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CHAPTER II

LINEAR WAVE PACKET INTERFEROMETRY

Linear wave packet interferometry (WPI), originally developed by Scherer et

al.,1,2 uses a pair of phase-locked pulses to excite a superposition of two nuclear wave

packets in an excited-electronic level. Subsequent detection of the electronic population

as a function of the phase-locking angle is used to isolate the interference contribution to

the population, where the latter arises from the overlap between one-pulse wave packets

excited by the phase-locked pulse-pair. This bilinear interference is a probe of the

prepared electronic amplitude and, coupled with adequate knowledge about the

underlying Hamiltonian, provides an experimental means to reconstruct the nuclear wave

packet excited by one of the pulses.

In this chapter, we review the theoretical development of linear WPI and show

which combinations of measurements isolate the interference population. We discuss

how the interference probes the delay-dependent overlap between one-pulse wave

packets. We also review quantum state holography (QSH),3,4 which uses the

interferogram to reconstruct a one-pulse wave packet localized at the Franck-Condon

transition point. We analyze in detail the linear WPI signal for a model harmonic system

using analytic forms of the wave packets and their interference. The simulated

interference signal is interpreted with help of phase-space diagrams to describe the

harmonic wave-packet motion.
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Theory

In linear WPI each member of the pulse-pair drives an electronic transition

between an initial electronic level g  and an final electronic level f . The molecular

Hamiltonian, in the absence of the fields, is

H = g Hg g + f H f f , (2.1)

where Hg  and H f  are the nuclear Hamiltonians of the initial g( )  and final f( )

electronic levels. The total time-dependent Hamiltonian is expressed as H t( ) = H + V t( )

with the time-dependent matter-field interaction given by

V t( ) = V1 t( ) + V2 t( ) . (2.2)

The j th  interaction j = 1,2( )  is expressed in the electric-dipole approximation as

Vj t( ) = −µ ⋅ E j t( ) , (2.3)

where the dipole-moment operator

µ = µ fg f g + g f( ) (2.4)

couples the electronic levels g  and f  via the dipole moment vector µ fg . The j th  electric

field is represented in the time domain by

E j t( ) = e j Aj t − t j( )cos Φ j t − t j( ) , (2.5)

where e j  is the polarization vector, Aj t( )  is the temporal envelope  centered at time t j ,

and Φ j t( )  is the temporal phase function. A timeline of the pulse-pair is show in Fig 2.1.
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Fig. 2.1 A timeline of the pulse-pair used in a linear WPI experiment.

Phase-locking fixes the relative spectral phase between pulses at a specific

locking frequency. We define the Fourier component of the j th  field at frequency ω  as

α j ω( )e− iφ j ω( ) + iω t j = eiω t j dteiω t Aj t( )cos Φ j t( )
−∞

∞

∫ , (2.6)

with α j ω( )  the spectral amplitude and φ j ω( ) − ωt j  the spectral phase. Phase-locking the

pulse-pair at frequency ω L  defines the phase-locking angle

φ = φ2 ω L( ) − φ1 ω L( ) − ω Lt21 , (2.7)

where we denote the intra-pulse delay as t21 = t2 − t1 . One challenging aspect of phase-

locking optical pulses is that slight variations in the intra-pulse delay lead to large

variations in the spectral phase difference. Given unavoidable fluctuations in pathlength,

Scherer and coworkers employed an actively stabilized phase-locking setup, based on the

spectral interference between the pulses, to monitor and control the phase-locking angle.1

The ability to do so is an important component for detection of the interference signal,

which is linear in the phase-locking angle φ .

Well before the arrival of either pulse, the molecule is assumed to populate the

initial electronic level g  and the molecular amplitude is written as

Ψ t << t1,2( ) = g e− iHg t − t1( ) ν g , (2.8)
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where ν g  is an eigenstate of Hg  with eigenenergy Eg ν g( )  and we set  h = 1 . We solve

Schrödinger’s equation,

i
∂ Ψ t( )

∂t
= H t( ) Ψ t( ) ,

to calculate the molecular amplitude following the pulse sequence. First, we transform to

the interaction picture, defined by the unitary transformation

 
%Ψ t( ) = eiHt Ψ t( ) , (2.9)

and then solve the corresponding equation of motion,

 
i

∂ %Ψ t( )
∂t

= %V t( ) %Ψ t( ) , (2.10)

where the latter is driven by the interaction operator

 
%V t( ) = eiHtV t( )e− iHt . (2.11)

