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CHAPTER III

ONE-COLOR NONLINEAR WAVE PACKET INTERFEROMETRY

By employing a second pair of phase-locked pulses, nonlinear WPI is an

extension of the single pulse-pair linear WPI experiments.1,2 Originally put forth by Cina

and Harris as a means to investigate superpositions of chiral amplitudes,3 nonlinear WPI

isolates the contributions to an electronic population linear in the four applied fields.

These quadrilinear contributions to the population arise from the interference between the

multiple nuclear wave packets excited by the incident pulses. As a form of phase-

coherent, two-dimensional optical spectroscopy,5 nonlinear WPI controls the wave-

packet interference effects by shifting the two phase-locking angles. Combining

population measurements taken with different values of the phase-locking angles, i.e.

phase-cycling, isolates specific contributions to the population, and hence specific

molecular responses.

In this chapter, we formulate the theory underlying one-color nonlinear WPI, in

which each pulse-pair drives the same electronic transition. An isolated quadrilinear

contribution then represents the sum of two wave-packet interference terms, each an

overlap between a one-pulse wave-packet and a three-pulse wave packet. Similar to

linear WPI measurements, the nonlinear WPI interferogram quantifies the interference

between wave packets with respect to inter-pulse delay. For certain experimental
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conditions, the information contained within the one-color nonlinear WPI interferogram

is sufficient to perform molecular state reconstruction in a manner analogous to quantum

state holography (QSH). 6,7

Yet, unlike QSH, the one-pulse wave packet targeted for reconstruction in a

nonlinear WPI experiment is not confined to the vertical transition point on the excited

electronic surface. Instead, the target state undergoes a fixed period of field-free

propagation in which it explores the underlying potential energy surface. And the three-

pulse reference wave packets to be used for probing the target state are not limited to

motion on a single energy shell, but can be manipulated to explore a (finite) volume of

phase-space, thus increasing the possibilities for accurate reconstruction. Consequently,

molecular state reconstruction using nonlinear WPI is capable of probing photoinduced

nuclear dynamics leading to (excited-state) chemical reactions through reconstruction of

the moving wave packets.

Theory

In one-color nonlinear WPI both pulse-pairs resonate with an electronic transition

between the initial electronic level g  and the final electronic level f . In the absence

of the fields, the molecular Hamiltonian is

H = g Hg g + f H f f (3.1)

where Hg  and H f  are the nuclear Hamiltonians of g and f, respectively. The time-

dependent interaction with the four fields is
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V t( ) = Vj t( )
j =1

4

∑ , (3.2)

where for the j th  field j = 1,2,3,4( )

Vj t( ) = −µ̂ ⋅ E j t( ) . (3.3)

The dipole moment operator

µ̂ = µ fg f g + H.c. (3.4)

accounts for coupling between the electronic levels via the transition dipole moment

vector µ fg  and the j th  electric field is defined as

E j t( ) = e j Aj t − t j( )cos Φ j t − t j( ) , (3.5)

where e j  is the polarization vector, Aj t( )  is the temporal envelope, t j  is the arrival time

of the pulse, and Φ j t( )  is the temporal phase. In the following, we specialize to the case

t1 < t2 < t3 < t4 , as shown in Fig. 3.1, and ignore effects due to pulse overlaps, though the

latter can be important.8,9 We denote interpulse delays as t jk = t j − tk . For molecular state

reconstruction,  we hold the delay t43  constant while the remaining delays are varied.

Fig. 3.1 The sequence of four pulses used in a nonlinear WPI experiment. The first two pulses comprise the
first pulse-pair, while the last  two pulse make up the second pulse-pair.



45

The first and second pulses constitute the first phase-locked pulse-pair, while the

third and fourth pulse comprise the second phase-locked pulse-pair. Phase-locking each

pulse-pair fixes the relative spectral-phase difference between the pulses at a specific

locking frequency. We define the Fourier component of the j th  pulse at a frequency ω  as

α j ω( )e− iφ j ω( ) + iω t j = eiω t j dteiω t A t( )cos Φ j t( )
−∞

∞

∫ , (3.6)

where α j ω( )  is the spectral amplitude and φ j ω( ) − ωt j  is the spectral phase. Phase-

locking the first pulse-pair at the (optical) locking-frequency ω L  introduce the phase-

locking angle

φ = φ2 ω L( ) − φ1 ω L( ) − ω Lt21 . (3.7)

Similarly, the phase-locking angle of the second pulse-pair is defined at the locking-

frequency ′ω L  as

′φ = φ4 ′ω L( ) − φ3 ′ω L( ) − ′ω Lt43 . (3.8)

Differences between the spectral phases of other members in the pulse sequence are not

considered to be controlled, but are expected to fluctuate between measurements.

Appendix C discusses the role these phase fluctuations play in signal averaging.

The molecular amplitude following the action of the pulse sequence is determined

by solving Schrödinger’s equation

i
∂ Ψ t( )

∂t
= H t( ) Ψ t( ) ,  (3.9)
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where H t( ) = H + V t( )  is the time-dependent Hamiltonian, Ψ t( )  is the molecular

probability amplitude, and we have set  h = 1 . Well before the arrival of the pulses the

molecular state is taken as

Ψ t << t1( ) = g e− iHg t − t3( ) ν g , (3.10)

i.e. a nuclear eigenstate ν g  of the ground electronic level. We switch to the interaction

picture, defined by

 
%Ψ t( ) = eiHt Ψ t( ) , (3.11)

and solve the corresponding equation of motion

 
i

∂ %Ψ t( )
∂t

= %V t( ) %Ψ t( ) (3.12)

driven by the interaction operator

 
%V t( ) = eiHtV t( )e− iHt . (3.13)

Formal integration of Eq. (3.12) yields

 

%Ψ t( ) = %Ψ t0( ) − i dτ %V τ( ) %Ψ t( )
t0

t

∫ , (3.14)

where the initial time t0  is before the interaction turns on and the final time t is well after

the last pulse acts. Taking the weak-field limit, we expand the solution (3.14) out to third

order in the interaction  
%V t( )  and project out the amplitude in the f electronic level to find

 
f %Ψ t( ) = −i dτ f %V τ( ) g − dτ d ′τ f %V τ( ) %V ′τ( ) g

−∞

τ

∫
−∞

∞

∫
−∞

∞

∫



 (3.15)
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+i dτ d ′τ

−∞

τ

∫ d ′′τ f %V τ( ) %V ′τ( ) %V ′′τ( ) g
−∞

′τ

∫
−∞

∞

∫



 eiHgt3 ν g .

