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CHAPTER V

WAVE PACKET INTERFEROMETRY AND

ELECTRONIC ENERGY TRANSFER

Introduction1

Advances in controlling2,3 or monitoring4 the inter-pulse delays within sequences of

femtosecond laser pulses with sub-optical-period accuracy have triggered the development

of new electronic interference spectroscopies in which the signal is quadralinear in external

fields bearing precisely specified optical phase relationships to one another.5,6,7 The power

of these techniques for elucidating chemical dynamics lies in generating coherent signals

that are directly proportional to the overlap between multi-pulse target and reference nuclear

wave packets (in a pure-state description) or to a multi-pulse density matrix increment (in a

mixed-state treatment). This feature stands in contrast to more standard homodyne-detected

four-wave mixing spectroscopies, which measure quantities proportional to the absolute-

value-squared of the corresponding overlap or density matrix increment and do not require

phase-controlled pulse sequences. It also differs from ultrafast pump-probe8 and time-

resolved fluorescence9 spectroscopies, which are linear in a density matrix increment but

bilinear in each of two external pulses (pump and probe or gate) and which to first

approximation monitor time-dependent nuclear probability densities10 rather than overlaps

between distinct amplitudes. The latter two examples additionally require a compromise

between time-resolution (pulse duration) and frequency resolution (spectral selectivity) in at

least one of the pulses, whereas amplitude-sensitive interference spectroscopy approaches
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its ideal realization with pulses short enough to freeze nuclear motion on the fastest

timescales.

The experimental study of amplitude-sensitive nonlinear electronic spectroscopy was

initiated by Wiersma and co-workers with their measurement of phase-locked heterodyne-

detected stimulated photon echoes (pl-HSPE) from dye molecules in solution.5,11 The

current state of progress in the field is exemplified by Jonas and co-workers’ recent two-

dimensional Fourier-transform study of electronic transitions in another solvated laser dye.7

In addition to incorporating a number of technical improvements, those experiments7 may

reveal additional information about nonresonant effects because they employ an external

reference field that does not pass through the sample. There have been parallel advances in

heterodyne-detected multi-dimensional vibrational spectroscopy of both solvated

chromophores12 and neat liquids.13

Theory has guided all of these developments. The phase-locked heterodyned photon

echo (and the closely related three-pulse phase-locked pump-probe absorption) was

suggested by Cho et al.14 Tanimura and Mukamel15 analyzed the prospects for multi-

dimensional vibrational spectroscopy prior to its successful implementation. Theoretical

studies by Metiu and Engel16 prefigured the original experiments on linear interference

spectroscopy with phase-locked pulses.2,3

Despite the experimental progress and the contributions from theory in elucidating

the physical content of ultrafast electronic interference measurements, much work remains

to be done toward interpreting these signals in terms of the underlying molecular processes.

In this context, it is desirable to seek detailed pictures of many-body condensed-phase

dynamics similar to those that have emerged from relatively simpler pump-probe

experiments17 and time-resolved coherent anti-Stokes Raman scattering (tr-CARS) signals

from chromophores in low-temperature matrices.18 The most illuminating interpretations in
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each case have been wavepacket descriptions akin to those originally devised for linear

absorption19 and resonance Raman20 data.21,22,10,23,24

In previous research that helped develop wavepacket pictures for multi-dimensional

interference experiments, we analyzed the ability of nonlinear wavepacket interferometry

measurements equivalent to the pl-HSPE to prepare and measure superpositions between

differently-handed states in the double-well potential of a chiral molecule.25 More recently,

we have shown that nonlinear wavepacket interferometry has the capacity to reveal the

complex-valued overlaps between a given short-pulse-generated target wavepacket on an

excited potential energy surface of a polyatomic molecule and an exhaustive collection of

variable reference wave packets.26,27  Among other uses, this form of wavepacket

interferometry could serve as a diagnostic tool for quantum control28 and molecule-based

quantum information processing.29

Here we make a detailed study of multi-dimensional time-domain electronic

interference spectra for a model complex supporting electronic energy transfer, and interpret

their form in terms of the amplitude dynamics of the nuclear wave packets on and between

donor-excited and acceptor-excited electronic potential energy surfaces. The ultrafast

