tj+1

tj

H(τ)dτ

]
(21)

over the interval [tj , tj+1] for j = 0 to jmax − 1. The use of a first-order approximation is justified by286
limiting our simulations to annealing times T that produce states well approximated by the ground state.287
We confirm this approximation by testing the convergence of the ground state population with respect to288
T , cf. Fig. 11. Our simulations use a uniform time step ∆t = tj+1 − tj such that T = jmax∆t. Starting289
from the initial state Eq. (14), an intermediate state is generated from the series of time evolution operators290

∣∣ψ(tj′)
〉

=

j′−1∏
j=0

U(tj+1, tj) |ψ(0)〉 (22)

In these calculations, the action of the jth time-evolution operator onto the appropriate state vector is291
calculated directly [38, 39]. The simulation code is available for download [40]. In our simulations, we292
use annealing schedules A(t) = 1 − t/T and B(t) = t/T , and we do not place any constraints on293
the qubit connectivity or the coupling precision. Simulated problem instances are detailed below but in294
general input parameters include the number of neurons n, the number of stored patterns p, the applied295
learning rule (Hebb, Storkey, or projection), the annealing time T , the applied bias Γ and the input key z0.296
The large number of parametrized simulations has limited our problem instances to only a few neurons.297

4 RECALL INSTANCES

We first present some example instances to demonstrate AQO behavior during memory recall for different298
learning rules. We begin by considering the case of p orthogonal memories. A convenient source of299
orthogonal bipolar states is the n-dimensional Hadamard matrix for n = 2k, whose unnormalized columns300
are orthogonal with respect to the usual inner product. We use these memories to prepare the synaptic301
weights and corresponding Ising Hamiltonians. Orthogonal memories are a special case for which all302
learning rules prepare the same synaptic weights. In the absence of any bias (θi = 0), we expect recall to303
recover each of the p encoded memories with uniform probability. The quadratic symmetry of the energy304
in Eq. (1) also makes the complement of each memory state a valid fixed point. This implies a total305
ground state degeneracy of 2p in the absence of bias. An example of the time-dependent spectral behavior306
is shown in Fig. 1 for the case p = n = 4, and all the eigenstates converge to a single ground state energy.307
The same case but with θ set to the first memory and Γ = 1 is shown in Fig. 2. The presence of the bias308
removes the ground state degeneracy and, not apparent from the figure, the prepared ground state matches309
the biased input state.310

We next consider an instance of non-orthogonal memories defined to have an non-zero inner product311
between pairs of memories. Interference is expected to cause failure during recall when the applied bias312
is insufficient to distinguish between similar states. With p = n = 4, we use the memory set313

Σ =

 +1 −1 −1 +1
−1 +1 −1 −1
+1 +1 +1 +1
−1 +1 +1 +1

 (23)

where columns 1, 2, and 3 overlap while columns 2 and 4 are orthogonal. We use an input state z0 =314
(1,−1, 1,−1) that most matches the first memory Σi,1. For these simulations, we found the annealing315
time T = 1000 was sufficiently long to yield convergence in the prepared quantum state. Both time316
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and energy are expressed in arbitrary units since all calculated quantities are independent of the absolute317
energy scale of the Ising model.318

Figures 3 through 6 plot the probability q = |〈ϕans|ψ〉|2 to successfully recall the answer state ϕans as319
a function of the applied bias Γ ∈ [0, 1]. The inset for each figure shows the semi-log plot of recall error320
under the same conditions. Recall probability q varies with input bias, number of memories, and learning321
rule. For p = 1, there is only one memory stored in the network and any non-zero bias distinguishes322
between the memory and its complement. Similarly, all three rules behave the same for the case of p = 2323
in Fig. 4. This is because there are not significant energetic differences between the rules using the first324
two memories above. The Hebb and Storkey rules coincide exactly, while the projection rule is identical325
only for the lowest energy eigenstate. However, for the case of p = 3 in Fig. 5, there is a distinction326
between all three rules. The answer state probability using the projection rule is nearly the same as was327
observed for fewer memories while the Hebb rule shows a shift to larger bias. This shift is due to the added328
memory creating an energy basin that is lower than the unbiased answer state. Larger bias must be applied329
to lower the answer state below that of the new memory. In contrast, the Storkey shifts to smaller bias as330
a result of memory addition. This is because the Storkey rule attempts to mitigate interference by using331
the local field calculation. However, with the addition of another memory, p = 4, the Hebb rule becomes332
more evenly distributed in energy across the degenerate memory states while the Storkey rule shows a333
slight shift to larger bias and the projection rule again remains unchanged. Differences in the recall errors334
are readily seen from the semi-log plots inset in the figures. The slopes of these lines highlight that each335
learning rule has a different sensitivity to Γ. Note that the inset plots show oscillations in the recall error336
when it is less than about 10−12; this is due to the finite precision of the numerical simulations.337