In deriving Eq. (3.15), we have substituted the initial condition from Eq. (3.10); the

zeroth-order term vanishes as the g and f electronic levels are orthogonal. To obtain

explicit expression for the nuclear wave packets contributing to the f-state amplitude we

evaluate each remaining interaction in Eq. (3.15).

First-order interactions leading to f-state amplitude are written as

 
−i dτ f %Vj τ( )

−∞

∞

∫ g = i dτ Aj τ − t j( )cos Φ j τ − t j( )eiH f τ µ fg ⋅ e( ) j
e− iHgτ

−∞

∞

∫ (3.16)

= eiH f t j Pj
fge− iHgt j ,

where the pulse propagator

Pj
fg = i dτ Aj τ( )cos Φ j τ( )eiH f τ µ fg ⋅ e( ) j

e− iHgτ

−∞

∞

∫ (3.17)

describes the transfer of nuclear amplitude from g  to f via the j th  pulse. The reverse

transition is given by

Pj
gf = −Pj

fg † . (3.18)

One benefit to using the pulse propagator is that electronic excitation and the changes in

the nuclear wave packet due to pulse shaping are incorporated into this instantaneous

operator. It is easily seen that the pulse propagator is proportional to the spectrum; using

the nuclear eigenstates of g and f, we have

ν f Pj
fg ν g = i ν f µ ⋅ e j ν g dτ ei E f ν f( ) − Eg νg( )( )τ Aj τ( )cos Φ j τ( )

−∞

∞

∫ (3.19)
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= i ν f µ ⋅ e j ν g α j E f ν f( ) − Eg ν g( )( )e− iφ E f ν f( ) − Eg νg( )( ) .

As should be expected, for the pulse propagator to transfer amplitude between electronic

levels, the pulse must have bandwidth at the resonance frequency E f ν f( ) − Eg ν g( ) . In

the case of a one-color experiment, all four pulses drive f ← g .

Second-order contributions are analyzed in a similar manner. However, a two

pulse transition involves the g ← f ← g  sequence of electronic excitation; therefore, no

f-state amplitude is expected from the second integral operator in Eq. (3.15).

Third-order contributions to the f-state amplitude result from the f ← g ← f ← g

electronic-excitation sequence and may arise from a single pulse driving three-photon

transitions, as well as combinations of pulses. For a single pulse, we write the third-order

interaction as

 
i dτ

−∞

∞

∫ d ′τ
−∞

τ

∫ d ′′τ f %Vj τ( ) %Vj ′τ( ) %Vj ′τ( ) g
−∞

′τ

∫ = eiH f t j Rj
fge− iHgt j , (3.20)

where

Rj
fg = i dτ

−∞

∞

∫ eiH f τ µ fg ⋅ e j Aj τ( )cos Φ j τ( )e− iHgτ (3.21)

× d ′τ eiHg ′τ µ fg ⋅ e j Aj ′τ( )cos Φ j ′τ( )e− iH f ′τ

−∞

τ

∫

× d ′′τ eiH f ′ ′τ µ fg ⋅ e j Aj ′′τ( )cos Φ j ′′τ( )e− iHg ′ ′τ

−∞

′τ

∫

describes the three-photon excitation sequence. When two pulses contribute to the

preparation of the f-state amplitude, with the first acting to second order, we write
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i dτ

−∞

∞

∫ d ′τ
−∞

τ

∫ d ′′τ f %Vj τ( ) %Vk ′τ( ) %Vk ′τ( ) g
−∞

′τ

∫ = eiH f t j Pj
fge− iHgt jk Qk

fge− iHgtk , (3.22)

where Pj
fg  was defined in Eq. (3.17) and

Qk
fg = − dτ eiHgτ µ fg ⋅ ek Ak τ( )cos Φk τ( )e− iH f τ

−∞

∞

∫ (3.23)

× dτ eiH f ′τ µ fg ⋅ ek Ak ′τ( )cos Φk ′τ( )e− iHg ′τ

−∞

τ

∫

describes the two-photon transition sequence g ← f ← g . In going to the RHS of Eq.

(3.17), we have extended the upper limit of integration over ′τ  to infinity as the pulses j

and k are assumed to not overlap. A variation on the former interaction, in which the first

pulse enters linearly and the second pulse acts to second order, is also possible. In that

case,

 
i dτ

−∞

∞

∫ d ′τ
−∞

τ

∫ d ′′τ f %Vj τ( ) %Vj ′τ( ) %Vk ′τ( ) g
−∞

′τ

∫ = eiH f t j Qj
gf e− iHgt jk Pk

fge− iHgt j , (3.24)

where Qj
gf is analogous to Eq. (3.23), but with the role of the Hamiltonians reversed.

Finally, and of specific interest in a nonlinear WPI experiment, there are contributions to

the f-state amplitude which results from the action of all three pulses, i.e.

 
i dτ

−∞

∞

∫ d ′τ
−∞

τ

∫ d ′′τ f %Vj τ( ) %Vk ′τ( ) %Vl ′τ( ) g
−∞

′τ

∫ (3.25)

= eiH f t j Pj
fge− iHgt jk Pk

gf e− iH f tkl Pl
fge− iHgtl  j ≠ k ≠ l( ) .

In going to the last line of Eq. (3.25), we have made use of the fact that we are neglecting

effects arising from pulse overlap, permitting the upper limit of integration to be extended
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to infinity for each integral. Then the triple integral is separated into three single integrals

and our definition of the pulse propagator in Eq. (3.17) is used.