dynamics of electronic energy transfer in photosynthetic light-harvesting complexes,30 J-

aggregates,31 and various model complexes32,33,34,35 has been the focus of intensive

investigation. This prototypical process in chemical dynamics was described by Förster in

an insightful heuristic treatment.36 A more rigorous treatment, which generalizes the original

description by incorporating electronic coherence and inter- as well as intramolecular

motion was later put forward by Rackovsky and Silbey37 and Soules and Duke.38,39 While

the focus in prior studies has mostly been on donor- and acceptor-state population

dynamics or nuclear probability densities (proportional to the square and higher even

powers of the transfer matrix element J), we show here that wavepacket interferometry
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measurements are sensitive to the nuclear probability amplitude (linear in J) for electronic

energy transfer.

Our model energy-transfer complex is a simple one amenable to detailed analysis. It

comprises a pair of interacting two-level chromophores whose electronic transition dipole

moments are fixed in space. Donor and acceptor chromophores each support a single

intramolecular vibration.  We touch on the issue of inhomogeneous broadening of the

electronic transition frequencies, but defer until later the incorporation of important features

such as multiple intra-and intermolecular vibrational modes, orientational disorder, electronic

dephasing, and thermal congestion.40 By illustration with this model complex, we show that

nonlinear wavepacket interferometry, together with the tools of optical phase control and

polarization spectroscopy, is directly sensitive at the amplitude level to the dynamics of

inter-nuclear motion accompanying and giving rise to energy-transfer surface-crossing

transitions. It has the capacity to monitor the basic process of electronic-nuclear state

entanglement that underlies energy transfer, and ameliorates a long-perceived shortcoming

of conventional measurements on two-electronic-state systems.41

Basic Theory

We consider a dimer complex whose Hamiltonian,

H = 0 H0 0 + 1 H1 1 + ′1 H ′1 ′1 + 2 H0 2 + J ′1 1 + 1 ′1{ }  (5.1)

comprises four electronic levels: 0 = gagb  with both molecules unexcited, 1 = eagb

with the “donor” excited, ′1 = gaeb  with the “acceptor” excited, and 2 = eaeb with

both molecules excited.  The corresponding nuclear Hamiltonians,

H j =
pa

2

2m
+

pb
2

2m
+ vj (qa , qb ) , (5.2)

with potential energy surfaces,
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v0 =
mω 2

2
(qa

2 + qb
2 ) , (5.3)

v1 = ε1 +
mω 2

2
((qa − d)2 + qb

2 ) , (5.4)

v ′1 = ε ′1 +
mω 2

2
(qa

2 + (qb − d)2 ) , (5.5)

v2 = ε2 +
mω 2

2
((qa − d)2 + (qb − d)2 ) , (5.6)

govern the motion of one intramolecular vibration in each chromophore. The equilibrium

position of a vibrational mode is displaced by a distance d  when the host molecule is

electronically excited. The site energy of the two-exciton state is typically ε2 ≅ ε1 + ε ′1 .42,43

Fig. 5.1 Schematic contour plots of potential energy surfaces for electronic ground state, donor excited
state, acceptor excited state, and two-exciton state. The minimum of energy in each potential is at the
corresponding site energy, as in Eqs. (5.3) – (5.6). A sketch of the spatial path for a possible contribution
to the target wave packet is also shown.

Figure 5.1 shows a contour plot of the four site potential energy surfaces.44 A state

change from 1 to ′1 — energy transfer from donor to acceptor — is expected to proceed

efficiently at positions where v1 = v ′1 . This intersection occurs along a diagonal line

qb = qa − (ε1 − ε ′1 ) / mω 2d  whose location depends on the site-energy difference between

donor and acceptor moieties.45 As energy transfer ensues, an entangled state develops
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through the process 1 ψ 1 → 1 ψ 1 + ′1 ψ ′1 . While the transferred population,

ψ ′1 ψ ′1 , is often measured, and some information about the time-evolution of the

probability density, | ψ ′1 (qa ,qb ) |2 , has already been obtained from ultrafast experiments,

there does not yet appear to have been a direct determination of the entangled state itself, nor

in particular, of the transferred amplitude ψ ′1 .

