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APPENDIX A

THE DISPLACEMENT OPERATOR

A useful construct in the analysis of the quantum-mechanical harmonic oscillator

is the displacement operator

D α( ) = eα a† −α ∗a , (A.1)

where α  is a dimensionless complex number.1 The ladder operator a  is defined as

a = µω
2







1/2

x + i p
µω







, (A.2)

 and satisfies the commutation relation

a,a†  = 1 . (A.3)

The harmonic oscillator Hamiltonian

H = p2

2µ
+ µω 2x2

2
(A.4)

can be expressed in terms of the ladder operator as

H = ω a†a + 1
2





 . (A.5)

The eigenstates of Eq. (A.5) are defined by

H n = E n( ) n (A.6)

with n = 0,1,2...  the quantum of excitation and
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E n( ) = ω n + 1 / 2( ) (A.7)

the corresponding eigenenergy.

The displacement operator can be factored as

D α( ) = e− α 2 /2eαa†
e−α ∗a , (A.8)

owing to the commutation relation of Eq. (A.3) and the Baker-Campbell-Hausdorff

Theorem (a.k.a. Glauber’s Formula).1 Then, the action of the displacement operator on

the ground state of Eq. (A.5), i.e. n = 0 , yields

D α( ) 0 = e− α 2 /2eαa†
e−α ∗a 0 (A.9)

= e− α 2 /2eαa†
0

= e− α 2 /2 α j

j!j
∑ j .

The final result of Eq. (A.9) is the energy eigenstate representation of the harmonic

oscillator coherent state1

α = e− α 2 /2 α j

j!j
∑ j , (A.10)

which is also as an eigenstate of the ladder operator,

a α = α α . (A.11)

Consequently, the displacement operator transforms the ground state of the harmonic

oscillator into the coherent state, i.e.

α = D α( ) 0 . (A.12)

More generally, the unitary transformation
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′a = D α( )aD† α( ) (A.13)

serves to translates the ladder operator a  by an amount α . Since,

D α( )aD† α( ) 0 = a − α( ) 0 , (A.14)

it follows from Eq. (A.13) that

′a = a − α . (A.15)

In particular, for real values of α , the displacement operator spatially translates the

Hamiltonian. For example, the displaced harmonic Hamiltonian

′H = p2

2µ
+ µω 2

2
x − x0( )2 (A.16)

can be expressed in terms of the undisplaced Hamiltonian, given by Eq. (A.5), as

′H = D α 0( ) HD† α 0( ) (A.17)

for α 0 = µω / 2( )1/2 x0 . The eigenstates of ′H  have identical eigenenergies, see Eq. (A.7),

but are translated by the amount α 0

n = D α 0( ) n . (A.18)

Inserting the definition of the ladder operator into D α 0( ) , we also see that

D α 0( ) = eipx0 , (A.19)

i.e. D α( )  is the spatial translation operator for real values of α . The latter result is

particularly useful for translating the wave functions of Eq. (A.18);

x n = x D α 0( ) n (A.20)

= x − x0 n .
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Other useful properties of the displacement operator include the composition property

D α1( ) D α 2( ) = D α1 + α 2( )e α1α2
∗ −α1

∗α2( )/2 (A.21)

and the unitary transformation

e− iHt D α( )eiHt = D αe− iω t( ) , (A.22)

both of which follow from Eq. (A.9). See Ref. [1] for additional details.

The overlap between a displaced and undisplaced eigenstate,

m n = m D† α( ) n ,

is calculated using Eq. (A.8). Expanding the exponential operators, we have

m n = e− α 2 /2 m e−α a†
eα ∗a n (A.23)

= e− α 2 /2 −α( ) j

j!
α ∗( )k

k!
m a†( ) j

a( )k
n

k = 0

∞

∑
j = 0

∞

∑

= e− α 2 /2 −α( ) j

j!
α ∗( )k

k!
m!

m − j( )!
n!

n − k( )!






1/2

m − j n − k
k = 0

n

∑
j = 0

m

∑ ,

where in the last line finite upper bounds on the summations are a result of a 0 = 0 . Due

to the orthonormality of the harmonic oscillator eigenstates, we must have

m − j = n − k ,

which includes two cases of the summation in Eq. (A.23). In the first, m ≥ n , we

substitute j = k + m − n  and find

m n = e− α 2 /2 −α( )m − n n!
m!







1
2 − α 2( )k

k!
m!

n − k( )! k + m − n( )!k = 0

n

∑ (A.24)
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= e− α 2 /2 −α( )m − n n!
m!







1
2

Ln
m − n α 2( ) ,

where in going to the last line we have used the following identity for the associated

Laguerre polynomial2

Ln
β x( ) =

−x( )k

k!k = 0

n

∑ n + β( )!
n − k( )! k + β( )! . (A.25)

Similarly, for the second case, m ≤ n , we let 

� 

k = j + n − m to find

m n = e− α 2 /2 α ∗( )n − m m!
n!







1
2

Lm
n − m α 2( ) . (A.26)

When m = n both cases coincide and the overlap is given by

n n = e− α 2 /2Ln
0 α 2( ) , (A.27)

where Ln
0 x( ) = Ln x( )  is the usual Laguerre polynomial.
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