For the f-state amplitude, we retain only those terms above which satisfy the time-

ordering t1 < t2 < t3 < t4 . Then each prepared nuclear wave packet is denoted according to

the pulses that prepare it. The f-state nuclear amplitude in the interaction picture at a time

well after the action of the last pulse is written as

 
f %Ψ t >> t4( ) = eiH f t4 1( ) f + 2( ) f e− iφ + 3( ) f + 4( ) f e− i ′φ

    (3.26)

+ 111( ) f + 211( ) f e− iφ + 311( ) f + 411( ) f e− i ′φ

+ 221( ) f + 222( ) f e− iφ + 322( ) f + 422( ) f e− i ′φ

+ 331( ) f + 332( ) f e− iφ + 333( ) f + 433( ) f e− i ′φ

+ 441( ) f + 442( ) f e− iφ + 443( ) f + 444( ) f e− i ′φ

+ 321( ) f eiφ + 421( ) f ei φ − ′φ( ) + 431( ) f e− i ′φ + 432( ) f e− i φ + ′φ( ) 
 .

Our abbreviated notation highlights the interaction(s) leading to preparation of the 24

wave packets. For instance, those four wave packets linear in one of the pulses are

defined as

1( ) f = e− iH f t41 P1
fgeiHgt31 ν g (3.27)

2( ) f = e− iH f t42 P2
fgeiHgt32 ν g (3.28)

3( ) f = e− iH f t43 P3
fg ν g (3.29)
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4( ) f = P4
fge− iHgt43 ν g , (3.30)

while the 4 wave packets linear in three pulses are

421( ) f = P4
fge− iHgt42 P2

gf e− iH f t21 P1
fgeiHgt31 ν g . (3.31)

321( ) f = e− iH f t43 P3
fge− iHgt32 P2

gf e− iH f t21 P1
fgeiHgt31 ν g . (3.32)

431( ) f = P4
fge− iHgt43 P3

gf e− iH f t31 P1
fgeiHgt31 ν g . (3.33)

432( ) f = P4
fge− iHgt43 P3

gf e− iH f t32 P2
fgeiHgt32 ν g . (3.34)

Illustrations of the dynamics which lead to preparation of the 8 wave packets above are

shown in Figs. 3.2 – 3.5. Explicit expression for the remaining wave packets are found in

Appendix B. Note that the 24 wave packets on the RHS of Eq. (3.26) are defined with

both pulse-pairs in-phase, i.e. both phase-locking angles set to 0. The dependence of each

wave packet on the phase-locking angles is explicated by the accompanying phase

factors. These phase factors arise from shits in the spectral phase of the second or fourth

pulse, or both. The two-photon pulse propagator Qj
ba  is independent of shifts in spectral

phase, while the one- and three-photon pulse propagators, Pj
ba  and Rj

ba , are not. For

j = 2 or 4 , the latter operators acquire a phase of either e− iφ  or e− i ′φ , respectively,

assuming b ← a  is an upward transition. Otherwise, the conjugate relations apply; see

Eq. (3.18). Note also that the state (3.26) has been back-propagated in anticipation of

transforming the amplitude back to the Schrödinger picture.
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Fig. 3.2 The wave packets 1( ) f  and 432( ) f  in a one-color experiment.

Fig. 3.3 The wave packets 2( ) f  and 431( ) f  in a one-color experiment.

1( ) f 432( ) f

2( ) f 431( ) f
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Fig. 3.4 The wave packets 3( ) f  and 421( ) f  in a one-color experiment.

Fig. 3.5 The wave packets 4( ) f  and 321( ) f  in a one-color experiment.

3( ) f

421( ) f

4( ) f

321( ) f
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Using the inverse of Eq. (3.11) and our expression for the f-state amplitude in Eq.

(3.26), we transform from the interaction picture to the Schrödinger picture and obtain for

the state long after the action of the last pulse

f Ψ t >> t4( ) = e− iH f t − t4( ) 1( ) f + 2( ) f e− iφ + 3( ) f + 4( ) f e− i ′φ
    (3.35)

+ 111( ) f + 211( ) f e− iφ + 311( ) f + 411( ) f e− i ′φ

+ 221( ) f + 222( ) f e− iφ + 322( ) f + 422( ) f e− i ′φ

+ 331( ) f + 332( ) f e− iφ + 333( ) f + 433( ) f e− i ′φ

+ 441( ) f + 442( ) f e− iφ + 443( ) f + 444( ) f e− i ′φ

+ 321( ) f eiφ + 421( ) f ei φ − ′φ( )

+ 431( ) f e− i ′φ + 432( ) f e− i φ + ′φ( ) 
 .

The corresponding population of the electronic level is

Pf φ, ′φ( ) = f Ψ t( ) 2
. (3.36)

Inserting Eq. (3.35) into (3.36) yields an expression for the f-state population,

valid for any given laser short. However, many contributions to the f-state population

depend on the spectral-phase difference between pairs of non-phase-locked pulses. It is

expected that in a nonlinear WPI experiment population measurements will necessarily

be averaged over a sequence of many laser shorts so as to reduce the signal-to-noise

level, and that during the averaging process the spectral-phase difference between pairs

of non-phase-locked pulses will fluctuate uniformly between values of 0 and 2π .
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Accordingly, those contributions to the population which depend on the spectral phase

difference between non-phase-locked pulses will vanish. In Appendix C, we give the

expression for the single-shot population and discuss which contributions should vanish

on signal averaging.