We shall see that wavepacket interferometry with optically phase-locked ultrashort-

pulse sequences can reveal the complex-valued overlap of a “target” wavepacket describing

the energy-transfer amplitude with a collection of reference wave packets of specified

structure.  The ultrashort pulses that generate the target and reference wave packets will be

part of a phase-controlled sequence, so we treat the evolution of the system under the time-

dependent Hamiltonian H (t) = H + VI (t) , where

VI (t) = - µ̂ ⋅ EI (t) ;   I = A, B,C, D (5.7)

describes the interaction with one of four pulses,

EI (t) = eI AI (t − tI )cos(ΩI (t − tI ) + ΦI ) , (5.8)

each of which has a well defined polarization, envelope function, arrival time, carrier

frequency, and phase. The intervals between pulses are referred to as t p = tB − tA ,

tw = tC − tB , and, td = tD − tC .46 The electronic dipole moment operator,

µ̂ = µ a 1 0 + 2 ′1( ) + µb ′1 0 + 2 1( ) + H.c.  , (5.9)

allows transitions in which the exciton number changes by one.  For our purposes, it is

important that the molecular dipoles be nonparallel, so that pulses of different polarization

can selectively address either the donor or the acceptor.

The experimental observable will be the portion of the population of a specific

excited electronic state that is quadrilinear in the field amplitudes (i.e. proportional to
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AAABAC AD ) immediately following the four-pulse sequence.47  To calculate that population,

it is sufficient to have the perturbative wave function,

Ψ(t) = [t − tD ](1 + D)[td ](1 + C)[tw ](1 + B)[t p ](1 + A)[tA − t0 ] Ψ(t0 ) , (5.10)

in which the molecular evolution operators48 are written as [t] = exp(−iHt)  and pulse

overlap has been neglected.49 The operators I = A, B, C, and D are pulse propagators,50

I = −i dτ
−∞

∞

∫ [−τ + tI ]VI (τ )[τ - tI ] , (5.11)

whose forms are simplified by neglecting energy transfer during the pulses and adopting

the rotating wave approximation.51

In calculating the amplitude in each of the excited states, we take note of the fact that

an odd number of laser-molecule interactions (one or three) are required to reach either of

the one-exciton states, while an even number (two or four) are needed to reach the two-

exciton state.  For the nuclear wave function in the acceptor-excited state, we find

ψ ′1 (t) = ′1 [t - tD ] D[td + tw + t p ] + [td ]C[tw + t p ]{ (5.12)

+ [td + tw ]B[t p ] + [td + tw + t p ]A

+D[td ]C[tw ]B[t p ] + D[td ]C[tw + t p ]A +

D[td + tw ]B[t p ]A +[td ]C[tw ]B[t p ]A} 0 n0 .

Similar expressions can readily be found for the nuclear probability amplitude in the other

electronic states.52

Since we are interested in the amplitude for 1 → ′1  electronic energy transfer of first

order in J, we need to examine the contributions to ψ ′1  that are first and zeroth order in J.

The former are possible target wave packets while the latter are available as reference states.

Keeping contributions to the free evolution operator that are zeroth and first order in J, 53
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[t] = [t]0 + [t]1 , (5.13)

we can re-write Eq. (5.12) as

ψ ′1 (t) = A ′1 + B ′1 + C ′1 + D ′1    (5.14)

+ JA( ) ′1 + JB( ) ′1 + JC( ) ′1 + JD( ) ′1

+ DCB( ) ′1 + DCA( ) ′1 + DBA( ) ′1 + CBA( ) ′1

+ JDCB( ) ′1 + DCJB( ) ′1 + JDCA( ) ′1 + DCJA( ) ′1

+ JDBA( ) ′1 + DBJA( ) ′1 + JCBA( ) ′1 + CBJA( ) ′1 ,

which uses the short-hand notation

DCJB( ) ′1 = ′1 [t - tD ]0 D[td ]0 C[tw ]1 B[t p ]0 0 n0 , (5.15)

and so forth.