Integrating Eq. (2.10), we obtain the formal solution

 

%Ψ t( ) = %Ψ t0( ) − i dτ %V t( ) %Ψ t( )
t0

t

∫ , (2.12)

where the initial time t0  is well before the arrival of either pulse. The initial condition of

Eq. (2.8) then becomes

 
%Ψ t0( ) = g eiHgt1 ν g . (2.13)

The molecular amplitude in Eq. (2.12) is exact and can be solved using numerical

integration. However, to highlight the role of phase-locking in the preparation of the f-
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state nuclear amplitude, we take the weak-field limit and expand the solution (2.12) out to

first order in the interaction V t( ) . The resulting perturbative expansion is5

 

%Ψ t( ) ≅ %Ψ t0( ) − i dtV t( ) %Ψ t0( )
t0

t

∫ . (2.14)

Projecting out the f-state nuclear amplitude yields

 
f %Ψ t( ) = −i dt f %V t( ) g eiHgt1 ν g

−∞

∞

∫ . (2.15)

In going to Eq. (2.15), we have inserted the initial condition given by Eq. (2.13) and

replaced the upper/lower limit of integration by + / −∞ . The latter substitutions reflect

that the observation time t is after the action of the last pulse and the initial time t0  is

before the interaction V t( )  turns on.

Recalling Eqs. (2.2) and (2.11), we find from Eq. (2.15) the f-state nuclear

amplitude following the last pulse to be

 
f %Ψ t( ) = −i dt f %V1 t( ) g

−∞

∞

∫ − i dt f %V2 t( ) g
−∞

∞

∫






eiHgt1 ν g . (2.16)

Each integral on the RHS of Eq. (2.16) represents preparation of a nuclear wave packet in

the f-electronic level. For the j th  pulse, we rewrite the excitation operator as

 
−i dt f %Vj t( ) g

−∞

∞

∫ = i dτ eiH f τ µ fg ⋅ e je
− iHgτ Aj τ − t j( )cos Φ j τ − t j( )

−∞

∞

∫ (2.17)

= eiH f t j Pj
fge− iHgt j .

In going to the last line of Eq. (2.17), we introduce the pulse propagator
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Pj
fg = i dτ eiH f τ µ fg ⋅ e je

− iHgτ Aj τ( )cos Φ j τ( )
−∞

∞

∫ (2.18)

to describe the transfer of nuclear amplitude from g  to f  via the j th  field. It is seen

immediately that the amount of amplitude transferred by the pulse propagator is

proportional to the pulse spectrum at the Bohr resonance frequency; using the nuclear

eigenstates of the g and f  Hamiltonians, we express the pulse propagator  as

ν f Pj
fg ν g = i ν f µ fg ⋅ e j ν g dτ Aj τ( )cos Φ j τ( )ei E f ν f( ) − Eg νg( )( )τ

−∞

∞

∫ (2.19)

= i ν f µ fg ⋅ e j ν g α j E f ν f( ) − Eg ν g( )( )e− iφ j E f ν f( ) − Eg νg( )( ) ,

where we have used definition of the pulse spectrum given in Eq. (2.6).

From Eq. (2.17), the f-state amplitude is rewritten as

 
f %Ψ t >> t2( ) = eiH f t2 1( ) f + 2( ) f e− iφ( ) , (2.20)

where the nuclear wave packet prepared by the first and second pulses are defined as

1( ) f = e− iH f t21 P1
fg ν g (2.21)

and

2( ) f = P2
fge− iHgt21 ν g , (2.22)

respectively. The wave packets above are defined for the case that the phase-locking

angle is set to zero; i.e. φ = 0 . For an arbitrary value of the phase-locking angle, the

second-pulse wave packet acquires a shift in phase and the accompanying phase factor in

Eq. (2.20) explicates this dependence. We also include back-propagation of the wave
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packets in Eq. (2.20) in anticipation of returning to the Schrödinger picture. The

preparation processes leading to the one-pulse wave packets are illustrated in Fig. 2.2.

Fig. 2.2 A schematic illustration of the molecular system under consideration in a linear WPI experiment.
Vertical lines denote resonant excitations between the initial (g) and final (f) potential surfaces. By varying
the pulse parameters, the interference between these one-pulse wave packets can be isolated.