Implicitly performing the signal averaging procedure by neglecting those shot-to-

shot contributions to the population which depend on the spectral-phase difference of

non-phase-locked pulses (see Appendix C), we express the f-state population up to fourth

order in the applied field amplitudes is

Pf φ, ′φ( ) = pmne
i mφ + n ′φ( )

n = −1

1

∑
m = −1

1

∑ (3.37)

with the (Fourier) coefficients defined as

p0,0 = 1( ) f 1( ) f + 2( ) f 2( ) f + 3( ) f 3( ) f + 4( ) f 4( ) f (3.38)

+ 111( ) f 1( ) f + 211( ) f 2( ) f + 311( ) f 3( ) f + 411( ) f 4( ) f



+ 221( ) f 1( ) f + 222( ) f 2( ) f + 322( ) f 3( ) f + 422( ) f 4( ) f

+ 331( ) f 1( ) f + 332( ) f 2( ) f + 333( ) f 3( ) f + 433( ) f 4( ) f

+ 333( ) f 3( ) f + 433( ) f 4( ) f + 441( ) f 1( ) f + 442( ) f 2( ) f

+ 443( ) f 3( ) f + 444( ) f 4( ) f + c.c.


p1,0 = 2( ) f 1( ) f + 2( ) f 111( ) f + 211( ) f 1( ) f + 2( ) f 221( ) f (3.39)

+ 222( ) f 1( ) f + 2( ) f 331( ) f + 332( ) f 1( ) f + 2( ) f 441( ) f
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+ 442( ) f 1( ) f + 1( ) f 321( ) f + 321( ) f 3( ) f + 421( ) f 4

p0,1 = 4( ) f 3( ) f + 4( ) f 311( ) f + 411( ) f 3( ) f + 4( ) f 322( ) f (3.40)

+ 422( ) f 3( ) f + 4( ) f 333( ) f + 433( ) f 3( ) f + 4( ) f 443( ) f

+ 444( ) f 3( ) f + 431( ) f 1( ) f + 431( ) f 1( ) f + 432( ) f 2( ) f

p1,1 = 432( ) f 1( ) f + 4( ) f 321( ) f (3.41)

and

p−1,1 = 431( ) f 2( ) + 421( ) f 3( ) (3.42)

with the condition that p− m,− n = pm,n
∗ .

The form of Eq. (3.37) is suggestive of a two-dimensional Fourier series in the

variables φ  and ′φ . In general, any function f x, y( )  periodic in both x and y, having

periods 2T and 2 ′T , respectively,  can be expressed as a two-dimensional Fourier series10

f x, y( ) = cmne
i mx+ny( )

n= −∞

∞

∑
m= −∞

∞

∑ (3.43)

with the Fourier coefficients defined by

cmn = 1
4T ′T

dx dy f x, y( )e− iπ mx /T +ny/ ′T( )

− ′T

′T

∫
−T

T

∫ . (3.44)

The population expression of Eq. (3.37) is just such a function with periods

2T = 2 ′T = 2π . The inversion formula given by Eq. (3.44) is therefore applicable for
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determining contributions to the population with a specific phase signature. The

corresponding expression is

pmn = 1
4π 2 dφ d ′φ Pf φ, ′φ( )e− i mφ +n ′φ( )

− π

π

∫
− π

π

∫ . (3.45)

Though formally exact, Eq. (3.45) is considered impractical for experimental

determination of the quadrilinear interference terms p1,1  and p−1,1 , as it would require

continuous sampling of the f-state population with respect to both phase-locking angles.

Realistically, we may assume the f-state population to be sampled at evenly spaced values

of the phase-locking angles with an interval ∆  between values (we consider the sampling

interval of both phase-locking angles to be the same.) The possible values of φ  and ′φ

are then integer multiples of ∆ , i.e.

φ j = j∆   and  ′φk = k∆ . (3.46)

for j,k = 0,1,2,...K − 1 . We assume the integer K  is such that φK = 2π , which is

equivalent to assuming the sampling interval is a rational fraction of the periods,

∆ = 2π / K . We replace both integrals in Eq. (3.45) by a finite sum over the evenly

sampled data, yielding

pmn = ∆2

4π 2 Pf φ j , ′φk( )e− i mφ j +n ′φk( )
k =0

K −1

∑
j =0

K −1

∑ . (3.47)

Equation (3.47) is an analytic expression for isolating any of the Fourier coefficients of

the population. From our perturbative analysis of the population, we conclude that there

are nine independent quantities to the population, and as such, we expect a total of nine

population measurements to be necessary, i.e. K 2 = 9 . Equation (3.47) is then written as
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pmn = 1
9

Pf j∆,k∆( )e− i mj +nk( )∆

k =0

2

∑
j =0

2

∑ (3.48)

with ∆ = 2π / 3 . The quadrilinear interference term p−1,1  is then given by

         p−1,1 =
1
9

Pf 0,0( ) + Pf 0, ∆( )e− i∆ + Pf 0,2∆( )ei∆( (3.49)

+Pf ∆,0( )ei∆ + Pf ∆, ∆( ) + Pf ∆,2∆( )e− i∆

+Pf 2∆,0( )e− i∆ + Pf 2∆, ∆( )ei∆ + Pf 2∆,2∆( )) ,

as can be verified by using Eq. (3.37). Similarly, the remaining quadrilinear interference

is given by

p1,1 =
1
9

Pf 0,0( ) + Pf 0, ∆( )e− i∆ + Pf 0,2∆( )ei∆( (3.50)

+Pf ∆,0( )e− i∆ + Pf ∆, ∆( )ei∆ + Pf ∆,2∆( )

+Pf 2∆,0( )ei∆ + Pf 2∆, ∆( ) + Pf 2∆,2∆( )e− i∆ ) .

The combination of measurements necessary for isolating the remaining Fourier

coefficients can also be determined from Eq. (3.48). When all five (unique) Fourier

coefficients are recovered, the population of Eq. (3.37) can be formed. When fewer than

nine measurements are used aliasing may corrupt isolation of the Fourier coefficients.11

Also, if the perturbative expression for the population should fail to account for higher-

order terms in the phase-locking angles, e.g., p2,0e
− i2φ , then more than nine

measurements will be necessary to isolate a given coefficient. Those higher-order terms

(at least at sixth-order in the applied field amplitudes) are expected to be much smaller

than the second- and fourth-order terms of interest here.
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Molecular State Reconstruction

In general, the quadrilinear contribution to the population given by Eq. (3.42) and

isolated according to Eq. (3.49) represents a sum the overlaps 431( ) f 2( ) f  and

421( ) f 3( ) f . But mixing of these two wave-packet interferences can be minimized

when the system’s dynamics and the spectral bandwidth of the pulses are taken into

account. As noted first by Cina,4 the differences between the one-pulse wave packets

2( ) f  and 3( ) f  are due mostly to a longer period of propagation in the excited

electronic level for the former (the differences between the second and third pulses being

assumed small). If the delay t32  is chosen sufficiently large, the wave packet 2( ) f  will

explore regions of the excited surface far from the Franck-Condon point, where the

electronic difference potential is red-shifted relative to the absorption maximum. In this

case, substantial overlap between 2( ) f  and 431( ) f  can only occur if the spectral

bandwidths of the third and fourth pulses encompass those (red-shifted) f ← g  transition

frequencies; otherwise, the overlap is diminished. The extent to which the relevant

resonance frequencies are red-shifted is determined by the electronic difference potential

and hence the limitations on bandwidth necessary to minimize mixing of the overlaps

varies from molecule to molecule.