5 STATISTICAL RECALL BEHAVIOR

Our results for recall success of individual Hopfield networks indicate a large degree of variability in338
performance with respect to the stored memory states. We have found it useful to average performance339
across a range of problem instances. Under these circumstances, we use the average success probability340
defined by Eq. (20) to quantify the relative performance of each learning rule in terms of neurons n,341
memories p, and bias Γ. As noted earlier, these statistics correspond to a binomial distribution with342
parameter 〈fx〉.343

We first investigate average AQO recall behavior with respect to the bias Γ. An ensemble of problem344
instances is constructed for n = 5 neurons in which each instance consists of p memories with elements345
sampled uniform random from {±1}. Among the p memories, one is selected as the answer state while346
all other memories are distinct from the answer state. The selected answer state is then chosen as the input347
state. This defines the activation threshold θ = Γz0 for some choice of Γ. The simulation computes the348
full quantum state using an annealing time T = 1000. The probability to occupy the expected answer349
state is then computed using Eq. (18) with a threshold x = 2/3. The exact value of x is not expected to be350
significant provided it is above the probability for a uniform superposition.351

Figure 7 shows the average recall success for recovering the answer state as the bias Γ increases from 0352
to 1. Each panel represents the results of a single learning rule and each line represents a network storing353
p = 1, 2, 3, 4 or 5 memories. We find that each learning rule exhibits a distinct behavior with respect to354
recall accuracy. For the Hebb rule there is a step-wise decrease in success as the number of memories355
increases, indicating greater interference during recall. A much weakened version of this dependency is356
seen for the Storkey rule at values of Γ below about 0.25. Above this threshold the Storkey rule recovers357
unit success for every memory set. The projection rule demonstrates a very different behavior; unit success358
is seen in every case for any non-zero value of Γ. Unlike the Hebb rule, there is a complete lack of359
interference during recall. The plots in Fig. 7 indicate when the prepared ground state has greater than360
2/3 probability to be in the answer state given an input that matches a memory. The better performance361
of both the Storkey and projection rules is a result of how they exploit correlations between memories.362
Both rules effectively raise the energy barrier between fixed stable points, while the Hebb rule preserves363
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this interference. As the number of memories increases, so does the interference within the the typical364
problem instance. This behavior is underscored by the strong dependence of the Hebb rule on the number365
of stored memories p.366

We also investigate AQO recall accuracy when a noisy input state is provided. As before, we construct367
an ensemble of problem instances for n = 5 neurons in which each instance consists of p memories with368
elements sampled uniform random from {±1}. We modify the procedure by selecting one memory as the369
answer state while creating all other memories at least Hamming distance 2 away from this answer state.370
We select an input state that is Hamming distance 1 away from the answer state by randomly flipping a bit371
in the answer state. This construction of the memory set ensures that the noisy input state is closest to the372
answer state. In Fig. 8, the recall success for the noisy input test is plotted with respect to Γ and number373
of memories for each learning rule. For the Hebb rule, there is again a step-wise decrease in recall success374
as the number of stored memories is increased. This behavior indicates that the energy basin representing375
the answer state is not narrow with respect to the Hamming distance between spin configurations. As the376
stored memories increase, there is a greater chance that the applied bias lowers the energy of non-answer377
states. As the bias Γ increases beyond about 0.75, the input state is over biased. This leads to a recall378
accuracy of about 50% independent of stored memories. The Storkey rule exhibits a different behavior379
with respect to noisy input. Recall accuracy again decreases with the addition of new memories but much380
more weakly than was observed with the Hebb rule. The recall success also tends to vanish as the bias is381
increased. These differences underlie the fact that the Storkey rule distributes stored memories better than382
Hebb, such that an over-biased input is well separated from the expected answer state. Recall accuracy383
with the projection rule also vanishes for sufficiently strong bias due to the well-separated memory states.384
However, there is a much stronger dependence on recall accuracy with respect to the number of stored385
memories.386