Transforming back to the Schrödinger picture via the inverse of Eq. (2.9), we find

for t >> t2  the f-state amplitude is given by

f Ψ t >> t2( ) = e− iH f t − t2( ) 1( ) f + 2( ) f e− iφ



 . (2.23)

The population of the f-electronic level is the magnitude of the amplitude,

Pf = f Ψ t( ) 2
,

which, after inserting Eq. (2.23), becomes

Pf φ( ) = 1( ) f 1( ) f + 2( ) f 2( ) f (2.24)

+ 1( ) f 2( ) f e− iφ + 2( ) f 1( ) f eiφ .

1( ) f 2( ) ft21

P1
fg P2

fg
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In Eq. (2.24), the first line represents the two one-pulse contributions to the

population, while the second line comprises contributions to the population resulting

from wave packet interference. The latter contribution is bilinear in the electric-field

amplitudes and varies as a function of both the intra-pulse delay and the experimentally-

controlled phase-locking angle. The bilinear interference constitutes the sought-after

linear WPI signal.

The sign of the bilinear interference term is controlled by the phase-locking angle.

Consequently, the bilinear interference may be isolated by combining measurements of

the total population taken with different values of the phase-locking angle. We express

Eq. (2.24) as the (Fourier) series

Pf φ( ) = pmeimφ

m = −1

1

∑ , (2.25)

where the coefficients are given as

p0 = 1( ) f 1( ) f + 2( ) f 2( ) f (2.26)

and

p1 = 2( ) f 1( ) f (2.27)

with p−1 = p1
∗ . The expression for the population given by Eq. (2.25) is completely

specified by the three independent parameters in Eq. (2.26) and (2.27); p0 , Re p1 , and

Im p1 . From the orthogonality of the plane wave basis, these coefficients can be

recovered from measurements of the population as6
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pm =
1

2π
Pf φ( )e− imφdφ

− π

π

∫ . (2.28)

Equation (2.28) provides an analytic means by which population measurements can be

used to isolate wave packet interferences; yet, Eq. (2.28) may be impractical for

experimental determination of the bilinear wave packet interference p1 , as it requires

continuous sampling of the f-state population with respect to the phase-locking angle.

Furthermore, the finite form of Eq. (2.25) suggest only a few measurements should be

necessary to isolate each component. Therefore, we determine the conditions under

which Eq. (2.28) can be reduced to a finite sum of population measurements.

Realistically, we assume the f-state population is sampled at evenly-spaced values

of the phase-locking angle with an interval ∆  between values. The possible phase-

locking angles are then integer multiples of ∆  defined by

φk = k∆ (2.29)

for k = 0,1,2,...K − 1 . We take the integer K such that φK = 2π  and the sampling interval

is defined as ∆ = 2π / K . According to the sampling theorem,7 accurate recovery of each

Fourier coefficient requires the sampling frequency 2π∆ −1  to be greater than the

bandwidth of Eq. (2.25). The latter is 2N = 3  and from the sampling theorem requires

K ≥ 2N + 1 = 3 . Hence, interference isolation necessitates a minimum number of K = 3

measurements and a sampling interval of ∆ = 2π / 3 . Then the integral in Eq. (2.28)

reduces to a finite sum over these discretely-sampled data, and yields

pm =
1
K

Pf k∆( )e− imk∆

k = 0

K −1

∑ (2.30)
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=
1
3

Pf 2π k / 3( )e− i2π mk /3

k = 0

2

∑ .

Considering three independent quantities describe the population in Eq. (2.25), it

seems intuitive that a minimum of three measurements should be required to isolate each

Fourier coefficient. However, Eq. (2.30) gives not only which measurements are

necessary for interference isolation, but the manner in which the signals should be

combined. Specifically, for the bilinear interference p1 , Eq. (2.30) yields

p1 =
1
3

Pf 0( ) + Pf ∆( )e− i∆ + Pf 2∆( )ei∆( ) , (2.31)

while the sum of one-pulse contributions to the population is

p0 = 1
3

Pf 0( ) + Pf ∆( ) + Pf 2∆( )( ) . (2.32)

As a consequence of the sampling theorem, the use of a sampling interval smaller

than the critical sampling interval does not provide additional information about the

interferences and is therefore unnecessary from a theoretical standpoint. Experimentally,

however, certain sampling intervals may be more practical or more easily implemented.

Such was the case in the linear WPI experiments performed by Scherer et al.,1,2 where

population measurements were taken with a sampling interval of ′∆ = 2π / 4 , i.e. K = 4 .