In contrast, the one-pulse wave packet 3( ) f  propagates for a delay t43  which is

varied independently of t32 . And the three-pulse wave packet 421( ) f  is not subjected to
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spectral discrimination arising from the bandwidth of the second pulse-pair; it propagates

on the g surface during the presumedly long delay t32 . Therefore, while spectral

bandwidth may diminish one of the overlaps, the other is not (necessarily) minimized and

parts of the nonlinear WPI interferogram will represent a single overlap.

Let us assume mixing of the overlaps in Eq. (3.42) have been minimized based on

bandwidth considerations and that  a collection of M signal measurements

zm = 421( ) f 3( ) f , (3.51)

where m = t21,t32( )  is an index of the delay times used, are measured according to Eq.

(3.49). We recast the wave-packet interference data as

zm = ref421 ν g( ) tar3 ν g( ) , (3.52)

where the target state is defined as

tar3 ν g( ) = ei φ3 ′ω L( ) + i ′ω L t43( )e− iH f t43 P3
fg ν g (3.53)

and represents preparation of a nuclear wave packet on the f surface by the third pulse

that propagates for the fixed delay t43 . The reference state in Eq. (3.52) is defined as

ref421 ν g( ) = eiφ4 ′ω L( )P4
fge− iHgt42 P2

gf e− iH f t21 P1
fgeiHgt31 ν g , (3.54)

and arises when the first pulse creates a nuclear wave packet on the f surface that

propagates until the second pulse transfers the amplitude back to g. There the wave

packet evolves until the fourth pulse induces the final excitation back to f. Preparation of

the target and reference states correspond with the illustrations in Fig. 3.4 for 3( ) f  and

421( ) f , respectively.
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For molecular state reconstruction, the target and reference states are represented

using a discrete position basis xn{ }  with a spacing ∆x  between elements. Inserting the

completeness relation for this discrete set into Eq. (3.52) yields

zm = ∆x ref421 ν g( ) xn xn tar3 ν g( )
n = 0

N

∑ ,  (3.55)

or, for a collection of M measurements,

z = Rt , (3.56)

where  the signal vector is defined by Eq. (3.51) , the  reference matrix is defined by

Rmn = ref421 ν g( ) xn ∆x , (3.57)

and the target vector is defined as

tn = xn tar3 ν g( ) . (3.58)

The elements of the target vector, which are presumedly unknown, are determined by

numerically inverting Eq. (3.56) using singular value decomposition (SVD) of the

reference matrix. The SVD of R is11

R = UWV† (3.59)

where V is an N × N  unitary matrix, U is an M × N  row unitary matrix, and W is an

N × N  diagonal matrix with singular values Wjj ≥ 0 .  An inverse of R is not defined if

any of the singular values are zero, as the inverse of W is then not defined. But a pseudo-

inverse of R can be constructed from its SVD as

RT
−1 = VWT

−1U† , (3.60)

where the modified inverse of W is defined as
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WT
−1( ) jj

=
1 / Wjj     if Wjj / Wmax > T

0       otherwise      




. (3.61)

In Eqs. (3.60) and (3.61), the tolerance T is a numerical parameter to cutoff those singular

values which are below a fraction of the maximum singular value Wmax . Applying the

pseudo-inverse to Eq. (3.56) yields the reconstructed vector

r = RT
−1z (3.62)

which for a given value of the tolerance minimizes the norm r  and residual z − Rr  of

all possible solutions.11 As a measure of the reconstruction accuracy we define the fidelity

f =
r† ⋅ t
r t

, (3.63)

which lies between 0 and 1.

The present formulation of state reconstruction is similar to the approach taken in

QSH, but two differences deserve special attention. First, the source of the interference

signal in the present case is a nonlinear WPI experiment, while QSH uses linear WPI

data. Second, the definitions of the target and reference states are substantially different.

Here the target state is a wave packet propagated under H f , while in QSH the target state

does not propagate but remains localized at the vertical transition point. Furthermore,

here the reference states are not restricted to a single line through phase space, but rather

explore a finite volume defined by the pulse bandwidth and the range of inter-pulse

delays. These distinctions give the present method the possibility of reconstructing a

much larger class of potential target wave packets.
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Like QSH, the present molecular state reconstruction scheme requires detailed

knowledge about both the initial and final electronic levels. When such information is

available, computational approaches to quantum state determination are viable, if not

altogether more practical; the computational requirements to compute the M reference

wave packets comprising the reference matrix seem to obviate the need for an

experimental state reconstruction under these circumstances. However, as was the case

with linear WPI and QSH, an ability to reconstructed the quantum state of a molecule

provides new opportunities for performing experimental quantum chemistry, where now

transient wave forms of reacting species are potential for wave function imaging.