We have investigated further the influence on the network of over-biasing the input state. As noted387
previously, there are loose upper bounds on Γ based on the energetic analysis of the learning rules [31].388
We have tested these bounds by attempting to recall a memory that is not stored in the network. These tests389
attempt to recall a stored memory using an input state that is guaranteed to be either Hamming distance 1390
or 2 away from any stored memory. We would expect the failure rate for this test to increase as either the391
number of stored patterns or the bias Γ increases. This is because the biased state should eventually reach392
an energy lower than any stored memory. Figure 9 plots the average failure as the recall accuracy 〈fx〉.393
In these plots, the input state is not among the stored memories. As expected, the failure rate increases as394
Γ increases. For all the learning rules, there is a narrow range for Γ above which the network returns the395
input state. These thresholds mark that the system is over biased. It is notable, however, that each learning396
rules exhibit a different behavior from over biasing. Whereas the Hebb rule terminates at lower failure397
probability as the memories are increased, both the Storkey and projection rules reach unit failure with398
sufficiently large Γ. This is again due to the inability for the Hebb rule to discriminate between interfering399
memories. A similar plot is shown in Fig. 10 for the case that the input is at least Hamming distance 2400
from all the stored memories. The sensitivity to failure increases with the increase in Hamming distance401
as noted by the lower thresholds on Γ for over biasing.402

Finally, we have investigated the role of the annealing time T on recall success. Because the state403
dynamics must be adiabatic relative to the minimum energy gap, the diversity of instances used for 〈fx〉404
are also likely to support a diversity of ∆min. This implies that there may be some maximum T for the405
ensemble which ensures every instance is quasi-adiabatic. In Fig. 11, we show a series of recall averages406
for different annealing times. For small values of T , the average success is low, especially as p approaches407
n. This suggests that many instances do not meet the x = 2/3 threshold for success. As T increases, the408
average success also increases but only up to a limit that depends on each learning rule. For the Storkey409
and projection rule, this limit is before T = 500, while for the Hebb rule the limit occurs before T = 50.410
Annealing times larger than these limits do not lead to significant changes in the average recall success411
(assuming a linear annealing schedule). Thus the annealing time is not the limiting factor in recall success412
and the adiabatic condition has been met for these problem instances. Notably, the shortest annealing413
time is found for the Hebb rule but this rule also exhibits the most interference during memory recall.414
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By contrast, the projection and Storkey rule require an order of magnitude increase in annealing time to415
ensure adiabaticity but these rules also exhibit greater accuracy during memory recall.416

6 CONCLUSIONS

We have presented a theoretical formulation of auto-associative memory recall in terms of adiabatic417
quantum optimization. We have used numerical simulations to quantify the recall success with respect418
to three different learning rules (Hebb, Storkey, and projection) and we have accumulated statistics on419
recall accuracy and failure across an ensemble of different network instances. We have found that the420
probability to populate the expected ground state using AQO is sensitive to learning rule, number of421
memories, and size of the network. Our simulation studies have been limited in size, but for these small422
networks there are notable differences in both the success and failure rates across learning rules. These423
differences represent the strategies of each learning rule to manage memory interference and the sensitivity424
of the AQO algorithm to those different strategies.425

The use of AQO for memory recall is closely related to its use for searching an unsorted database426
[32, 33]. Both Farhi et al. and Roland and Cerf have previously constructed the search problem using an427
oracle based on projection operators, which with an unbiased Hopfield network trained using the Hebb428
rule. Their previous work considered the task of recovering any valid memory from the network. We have429
used the activation threshold θ of the Hopfield network as the input key for a context-addressable memory.430
The activation threshold corresponds to the classical input to the oracle that identifies which memory is431
being sought. In this sense, the Hopfield network offers a robust implementation of Grover’s search by432
permitting input to the task. However, this comes at the cost of a more complex oracle implementation.433
The three learning rules discussed here represent three different methods for oracle construction within the434
model of an Ising Hamiltonian. We have shown how choices in learning rule impact recall accuracy and435
we have observed that the projection rule seems to offer the most robust behavior. We have not attempted436
to optimize the annealing schedule associated with memory recall for each learning rule. It seems unlikely437
that the optimized annealing schedule recovered by Roland and Cerf for untagged search would extend to438
the current oracle implementations due to the influence of the variable activation threshold.439

Recent work to assess the scaling of the spectral gap that determines the minimum AQO annealing440
time has underscored that the relative height of energy barriers play a fundamental role in determining441
which Ising Hamiltonians are challenging [27, 28, 29, 30]. Historically, learning rules that provide well442
separated but broad energy basins have been the goal of classical Hopfield networks, as these landscapes443
favor methods like gradient descent [1, 6, 7]. We have found that the AQO recall accuracy and minimal444
annealing time also demonstrate a significant dependence on the learning rule. In particular, energy basins445
prepared by the projection rule are known to be better separated than by either the Hebb or Storkey rules.446
Consequently, the projection rule provides the best performance with respect to AQO recall accuracy.447
However, better performance is not due to the avoidance of local minima but rather to the reduced448
interference between the stored memories and the biased input. Because the shape of the energy basins449
also influence the spectral gap of the time-dependent Hamiltonian, we anticipate that learning rules can450
provide a form of energetic control over AQO scaling.451
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Figure 1. Time-dependent eigenspectrum for p = 4 orthogonal memories stored in a network of n = 4
neurons in the absence of bias, θi = 0. For orthogonal memories, the spectrum is the same for the Hebb,
Storkey, and projection learning rules.