A feedback controlled phase-locking apparatus monitored the phase-locking angle by

detecting fluctuations in the first and second derivatives of the spectral interference which

are minimized for in-phase and in-quadrature values of locking angle, respectively. For

this case, using the first line of Eq. (2.30), the bilinear interference isolation is given by
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p1 =
1
4

Pf 0( ) + Pf ′∆( )e− i ′∆ + Pf 2 ′∆( )e− i2 ′∆ + Pf 3 ′∆( )e− i 3 ′∆( ) (2.33)

=
1
4

Pf 0( ) − iPf ′∆( ) − Pf 2 ′∆( ) + iPf 3 ′∆( )( ) .

It is interesting to note, that Scherer et al. performed signal isolation using

mechanical choppers to isolate fluctuations in the total population arising from wave

packet interference.1,2 The delay-independent one-pulse contributions to the population

were determined independently by blocking one of the incoming pulses and measuring

the resulting population. Both one-pulse contributions to the population were then

subtracted out of the fluctuating total population prepared using both pulse-pairs.

Subsequent in-phase and in-quadrature measurements yielded the real and imaginary

components of the bilinear interference. In contrast, the scheme presented by Eq. (2.31)

or (2.32) removes any need for choppers in the signal isolation.

Molecular State Reconstruction

As shown in the preceding section, the linear WPI signal is equivalent to the time-

dependent complex-valued overlap between a moving wave packet in an excited-

electronic level and a stationary wave packet at the Franck-Condon point. As noted by

Scherer et al.,1 this information provides the time-dependent kernel necessary for

calculating the resonance portion of the electronic absorption spectrum using the wave-

packet formulation developed by Heller.8 In their second paper, Scherer et al. additionally

showed how measurements of the linear WPI signal can reveal the linear susceptibility.2
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Several groups have also noted that linear WPI is a form of temporal coherent

control, whereby the total population in an excited-electronic level is influenced via the

bilinear wave packet interference.9-15 Similar to other quantum control schemes, temporal

coherent control relies on the interference between different quantum paths.16 As we have

shown above, a linear WPI experiment diagnoses the extent to which such interference

effects exist. However, it is also possible to incorporate the incident pulses into the

control mechanisms. 16-20 By shaping the incident pulses, in terms of either the temporal or

spectral properties, each wave packet, and its dynamics, can be further manipulated.17

Leichtle et al. have considered a form of linear WPI in which one of the wave

packets is prepared by a shaped pulse while preparation of the other wave packet occurs

using a pulse of arbitrarily short duration. 3,4 The linear WPI signal then probes the time-

dependent overlap of a shaped target wave packet with an unshaped reference wave

packet. Moreover, in their development of quantum state holography (QSH), Leichtle et

al. noted that the measured bilinear interference (see Eq. (2.31)) can be inverted to

determine the shaped target wave packet, provided the energy eigenstates of the system

are known. We now review the salient features of QSH.21

In QSH, the bilinear interference is measured over a range of the inter-pulse delay

t21  with the m th  measurement denoted as

zm = 2( ) f 1( ) f .  (2.34)

The measured interference is also equivalent to the overlap

zm = ref2 ν g( ) tar1 ν g( ) , (2.35)
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where the target state,

tar1 ν g( ) = eiφ1 ω L( )P1
fg ν g , (2.36)

is prepared by the shaped first pulse and not propagated for the interpulse delay, and the

reference wave packet,

ref2 ν g( ) = eiφ2 ω L( ) −ω L t21 eiH f t21 P2
fge− iHgt21 ν g , (2.37)

is prepared by the presumedly unshaped second pulse and propagated backwards in time

on the f surface. The target and reference states are not the one-pulse wave packets

prepared by the first and second pulse, respectively. However, the overlap of Eq. (2.34)

can be factored in any way which preserves its value. The factorization chosen by

Leichtle et al. is advantageous as all the unknown information is placed into the target

state, namely the effects which pulse shaping have on the preparation of a nuclear wave

packet. In turn, all of the known information is placed into the reference state, including

propagation under the presumedly known Hamiltonian H f . The presence of the spectral

phase factors in Eqs. (2.36) and (2.37) remove ambiguities in the definition of the target

and reference wave packets, respectively, that are caused by shot-to-shot fluctuations in

the absolute (or carrier-envelope offset) phase of each pulse, and therefore, each pulse

propagator.