Model Harmonic System

To discuss in detail the quadrilinear interference terms and their potential use for

state reconstruction we first consider a model molecular system with harmonic oscillator

surfaces comprising the two electronic levels. The oscillators have the same angular

frequency ω , but different equilibrium configurations. For the initial electronic level we

take

Hg =
p2

2µ
+

µω 2

2
x2 (3.64)

with µ  the mass of the oscillator, p  the linear momentum, and x  the relative

displacement about the equilibrium position. We express Hg  in terms of the ladder

operator,
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a =
µω
2







1/2

x + i p
µω







, (3.65)

which obeys the commutation relation

a,a†  = 1 . (3.66)

Hence

Hg = ω a†a +
1
2





 . (3.67)

The corresponding energy eigenstates satisfy

Hg n = Eg n( ) n , (3.68)

for n = 0,1,2,... ,with

Eg n( ) = ω n + 1 / 2( ) .  (3.69)

the eigenenergy. The f-state Hamiltonian is

H f =
p2

2µ
+

µω 2

2
x − x f( )2

+ ε f , (3.70)

where x f  is the displacement in equilibrium position relative to g and ε f  is the bare

electronic-energy difference between f  and g. In Appendix A, we show that using the

unitary displacement operator

D α( ) = eα a† −α ∗a , (3.71)

where α  is in general a dimensionless complex number, the f-state Hamiltonian can be

expressed as

H f = D α f( ) Hg + ε f( ) D† α f( ) (3.72)
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with α f = mω / 2( )1/2 x f . The f energy eigenstates are given by

n = D α f( ) n (3.73)

with corresponding eigenenergies

E f n( ) = Eg n( ) + ε f . (3.74)

Fig. 3.6 The two harmonic potential surfaces used to describe the model molecule. The final surface has a
larger bare electronic energy ε f  and a larger equilibrium position x f . The frequency of the oscillators is
assumed to be the same. Preparation of a one-pulse wave packet is overlaid.

In our analysis, we specialize to the case that all four pulses are of a sufficiently

short duration that any nuclear dynamics occurring during their interaction with the

molecule can be neglected. In this impulsive approximation, shaping of the nuclear wave

packets due to the effects of finite pulse duration are excluded, but analytical functional

forms for the wave packet dynamics can be obtained.

x f

ε f
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To investigate the impulsive limit, we express the transition amplitude for the

pulse propagator in the position eigenbasis as

′x Pj
fg x = i dτ ′x eiH f τ µ fg ⋅ e je

− iHgτ x Aj τ( )cos Φ j τ( )
−∞

∞

∫ .

Owing to the (assumed) ultrashort nature of the temporal envelope, nuclear dynamics that

transpire during the pulse interactions are negligible and the latter equation can be

reduced to

′x Pj
fg x = i ′x µ fg ⋅ e j x dτ eiε f τ Aj τ( )cos Φ j τ( )

−∞

∞

∫ (3.75)

= iµ fg x( ) ⋅ e jα j ε f( )e− iφ j ε f( )δ ′x − x( ) ,

where δ x( )  is the Dirac delta function. By neglecting the coordinate dependence of the

transition dipole-moment function the pulse propagator reduces in the impulsive

approximation to the constant

Pj
fg = iµ fgα je

− iφ j , (3.76)

where α j = α j ε f( ) , φ j = φ j ε f( )  and µ fg = µ fg ⋅ e j . Note that that the validity of the

impulsive approximation results from general considerations about the brevity of the

pulses with respect to the nuclear dynamics and is independent of the harmonic model.

In the impulsive approximation, we can write down the form of the wave packets

prepared on the harmonic f surface. With the help of the results in Appendix A, we find

the one-pulse wave packets given in Eqs. (3.27) to (3.30) can be written as

1( ) f = iµ fgα1e
− i φ1 + E f n( )t41( ) − iα f

2 sin ω t41 D α f 1 − e− iω t41( )( ) n (3.77)
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2( ) f = iµ fgα 2e
− i φ2 + E f n( )t42( ) − iα f

2 sin ω t42 D α f 1 − e− iω t42( )( ) n (3.78)

3( ) f = iµ fgα 3e
− i φ3 + E f n( )t43( ) − iα f

2 sin ω t43 D α f 1 − e− iω t43( )( ) n (3.79)

4( ) f = iµ fgα 4e− iφ4 n (3.80)

while the three-pulse wave packets in Eqs. (3.31) to (3.34) are

421( ) f = −iµ fg
3 α 4α 2α1e

i ω L − E f n( )( )t21 − iφ4 − iα f
2 sin ω t21 (3.81)

×D α f 1 − e− iω t21( )e− iω t42( ) n

321( ) f = −iµ fg
3 α 3α 2α1e

i ω L − E f n( )( )t21 − iφ3 − iα f
2 sin ω t21 + sin ω t31 − sin ω t32( ) (3.82)

×D α f 1 − e− iω t21( )e− iω t32 − 1( )e− iω t43 + α f( ) n

431( ) f = −iµ fg
3 α 4α 3α1e

− i φ1 + ′ω L t43 + ε f t31( ) − iα f
2 sin ω t31 (3.83)

×D α f 1 − e− iω t31( )e− iω t43( ) n

432( ) f = −iµ fg
3 α 4α 3α 2e

− i φ2 + ′ω L t43 + ε f t32( ) − iα f
2 sin ω t32 (3.84)

×D α f 1 − e− iω t32( )e− iω t43( ) n

We calculate the quadrilinear overlaps arising from the wave packets in Eqs. (3.77) to

(3.84) for the case n = 0 and find

432( ) f 1( ) f = − µ fg
4 α 4α 2α 3α 4ei ′ω L − ε f( )t43 + i ω L − ε f( )t21 (3.85)

× exp α f
2 e− iω t21 + eiω t32 + eiω t43 + e− iω t41 − e− iω t31 − eiω t42 − 2( ) 

431( ) f 2( ) f = − µ fg
4 α 4α 2α 3α 4ei ′ω L − ε f( )t43 − i ω L − ε f( )t21 (3.86)
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× exp α f
2 eiω t21 − e− iω t32 + eiω t43 − eiω t41 + eiω t31 + e− iω t42 − 2( ) 

421( ) f 3( ) f = − µ fg
4 α 4α 2α 3α 4ei ′ω L − ε f( )t43 − i ω L − ε f( )t21 -(3.87)

× exp α f
2 eiω t21 − eiω t32 + e− iω t43 − eiω t41 + eiω t31 + eiω t42 − 2( ) 

321( ) f 4( ) f = − µ fg
4 α 4α 2α 3α 4e− i ′ω L − ε f( )t43 − i ω L − ε f( )t21 (3.88)

× exp α f
2 eiω t21 + eiω t32 + eiω t43 + eiω t41 − eiω t31 − eiω t42 − 2( ) 

In Figs. 3.7 to 3.10 we plot Eqs. (3.85) to (3.88), respectively, for the case α f
2 = 2

and ω L = ′ω = α f
2ω + ε f  with t43 = 0.25τ , where τ  is the vibrational period. These

contour plots use solid (dashed) lines to denote positive (negative) values with these lines

spaced by one-tenth of the signal maximum µ fg
4 α1α 2α 3α 4 . In the upper panel of each

figure we plot the magnitude of the overlap, in the middle the real component, and in the

bottom panel the imaginary component. For the harmonic system the complex signal is

repetitive along the t32  axis. Periodicity along the other time axis, t21 , depends on the

value of the locking frequency ω L  and its offset from resonance with the vertical

electronic difference energy. A similar effect has been observed in linear WPI

experiments; see Ref. [1].