In order to calculate the interference population P ′1 , we must identify the

quadralinear contributions54 to ψ ′1 ψ ′1 : a sum of four terms that are zeroth order in J

(e.g., 2Re DCB( ) ′1 A( ) ′1 ) and twelve terms that are first order in J  (e.g.,

2Re DCB( ) ′1 JA( ) ′1 ).55 But the situation can simplify considerably when we take account

of laser polarization, as each of the amplitudes in Eq. (5.14) depends on the relative

orientation of the field polarizations and molecular dipole moment operators.56

Case Study

We consider a simple example illustrating some basic features of interference

measurements of energy transfer: the dimer is assigned a well defined internal and lab-

frame geometry—as in a cryogenic matrix, macromolecular crystal, or layered
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structure57—with µ a = µi  and µb = µ j  along the space-fixed x and y axes, respectively.

Then x-polarized pulses can drive the transitions

       (5.16)

while y-polarized pulses drive the transitions

(5.17)

Target amplitude on the acceptor state of first order in J can result from energy

transfer following excitation of the donor state by an x-polarized laser pulse:

              (5.18)

Preparation of a reference wavepacket  (zeroth order in J) that can interfere with this ′1

target requires one (or three) y-polarized pulses and two (or no) x-polarized pulses. The

former case (with a total of three x-polarized pulses and one y-polarized pulse) is suitable

for our purposes, as it affords a wide variety of reference packets with both modes of

vibration set in motion. This feature is useful in generating overlap with a target state whose

a-mode is set moving after short-pulse excitation of the donor and whose b-mode motion is

initiated by energy transfer.

We consider four different polarization combinations: AyBxCxDx, AxByCxDx,

AxBxCyDx, and AxBxCxDy. Under the first of these, the acceptor-state amplitude reduces to

� 

ψ1' (t) = Ay( )1'
+ JBx( )1' + JCx( )1' + JDx( )1' (5.19)
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+ DxCx Ay( )
1'

+ DxBx Ay( )
1'

+ Cx BxAy( )
1'

+ JDxCxBx( )1' + DxCx JBx( )1'

 

The resulting quadralinear contribution to ψ ′1 (t) ψ ′1 (t)  specifies the interference

contribution to the acceptor-excited state population:

P ′1 (AyBxCx Dx ) (5.20)

= 2Re Ay( ) ′1
JDxCx Bx( ) ′1 + Ay( ) ′1

DxCx JBx( ) ′1{ + DxCx Ay( ) ′1
JBx( ) ′1

+ Dx Bx Ay( ) ′1
JCx( ) ′1 + Cx Bx Ay( ) ′1

JDx( ) ′1 } .

As expected, this signal contains no terms of zeroth order in J.

It is useful to consider specific values of the relative optical phases of the pulses.

Under a generalization of the phase-locking scheme developed by Scherer and co-workers

for linear wavepacket  interferometry with phase-locked pulse pairs,2,3 it should be possible

to make sequences of the form (5.8) comprising pairs of pulse-pairs AB and CD with intra-

pair optical phase shifts

ΦΒ = ΦΑ + Ωpt p + φ p and ΦD = ΦC + Ωdtd + φd , (5.21)
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respectively. The phase shift φ p (φd ) is termed the locking angle of the AB (CD) pulse-pair

at the locking frequency Ωp ( Ωd ). The interpulse-pair phase shifts need not be controlled,

so the angles ΦD − ΦB , ΦD − ΦA , ΦC − ΦB ,  and

� 

ΦC −ΦA  are assumed to sample a full range

of values from 0 to 2π  over many laser shots.58

The expressions (5.7), (5.8), and (5.11) show that parts of a pulse propagator I

which induce upward transitions (proportional to 1 0 , ′1 0 , 2 1 , and 2 ′1 )

contain a phase factor exp(−iΦI ) .  Parts of I that induce downward transitions (proportional

to 0 1 , 0 ′1 , 1 2 , and ′1 2 ) contain a phase factor exp(iΦI ) .  As a result, we see

that the last two terms in (5.20) are not phase controlled and hence average to zero over

many repetitions. Using the optical phases (5.21), we find that

P ′1 (φ p ,φd ) (5.22)

= 2Re exp(−iφ p − iφd ) Ay( ) ′1
JDxCx Bx( ) ′1

(0)
+ DxCx Ay( ) ′1

JBx( ) ′1

(0)( ){
+ exp(−iφ p + iφd ) Ay( ) ′1

DxCx JBx( ) ′1

(0) } ,

in which the superscript (0) designates the overlap with both pulse-pairs in-phase (i.e.