To implement reconstruction of the target state, the wave packets in Eqs. (2.36)

and (2.37) are represented in a discrete position basis xn{ }  composed of N elements

equally spaced by a distance ∆x . With the completeness relation for this basis Eq. (2.35)

is expressed as
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zm = ∆x ref2 ν g( ) xn xn tar1 ν g( )
n = 0

N

∑ . (2.38)

The collection of M signal measurements is cast in matrix form as

z = Rt , (2.39)

using the signal vector of Eq. (2.34), the reference matrix

Rmn = ref2 ν g( ) xn ∆x (2.40)

and the unknown target vector

tn = xn tar1 ν g( ) . (2.41)

Each row of the reference matrix represents a different reference wave packet, and the

corresponding signal point is the projection of the target state onto that reference wave

packet.

To reconstruct the target vector from the interference signal, Eq. (2.39) is

numerically inverted using the measured interference signal and the calculated reference

matrix. Rows of the latter are calculated according to Eq. (2.40). However, the reference

matrix may be singular. For the latter case, inversion of Eq. (2.39) is accomplished using

singular value decomposition (SVD). The reference matrix is partitioned as

R = UWV† , (2.42)

where the N × N  matrix V  is unitary, the M × N  matrix U is row unitary, and the

N × N  matrix W is diagonal with the 

� 

j th  singular value 0≥jjW . If any singular value is

zero, the matrix R is singular and an inverse is not defined. However, a pseudo-inverse of

R may be constructed as
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RT
−1 = VWT

−1U† , (2.43)

in which a modified inverse of W is defined as

WT
−1( ) jj

=
1 / Wjj     if   Wjj / Wmax > T  

0       otherwise         






(2.44)

where Wmax  is the maximum singular value and T is a chosen numerical tolerance. The

solution to Eq. (2.39) is obtained by applying the pseudo-inverse of the reference matrix

onto the signal vector yielding

r = RT
-1z . (2.45)

The reconstructed vector obtained for a given value of T is the best solution to Eq. (2.39)

in the least-squares sense: it minimizes the norm r  and the residual Rrz −  of all

possible solutions. As a measure of reconstruction accuracy, the fidelity of the

reconstructed state is defined as

f = r† ⋅ t / r ⋅ t( ) , (2.46)

and lies between 1 and 0. Experimentally, such a measure of accuracy is unobtainable, as

it indicates prior knowledge of the target state. However, the fidelity is a useful measure

of reconstruction accuracy when testing the proposed algorithm against known results.

In the next section, we simulate an application of the reconstruction procedure

outlined above. We consider specific forms for the nuclear Hamiltonians of the g and f

electronic levels and calculate the linear WPI interferogram. This provides an opportunity

to test the accuracy and applicability of molecular state reconstruction using linear WPI

data.
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Model Harmonic System

In this section, we explore by example how features of the linear WPI signal

reflect the relative motion of the excited wave packets and how QSH can be used to

recover the stationary target state prepared by one of the pulses. We consider the example

of a non-rotating, model diatomic molecule whose initial and final electronic levels are

harmonic oscillators. The two electronic levels have different equilibrium configurations

but the same angular frequency of vibration ω . This model system serves to demonstrate

the main features of a linear WPI signal while providing analytical solutions for both the

interference signal and the prepared vibrational wave packets. Figure 2.3 illustrates the

relevant potential energy diagrams.

Fig. 2.3 The two harmonic potential surfaces used to describe the model molecule. The final surface has a
larger bare electronic energy ε f  and a larger equilibrium position x f . The frequency of the oscillators is
assumed to be the same. Preparation of a one-pulse wave packet is overlaid.

x f

ε f
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For the initial electronic level, the Hamiltonian is

Hg =
p2

2µ
+

µω 2

2
x2 (2.47)

with p  the momentum, µ  the mass of the oscillator, and x  the relative displacement

about the equilibrium position. The ladder operator

a =
µω
2







1/2

x + i p
µω







, (2.48)

which obeys the commutation relation

a,a†  = 1 , (2.49)

is used to express the g-state Hamiltonian as5

Hg = ω a†a +
1
2





 . (2.50)

The energy eigenstates of g satisfy

Hg n = Eg n( ) n , (2.51)

where n = 0,1,2,...  is the quantum of vibrational excitation and

Eg n( ) = ω n + 1 / 2( )  (2.52)

is the eigenenergy of the n th  eigenstate.