Figure 2. Time-dependent eigenspectrum for p = 4 orthogonal memories stored in a network of n = 4
neurons in the presence of bias. We define θ in terms of the first input memory and Γ = 1. For orthogonal
memories, the spectrum is the same for the Hebb, Storkey, and projection learning rules.
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Figure 3. Probability q to recall the correct memory with respect to applied bias Γ for n = 4 neurons
and p = 1 memory from the set in Eq. (23). All three learning rules coincide in behavior and provide unit
recall success for any amount of applied bias. Inset: a semi-log plot showing how recall error decreases
with applied bias. Numerical noise dominates the inset plot beyond Γ ≈ 0.02
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Figure 4. Probability q to recall the correct memory with respect to applied bias Γ for n = 4 neurons and
p = 2 memories from the set in Eq. (23). All three learning rules coincide and show unit recall success for
Γ > 0.10. Inset: a semi-log plot showing how recall error decreases with applied bias. Numerical noise
dominates the inset plot beyond Γ ≈ 0.4
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Figure 5. Probability q to recall the correct memory with respect to applied bias Γ for n = 4 neurons
and p = 3 memories from the set in Eq. (23). The Hebb rule has strong dependency on Γ due to memory
interference while the Storkey and projection rules accommodate interference better. Inset: a semi-log plot
showing how recall error decreases with applied bias. Numerical noise dominates the inset plot beyond
Γ ≈ 0.5
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Figure 6. Recall probability q with respect to applied bias Γ for n = 4 neurons and p = 4 memories
from the set in Eq. (23). The Hebb rule is least sensitive to the applied bias, and nearly the same as the
projection rule, while the Storkey rule becomes more sensitive to applied bias. Inset: a semi-log plot
showing how recall error decreases with applied bias. Numerical noise dominates the inset plot beyond
Γ ≈ 0.3

Figure 7. Average probability to recall the correct memory with respect to applied bias. The average is
taken over an ensemble of network instances with n = 5 neurons and p = 1, 2, 3, 4, or 5 stored memories.
Each panel plots the average recall success of a learning rule (Hebb, Storkey, projection) using an input
state that is Hamming distance 0 from a stored memory.
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Figure 8. Average probability to recall the correct memory with respect to applied bias. The average is
taken over an ensemble of network instances with n = 5 neurons and p = 1, 2, 3, 4, or 5 stored memories.
Each panel plots the average recall success of a learning rule (Hebb, Storkey, projection) using an input
state that is Hamming distance 1 from a stored memory. For sufficiently large Γ, the recall success drops
because the input state becomes the global minimum of the network.

Figure 9. Average probability to recall a memory not stored in the network with respect to applied bias,
i.e., failure. The average is taken over an ensemble of network instances with n = 5 neurons and p =
1, 2, 3, 4, or 5 stored memories. Each panel plots the failure probability of a learning rule (Hebb, Storkey,
projection) using an input state that is Hamming distance 1 from a stored memory. Failure increases with
Γ when the non-memory input state forms a fixed point in the network.
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Figure 10. Average probability to recall a memory not stored in the network with respect to applied
bias, i.e. failure. The average is taken over an ensemble of network instances with n = 5 neurons and
p = 1, 2, 3, 4, or 5 stored memories. Each panel plots the failure of a learning rule (Hebb, Storkey,
projection) using an input state that is Hamming distance 2 from a stored memory. Failure increases with
Γ when the non-memory input state forms a fixed point in the network.

Figure 11. Average probability to recall the correct memory with respect to number of input patterns for
n = 5 neurons. Each panel plots recall success with respect to the number of stored patterns p = 1, 2, 3, 4
and 5 for a different learning rule and applied bias (Hebb, Γ = 0.5; Storkey Γ = 0.15; projection,
Γ = 0.15). Each line corresponds to a different annealing time T = 10, 20, 50, 100, 500, 1000, 5000, 10000
and 50000. The computed recall success converges as T increases with upper bounds given by (Hebb)
T < 50, (Storkey) T < 500, (projection) T < 500. Note that results reported in other figures used an
annealing time much longer than these upper bounds, i.e., T = 1000.
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