The sum of Eq. (3.85) and the conjugate of Eq. (3.88) comprises the interference

p1,1 ; recall Eq. (3.41). From Figs. 3.7 and 3.10 we see that the form of these two overlaps

is very different, but that they both have maxima for the same values of inter-pulse

delays.
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Fig. 3.7 One-color 432( ) f 1( ) f  contribution for a model harmonic system.
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Fig. 3.8 One-color 431( ) f 2( ) f  contributions for a model harmonic system.
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Fig. 3.9 One-color 421( ) f 3( ) f  contributions for a model harmonic system.
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Fig. 3.10 One-color 321( ) f 4( ) f  contributions for a model harmonic system.
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Indeed, the magnitude of 432( ) f 1( ) f  and 321( ) f 4( ) f  are the same at arbitrary

values of t21,t32 ,t43( ) , while the phases of these overlaps are generally different.

Likewise, the sum of Eqs. (3.86) and (3.87) comprises the interference p−1,1 , as given

in Eq. (3.42). From Figs. 3.7 and 3.10, it is apparent that p1,1  and p−1,1  have maxima

for the same values of interpulse delays. This is not due to the specific choice of

t43 = 0.25τ , but is rather a consequence of the harmonic oscillations. A single

quadrilinear overlap is not isolable, and molecular state reconstruction is not possible.

To rationalize how coincidences in magnitude are determined by the harmonic

motion of the vibrations we use phase-space diagrams to trace the motion of each

wave packet leading to maximal overlap. This is facilitated by the quasi-classical

nature of a coherent state, whose “trajectory”, i.e. time-dependent average of position

and momentum, matches that of the corresponding classical system. For

432( ) f 1( ) f  and 321( ) f 4( ) f  a maximum in the overlap occurs for

t21 = t32 = 0.25τ  and in Figs. 3.11 and 3.12 we plot the trajectory for each of these

wave packets in phase space. From Figs. 3.11 and 3.12 it is apparent that the

dynamics leading to a maximum in each contribution are different. Similar plots give

insight into the common maxima of the 431( ) f 2( ) f  and 421( ) f 3( ) f  overlaps,

e.g., at t21 = t43 = 0.25τ  and t32 = 0.75τ .
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Fig. 3.11 Phase-space trajectory diagrams for 1( ) f  and 432( ) f  wave packets which lead to maximal
coincidence in wave packet overlap. Brackets denote time-evolution for the enclosed amount of time and
the solid circle represents the end point of the trajectory. In the figure, t21 = t32 = t43 = 0.25τ .

       

Fig. 3.12 Phase-space trajectory diagrams for 4( ) f  and 321( ) f  wave packets which lead to maximal
coincidence in wave packet overlap. Brackets denote time-evolution for the enclosed amount of time and
the solid circle represents the end point of the trajectory. In the figure, t21 = t32 = t43 = 0.25τ .
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Fig. 3.13 Phase-space trajectory diagrams for 2( ) f  and 431( ) f  wave packets which lead to maximal
coincidence in wave packet overlap. Brackets denote time-evolution for the enclosed amount of time and
the solid circle represents the end point of the trajectory. In the figure, t21 = t43 = 0.25τ  and t32 = 0.75τ .

     

Fig. 3.14 Phase-space trajectory diagrams for 3( ) f  and 421( ) f  wave packets which lead to maximal
coincidence in wave packet overlap. Brackets denote time-evolution for the enclosed amount of time and
the solid circle represents the end point of the trajectory. In the figure, t21 = t43 = 0.25τ  and t32 = 0.75τ .
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Model Photodissociative System

The model harmonic system is useful for gaining insight into the wave packets

prepared in a one-color nonlinear WPI experiment, but does not lend itself to an

implementation of molecular state reconstruction; in the foregoing discussion we found

the contributions to the interference signal have maxima for the same values of interpulse

delay. Such coincidences in wave-packet dynamics prevent the means to diminish mixing

of overlap information using spectral discrimination with the pulse bandwidths. But for

the case of a model photodissociative system, in which the excited-electronic level is an

exponentially decaying function of position, wave packet overlaps can be minimized

through control of the interpulse delays.

We take the initial Hamiltonian to be harmonic, as in Eq. (3.64). The final-state

Hamiltonian is

H f =
p2

2µ
+ De− β x + ε f (3.89)

where D is the Franck-Condon energy (relative to the bare electronic-difference energy

ε f ) and β  is an inverse length scale which controls how the potential decays. To

determine the interferogram for this system we use numerical calculations. We take

numerical values of µ = 63.5 amu , ω = 2π c 250 cm-1( ) , D = 2π c 1000 cm-1( ) , and

β = 10.85 Å-1 . A plot of the potential surfaces is shown in Fig. 3.15. While the

parameters are suggestive of diatomic iodine, the present potential only serves as models

for the investigation of photo-dissociative dynamics. Both locking frequencies are

resonant with the vertical transition energy ω L = ′ω L = D + ε f .
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tÉ

Fig. 3.15 The model dissociative potential used in the simulation. Wave packets are prepared by vertical
excitation using one of the pulses and then begin to dissociate. For the three-pulse wave packet dissociation
is halted by a de-excitation back to the harmonic ground state, while the one-pulse wave packets may
continue dissociating.