φ p = φd = 0 ). While three distinct overlaps can contribute to the interference signal (5.22)

for a specific choice of the phase-locking angles, it is possible to combine signals with

different phase-shifts in order to isolate the combinations

Ay( ) ′1
JDxCx Bx( ) ′1

(0)
+ DxCx Ay( ) ′1

JBx( ) ′1

(0)
(5.23)

= 1
4 P ′1 (0,0) + P1' (π

2 , − π
2 ) + iP ′1 (π

2 ,0) +{ i P ′1 (0, π
2 )}

and
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Ay( ) ′1
DxCx JBx( ) ′1

(0)
= 1

4 P ′1 (0,0){ − P ′1 (π
2 , − π

2 ) + iP ′1 (π
2 ,0) − i P ′1 (0, π

2 )} . (5.24)

Combining signals with different values of 

� 

φ p and 

� 

φd  by the prescriptions (5.23) and (5.24)

is an example of “phase cycling” in optical spectroscopy.59,60 Equation (5.24) illustrates a

key prediction of our analysis, that nonlinear wavepacket  interferometry with pairs of pulse-

pairs is capable of isolating the full complex overlap61  α ′1 ξ ′1 = Ay( ) ′1
DxCx JBx( ) ′1

(0)

between a given energy-transfer target

ξ ′1 = exp(iΦB ) ′1 [tw ]1 Bx 0 n0 , (5.25)

generated by first-order energy transfer during 

� 

tw , and the members of a collection of

variable reference wave packets

α ′1 = exp(iΦB ){ ′1 Cx
†[-td ]0 Dx

†[td + tw + t p ]0 Ay[-t p ]0 0 n0 }
φ p =φd = 0

(5.26)

The C and D pulse propagators are reassigned to the reference wavepacket in Eq. (5.26) in

order to highlight the correspondence between  (5.25) and (5.18); some phase factors have

been introduced in both bra and ket to render the target wavepacket independent of 

� 

tp  and

� 

φ p . Notice that the reference state evolves backwards in the two-exciton state during 

� 

td .

The remaining polarization combinations of immediate interest are considered in

Appendix A. A complete scan of inter-pulse delays would also include the two interleaved

pulse sequences ACBD and ACDB; these alternative orderings provide some interesting

overlaps, but we do not pause to analyze them here.

Energy-transfer Wave Packet Dynamics

A quasi-classical analysis of phase-space trajectories can indicate when the overlap

α ′1 ξ ′1 , experimentally isolable according to Eq. (5.24), should be nonvanishing.  A
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schematic trajectory for the dominant portions of the target wavepacket ξ ′1  is shown in

Fig. 5.2.  We specialize to energy-transfer waiting times equal to half a vibrational period,

� 

tw = τ vib /2 = π /ω , in order to allow time for only one crossing of the intersection between

the 

� 

v1(qa,qb )  and v ′1 (qa ,qb )  surfaces, and show the average values of a-mode and b-mode

position and momentum that should result when the energy-transfer transition from 1 to ′1

occurs after 

� 

α tw  in state 1. After the surface-crossing transition, the a-mode trajectory

sweeps out an angle 

� 

π (1− α)  about  (ωqa , &qa ) = (0,0) ; this is twice the angular displacement

about the same origin that would have occurred if energy transfer had not taken place.62,63

Meanwhile, the b-mode undergoes an angular displacement by

� 

π (1− α)  about

 (ωqb , &qb ) = (ωd,0)  after energy transfer.

Fig. 5.2 Phase-space trajectories for the a-mode  and b-mode of a target wave packet prepared by an x-
polarized B-pulse. 1' fl 1 energy transfer is shown occurring after α tw  of motion in the donor-excited state.
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A schematic diagram of the phase-space motion for the reference wavepacket α ′1

is shown in Fig. 5.3. In order for the target and reference wave packets to overlap

significantly, their phase-space coordinates must nearly coincide. Comparison with Fig. 5.2

indicates that sizable overlap should occur for

t p = m + 1 −
α
2







τ vib (5.27)

and

td = n +
α
2







τ vib , (5.28)

where m and n are non-negative integers.