The f-state Hamiltonian is similarly taken as

H f =
p2

2µ
+

µω 2

2
x − x f( )2

+ ε f , (2.53)
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where x f  is the relative displacement in equilibrium position and ε f  is the bare

electronic energy difference between f and g. In Appendix A, we show the f-state

Hamiltonian can be expressed as

H f = D α f( ) Hg + ε f( ) D† α f( ) , (2.54)

where α f = µω / 2( )1/2 x f   and

D α( ) = eα a† −α ∗a (2.55)

is the unitary displacement operator defined in terms of the dimensionless (complex)

number  α . It is straightforward to show that the energy eigenstates of f are then

n = D α f( ) n (2.56)

and have eigenenergies

E f n( ) = Eg n( ) + ε f . (2.57)

To analyze generic features of the linear WPI signal, we specialize to the case that

the pulse durations are significantly shorter than any time scale for nuclear dynamics in

either electronic level. As we will show, this impulsive approximation to electronic

excitation neglects shaping of the prepared wave packets which might occur either

deliberately through the properties of the pulses or consequentially through nuclear

dynamics during the field-matter interaction.

To investigate the impulsive limit, we express the transition amplitude for the

pulse propagator (2.18) in the position eigenbasis as

′x Pj
fg x = i dτ ′x eiH f τ µ fg ⋅ e je

− iHgτ x Aj τ( )cos Φ j τ( )
−∞

∞

∫ .
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Owing to the (assumed) ultrashort nature of the temporal envelope, nuclear dynamics that

transpire during the pulse interactions are negligible and the latter equation can be

reduced to

′x Pj
fg x = i ′x µ fg ⋅ e j x dτ eiε f τ Aj τ( )cos Φ j τ( )

−∞

∞

∫ (2.58)

= iµ fg x( ) ⋅ e jα j ε f( )e− iφ j ε f( )δ ′x − x( ) ,

where δ x( )  is the Dirac delta function. By neglecting the coordinate dependence of the

transition dipole-moment function the pulse propagator reduces in the impulsive

approximation to the constant

Pj
fg = iµ fgα je

− iφ j , (2.59)

where α j = α j ε f( ) , φ j = φ j ε f( )  and µ fg = µ fg ⋅ e j . Note that that the validity of the

impulsive approximation results from general considerations about the brevity of the

pulses with respect to the nuclear dynamics and is independent of the harmonic model.

From Eq. (2.59), the one-pulse wave packets are then approximated as

1( ) f = iµ fgα1e
− iφ1 e− iH f t21 n (2.60)

and

2( ) f = iµ fgα 2e
− iφ2 e− iHgt21 n . (2.61)

The form of Eqs. (2.60) and (2.61) show the one-pulse wave packets are scaled copies of

the originally vibrational state propagated for t21  on the f and g potential energy surfaces,

respectively. This simplification arises from neglecting the finite duration of the pulses.
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To further investigate the form of the wave packets we recall the identity for the f-state

Hamiltonian given by Eq. (2.54). With the results from Appendix A, Eq. (2.60) becomes

1( ) f == iµ fgα1e
− iφ1 − iE f n( )t21 − iα f

2 sin ω t21 D α f 1 − e− iω t21( )( ) n (2.62)

and the wave functions of the one-pulse wave packets are

x 1( ) f = iµ fgα1e
− iφ1 − iE f n( )t21 − iα f

2 sin ω t21 e− ip1 x1 /2 − x( ) x − x1 n (2.63)

and

x 2( ) f = iµ fgα 2e
− iφ2 − iEg n( )t21 x n . (2.64)

Here x n  is the wave function of the n th  harmonic oscillator eigenstate centered about

the g-state equilibrium position. In contrast, the one-pulse wave packet 1( ) f , which has

propagated in the displaced potential for t21 , is centered at

x1 = x f 1 − cosωt21( ) (2.65)

and has the corresponding average momentum

p1 = mω x f sinωt21 . (2.66)

The latter results are equivalent to the trajectory of the corresponding classical system.5

We calculate the interference signal by overlapping the one-pulse wave packets

obtained in Eqs. (2.60) and (2.61) to yield

2( ) f 1( ) f = µ fg
2 α1α 2e

i φ2 −φ1 − ε f t21( ) n eiHgt21 e− iH f t21 n . (2.67)