We numerically calculate the wave packets in Eqs. (3.27) to (3.30)  by

representing them over a position grid.12 Invoking the impulsive approximation for the

pulses, we require only the action of the time-evolution operator in each electronic level

which we approximate using a split-propagation operator with fast Fourier transforms

between position and momentum space operations.13 We use a propagation step of 0.01

fs. Setting t43 = 33.35 fs , which is approximately a quarter of the ground state vibrational

period τ vib = 133.35 fs , we scan t21  and t32  each from 0 to τ vib  in 50 equally spaced

steps. Overlaps are then calculated between the wave packets. In Fig. 3.16, we show the

quadrilinear interference p−1,1 .

En
er

gy

Position
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Fig. 3.16. The real and imaginary components of p−1,1  for a model photodissociative system. Solid (dashed)
lines denote positive (negative) values of the interference in units of 1/7th the signal maximum
µ fg

2 α1α 2α 3α 4 . Here t43 = 0.25τ vib = 33.35 fs .

Im p−1,1 

t32 / τ vib

t21 / τ vib

t32 / τ vib

t21 / τ vib

Re p−1,1 
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The large features in Fig. 3.16 residing in the lower right quadrant of each contour

plot is the interference due to 421( ) f 3( ) f . The small features located near the 0,0( )

point in the interferogram are due to 431( ) f 2( ) f . The latter contribution to the

interference decays very rapidly as either delay is increased; in both cases the one-pulse

wave packet 2( ) f  propagates further down the dissociative potential. The same can be

said for the three-pulse wave packet 431( ) f , but it spends a quarter of a vibrational

cycle on the g surface, so that as the amplitude of the initial wave packet motion is

increased, the end point of the phase-space trajectory is continuously moved further from

the target state. In contrast, the 421( ) f 3( ) f  repeats along the t32  axis with a periodicity

given by the harmonic period of g. This results from the harmonic motion of the three-

pulse wave packet during this delay. After peaking at t21 = t43 , the overlap decays along

the t21  axis. The peak arises from maximal coincidence between the wave packets, as was

the case for the model harmonic system, but as the three-pulse wave packet spends more

time in the excited electronic level it too begins to dissociate.

Due to the dynamical discrimination resulting from the dissociative potential, the

interferogram supplies the information necessary for reconstruction of the target state

defined in Eq. (3.53). Using the calculated interferogram in Fig. 3.16  and the reference

states in Eq. (3.54), we solve the matrix equation given by Eq. (3.56) for the model

dissociative system. The results of the reconstruction procedure are shown in Fig. 3.17,

where a fidelity of 1.000 (to within machine precision) was obtained.
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Fig. 3.17 The target and reconstructed states for the dissociative system. The solid (dashed) lines are the
real (imaginary) components of the wave function. Position is measured in angstroms (Å), probability
amplitude is measured in units of Å-1/2. The magnitude of the overlap between these normalized wave
packets is unity to within machine precision.

Remarks

In this chapter we have formulated the theory of one-color nonlinear WPI and

simulated its application to model harmonic and photodissociative systems. In the case of

the former, analytic expressions of the wave packet dynamics were obtained but

molecular state reconstruction was not possible given substantial mixing of the two

contributing overlaps. For the case of a dissociative system, one of the interference

contributions was diminished due to the dynamics of the model molecular Hamiltonian.

Consequently, the information needed to implement state reconstruction was available

from the calculated interferogram and an application of the state reconstruction scheme

outlined in this chapter yielded a reconstructed state with unit fidelity. These simulations
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demonstrated the concept of a one-color reconstruction technique and highlighted some

aspects of signal isolation which will benefit future experimental investigations. Though

our investigations have been for systems with a single vibrational degree of freedom,

Cina has noted that the prospects for a successful one-color state reconstruction also

extend to bound multimode systems, where long propagation times in an excited

electronic level could diminish the mixing of wave-packet overlaps as a result of

incommensurate vibrational periods.4

A one-color reconstruction technique necessitates information about the final-

state Hamiltonian to calculate the reference wave packets. The availability of such

information raises the question as to whether a one-color experimental state

reconstruction scheme is practical or even necessary; if the three-pulse reference states

can be calculated, why not the one-pulse target state? There are several reasons

motivating implementation of a one-color reconstruction technique. First, as noted shown

by Bucksbaum and coworkers using a variation of quantum state holography,14 state

reconstruction can drive adaptive pulse-shaping experiments, be they closed-loop or

otherwise. This suggests that one could investigate excited-state molecular dynamics by

using molecular state reconstruction to tailor specific initial nuclear states. The

advantages afforded by using nonlinear WPI now extends the same degree of control to

the reconstruction and shaping of transient wave packets in a photochemical reaction.

Such aspects are also important to molecular applications of quantum computing, where

one-color state reconstruction could be useful for performing read-out operations on

molecular computers running, for example, quantum simulation algorithms.15
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Second, knowledge of an excited-state nuclear Hamiltonian will realistically be

incomplete. Though the potential underlying nuclear dynamics may be well-characterized

near the vertical transition point and in small regions thereabouts, information about the

potential surface far from equilibrium is generally more difficult to gain; computationally

there are limits on the resources and techniques which one uses to solve the electronic

Schrödinger equation. As calculations of the reference states are restricted to those

molecular conformations for which the potential is known, there are often a wide range of

nuclear motions which can not be calculated. But such a limitation is not placed on the

target state, whose dynamics are determined by the actual Hamiltonian, known only to

the molecule.

Fig. 3.18. A target state returns after undergoing large amplitude motion. The shaped area represents the
region of phase space in which reference states can be calculated.

The target state is free to explore “unknown” regions of phase space, i.e. regions

of phase-space for which reference states cannot be calculated. If the target state were to

return from these large amplitude explorations to the known regions of phase space, the

one-color reconstruction technique could then be used to detect the subsequent changes in

the target state. An example of the latter case is a pre-dissociative system, for which a

mω x

p
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dissociating wave packet is partially reflected by finite a potential barrier back to the

Franck-Condon point. In Fig. 3.18, we shade the region of known phase space and trace

the bound trajectory of the target state. After visiting the outer turning point, a target state

that returns to the known region of phase space could be reconstructed.
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