APPENDIX A

THE DISPLACEMENT OPERATOR
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A useful construct in the analysis of the quantum-mechanical harmonic oscillator

is the displacement operator

D(OC) = eaa"'—a*a .

where ¢ is a dimensionless complex number.' The ladder operator a is defined as
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and satisfies the commutation relation

[a,a*]:l.

The harmonic oscillator Hamiltonian
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can be expressed in terms of the ladder operator as

H =w(a*a+l).
2

The eigenstates of Eq. (A.5) are defined by
H|n)= E(n)|n)

with n=0,1,2... the quantum of excitation and
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E(n)=w(n+1/2) (A7)
the corresponding eigenenergy.

The displacement operator can be factored as

f

D(a)=e 2% ¢ (A.8)
owing to the commutation relation of Eq. (A.3) and the Baker-Campbell-Hausdorff

Theorem (a.k.a. Glauber’s Formula).! Then, the action of the displacement operator on

the ground state of Eq. (A.5),1.e. n=0, yields

D (a)|0> = e_‘a‘zne(xd" e_a*a

0) (A9)
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The final result of Eq. (A.9) is the energy eigenstate representation of the harmonic

oscillator coherent state'

o) =S S| 7Y, (A.10)
N

j
which is also as an eigenstate of the ladder operator,
ala)=ola). (A.11)
Consequently, the displacement operator transforms the ground state of the harmonic
oscillator into the coherent state, i.e.
lay=D(x)|0). (A.12)

More generally, the unitary transformation
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a'=D(o)aD" () (A.13)
serves to translates the ladder operator a by an amount ¢ . Since,
D(a)aD'(«)|0)=(a—)|0), (A.14)
it follows from Eq. (A.13) that
a=a-ao. (A.15)
In particular, for real values of o, the displacement operator spatially translates the

Hamiltonian. For example, the displaced harmonic Hamiltonian

2 2
=L B2\ ) (A.16)
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can be expressed in terms of the undisplaced Hamiltonian, given by Eq. (A.5), as
H’=D(a,)HD'(x,) (A.17)

for o, = ( uw/ 2)1/2 x, - The eigenstates of H’ have identical eigenenergies, see Eq. (A.7),
but are translated by the amount ¢,

|7y=D(ey,)|n). (A.18)
Inserting the definition of the ladder operator into D((xo ) , we also see that

D(o,)=e", (A.19)
i.e. D(o) is the spatial translation operator for real values of o . The latter result is
particularly useful for translating the wave functions of Eq. (A.18);

(x|) = (x| D(t, ) (A20)

=<x—xo|n>.
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Other useful properties of the displacement operator include the composition property

o005 —ocfaz)/z

D(0y)D(t, )= D(0t, +01,)
and the unitary transformation

e™D(a)e™ =D (ae”“‘”) ,
both of which follow from Eq. (A.9). See Ref. [1] for additional details.

The overlap between a displaced and undisplaced eigenstate,
(ii[n) = (m|D" (a) ),
is calculated using Eq. (A.8). Expanding the exponential operators, we have

n)
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(A21)
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(A23)

el /222( )( .)k[( m!. ”!)Jm(m—ﬂn—k),

m—])!(n—k !

Jj=0£k=0

where in the last line finite upper bounds on the summations are a result of ajO) =0. Due

to the orthonormality of the harmonic oscillator eigenstates, we must have

m—j=n—k,

which includes two cases of the summation in Eq. (A.23). In the first, m=>n, we

substitute j=k+m—n and find

<m|n>=e-a”2(—a)'"-"(n_!)5 (o)

m!) & k! (n—k)(k+m—n)

(A.24)
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where in going to the last line we have used the following identity for the associated

Laguerre polynomial®

_w (=) (n+p)
L= 27 (- )k +B) (A25)

Similarly, for the second case, m <n, we let k= j+n—m to find

(ilny=e 2 ()" (ﬂ:jz Ly (|of’). (A.26)

n.

When m = n both cases coincide and the overlap is given by
(@ny= e (o) (A27)

where L) (x)=L,(x) is the usual Laguerre polynomial.
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