The form of Eq. (2.67) emphasizes the role played by the wave-packet dynamics in a

linear WPI experiment and the use of the bilinear interference as the auto-correlation
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function essential to using the wave-packet formalism for calculating the electronic

absorption spectrum.8 Inserting (2.60) into (2.67), the wave-packet interference becomes

2( ) f 1( ) f = µ fg
2 α1α 2e

i φ2 −φ1 − ε f t21( ) (2.68)

× n D α f 1 − e− iω t21( )( ) n e− iα f
2 sin ω t21( ) ,

which, using the following result from Appendix A

n D α( ) n = e− α 2 /2Ln α 2( ) ,

where Ln x( )  is the Laguerre polynomial, reduces to

2( ) f 1( ) f = µ fg
2 α1α 2e

i ω L − ε f( )t21 (2.69)

× exp α f
2 e− iω t21 − 1( )  Ln 2α f

2 1 − cosωt21( )( ) .

In going to Eq. (2.69) we have used the phase-locking condition given in Eq. (2.7) and

the fact that the interference is defined for the case φ = 0 ; therefore φ2 − φ1 = ω Lt21 .

Notice the locking frequency demodulates the wave packet interference away from the

otherwise rapidly oscillating electronic frequency ε f ; the linear WPI signal varies on the

much slower time scale of vibrational motion, τ = 2π / ω . In Fig. 2.4, we plot the linear

interference signal given by Eq. (2.69), taking n = 0 , ω L = ε f  and α f
2 = 2 .

In Fig. 2.4, the real component of the interference signal peaks at integral

multiples of τ , while the imaginary component vanishes for half-integral multiples of τ .

These features can be understood in terms of the one-pulse wave packets moving in a out

of coincidence with each other. For integral values of the delay both wave packets are

localized at the inner turning point, while for odd-half-integral multiples of the delay the
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Fig. 2.4 The linear WPI signal for a harmonic oscillator system. Time is plotted in units of vibrational
period τ. Solid lines denote the real component, dashed lines denote the imaginary component. The signal
is plotted in units of µ fg

2 α1α 2 .

wave packets are at opposite turning points. In each case, the classical momentum (2.66)

vanishes and, from the phase of Eq. (2.69), we expect the imaginary component of the

interference signal to vanish as well. In contrast, the real component of the interference

signal peaks when the amplitude of the wave packets are coincidence, with a maximal

value occurring when both wave packets are at the inner turning point.

Coincidence of the wave packets can be visualized using phase-space diagrams.

We define the Wigner phase-space distribution function of a state ψ  as

W x, p( ) =
1

2π
dq x − q / 2 ψ ψ x + q / 2 eipq

−∞

∞

∫ . (2.70)

After normalization, the first-pulse wave packet in Eq. (2.63) is represented in phase

space as

τ

1

−1

0 2τ
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W1 x, p( ) =
1
π

exp −
1

4mω
p − p1( )2 + m2ω 2 x − x1( )2













(2.71)

while the second-pulse wave packet in Eq. (2.64) is

W2 x, p( ) =
1
π

exp −
1

4mω
p2 + m2ω 2x2 









. (2.72)

In Fig. 2.5, the one-pulse wave packets are plotted in phase-space for different amounts

of interpulse delay. Panels (a) through (d) represent the first-pulse wave packet (gray

lines) moving clockwise about the f-state minimum, while the second-pulse wave packet

(black lines) is localized at the Franck-Condon point. The target and reference states in

used in QSH are exactly opposite, with the moving reference wave packet propagating

backward in time. From Eqs. (2.36) and (2.37) we find the position representation of the

target and reference wave packets are

xp tar1 = iµ fgα1 xp n (2.73)

and

xk ref2,m = iµ fgα 2e
i ω L − ε f( )t21 + iα f

2 sin ω t21 x − x1 n eip1 x1 /2 − x( ) , (2.74)

respectively. The target state for the case of an arbitrarily short pulse is a scaled copy of

the initial vibrational wave packet, localized at the Franck-Condon transition point. The

reference state propagates counter-clockwise in phase space for increasing inter-pulse

delay, and sample the shape of target state distribution. Like the gray one-pulse wave

packet in Fig. 2.5, the reference wave packets lie along a single energy shell which, for

this simplified case, directly intersects the target state at the Franck-Condon point. More

interesting scenarios are also possible when shaped pulses are used.3,4



36

- 15 - 5 5 15

- 15

- 5

5

15

- 15 - 5 5 15

- 15

- 5

5

15

- 15 - 5 5 15

- 15

- 5

5

15

- 15 - 5 5 15

- 15

- 5

5

15

Fig. 2.5 Phase-space diagrams of the one-pulse wave packets for various t21  with isoenergy contours

(dashed lines) of the harmonic f-state potential underlain; α f
2 = 2 , m = 1  and ω = 2π . (a) The first-pulse

wave packet (gray lines) traces clockwise the circle shown. (b) Phase space separations are often larger
than configurational changes. (c) Maximal displacement occurs when the wave packets at opposite turning
points. (d) A recurrence in phase-space coincidence results in a peak in the interference signal.

t21 = τ / 2 t21 = 19τ / 20

t21 = τ / 4

mω xmω x
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To demonstrate target state reconstruction, we calculate the reference wave

packets in Eq. (2.74) to construct the reference matrix of Eq. (2.40). We use a position

grid spanning from −3x f  to 3x f  in steps of 0.1 Å over the range of interpulse delays

from 0 to 2τ  in steps 0.01τ. Each calculated reference wave packet is stored in a row of

the reference matrix. Calculating the pseudo-inverse with a tolerance of 0.1 and applying

it to the simulated interferogram yields a reconstructed state with a fidelity of 0.9986, a

near perfect reconstruction of the actual target wave packet. With the addition of 5%

random Gaussian noise to the signal, a fidelity of 0.9969 is obtained. The latter result,

shown in Fig. 2.6, has a decreased fidelity since noise washes out fine features in the

interferogram and leads to a significant distortion of the reconstructed phase function.

0.5

1.0

0

Fig. 2.6 Target and reconstructed wave packets for the model harmonic system. Solid lines represent the
amplitude and phase of the target state as a function of position, while dashed lines represent the same for
the reconstructed state. The target-state amplitude is localized about 0 Å, the Franck-Condon point on the f
surface, while the target-state phase is flat, representing zero momentum. The reconstructed amplitude is
also localized about 0 Å, and has a phase which is approximately constant across the region of non-
negligible target-state amplitude.
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Remarks

Leichtle et al. have simulated applications of QSH for reconstructing shaped

vibrational wave packets in a non-rotating sodium dimer and found that very accurate

reconstructions of certain target states are possible, i.e. high fidelities.3,4 There are,

however, limitations as to what target wave packets can be accurately reconstructed using

QSH. First, the potential energy surface on which the wave packet is prepared must be

characterized in sufficient detail to permit accurate calculations of the reference wave

packets which propagate of that surface. Second, reconstruction accuracy is limited to

spatial regions where both the target and reference states have nonzero amplitude. Since

the reference wave packets are confined to propagate along a single (Franck-Condon)

energy shell, as illustrated in Fig. 2.5, opportunities for reconstruction are limited to the

region immediately about the Franck-Condon point. As noted by Leichtle et al., the same

issue arises from considerations of the pulse bandwidths; if the first pulse, which prepares

the target state, has a larger bandwidth than the second pulse, the targeted superposition

state prepared by the first pulse will include population in nuclear eigenstates which can

not be excited by the second pulse.

Even with these limitations, QSH is an attractive experimental means for

identifying shaped wave packets and can be used to provide feedback to adaptive pulse-

shaping control techniques. Experimentally, Bucksbaum and coworkers have used a

variation of QSH for shaping electronic Rydberg wave packets in cesium atoms.23 In

those experiments, the electronic wave packet prepared by an ultrashort pulse was probed

by measuring the population of each contributing electronic level. From the known
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eigenenergies of the electronic states and the interpulse delay time, the target wave packet

was reconstructed. The measured wave function was then used as input into a closed-loop

feedback-controlled pulse shaper, programmed to shape the electronic wave packet to a

specific form. Applied to a molecular system, such a technique could support tailored

investigations of the difference in molecular dynamics arising from differently shaped

initial states.

Yet, the requirement that the excited-electronic-level nuclear Hamiltonian be well

characterized obviates any practical need for experimental state reconstruction. Given the

actual molecular Hamiltonian, computational approaches to quantum control can be used

to complement experimental pulse-shaping techniques.18-20 Though the size of the

molecular system limits the molecules for which computational approaches are

applicable, the need to calculate reference wave packets imposes the same restriction on

the approach taken by QSH.
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