Fig. 5.3 Phase-space trajectories for the a-mode and b-mode of a reference wave packet prepared by Ay, Cx ,
and Dx  pulses. The last two pulses operate in reverse order, with an interval td of backward evolution
between them.

It is possible to obtain a closed-form expression for the isolable overlap (5.24) in

the short-pulse limit (pulse duration much less than the inverse absorption bandwidth or

inverse Franck-Condon energy).  Analytic forms are given in Appendix E for the target
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(E.5) and reference (E.7) wave packets; from the commutation properties of harmonic

oscillator creation and annihilation operators, we find their overlap

       α ′1 ξ ′1 = Ay( ) ′1
DxCx JBx( ) ′1

(0)
(5.29)

= iJ µ
2







4

areaAareaBareaCareaDei(ε ′1 − Ω p )t p + i(ε ′1 − ε2 + Ω p )td

   × dτ exp{i(ε ′1 −
0

τ vib /2

∫ ε 1)τ + δ 2eiω τ (eiω t p + e− iω td − 1) + δ 2e− iω τ − 2δ 2} .

The pulse areas, 

� 

areaI , and dimensionless displacement, δ, are as defined in Appendix E.

Calculated interferograms. For chosen parameter values, Eq. (5.29) can be evaluated easily

by numerical integration. We take ω  = 8.3 x 10-4  a.u. ≅  2π c(182.17 cm-1) ,

m = 99000 a.u. ≅ 53.917 amu , d = 0.3 a.u. ≅ 0.15875 n  (δ 2 = 0.369765  

� 

= EFC/ω , where

� 

EFC = mω 2d2 /2  is the Franck-Condon energy). Both phase-locking frequencies (see Eq.

(5.21)) are chosen to match the vertical transition energy for donor excitation

( Ω p = Ωd = ε1 + EFC ). Fig. 5.4 shows the calculated 2D interferogram for the case of equal

site energies ε ′1 = ε1 . The interferogram for a downhill case with ε ′1 = ε1 − 2EFC  is shown

in Fig. 4.5.64

The locations of maximal interference signal are in qualitative accord with the quasi-

classical predictions of Eqs. (5.27) and (5.28) for both equal-energy and downhill cases.

For the equal-energy interferogram, maxima in α ′1 ξ ′1  are found when

t p = (m + 1 − 0.155 / 2)τ vib  and td = (n + 0.155 / 2)τ vib . Maximal signals in the downhill

interferogram occur farther “off diagonal,” when t p = (m + 1 − 0.5 / 2)τ vib  and

td = (n + 0.5 / 2)τ vib . The deviation of the effective energy transfer time 

� 

ατ vib /2 from zero in

the case of equal site energies can be attributed to the finite time required for the quantum
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mechanical target wavepacket to leave the potential-crossing line at the Franck-Condon

point.

 The fringe structure in the 2D interferograms of Figs. 5.4 and 5.5 reveals amplitude-

level information about the form and dynamics of the corresponding target wave packets.

The rates of change with tp and td of the phase Γ = −i ln α ′1 ξ ′1  are given in Eqs. (F.7) [or

(F.9)] and Eqs. (F.8) [or (F.10)], respectively (see Appendix F). The last term on the right-

hand side of both (F.7) and (F.8), involving the position matrix elements α ′1 qb − qb ξ ′1

and α ′1 qa − qa ξ ′1 , respectively, would vanish if the reference wavepacket were the same

as the target within a constant factor, as would be expected at the signal maxima in the limit

of quasi-classical target-state dynamics (EFC >> ω).

Fig. 5.4 Calculated interferogram for the case of equal site energies, ε1 = ε1 ' , and energy-transfer waiting
time tw = τ vib / 2 . The sign and size of both the real part and the imaginary part are physically meaningful,

giving the complex-valued overlap (5.29) [divided by J µ 2( )4 areaAareaBareaCareaDτ vib ] as a function of
the intra pulse-pair delays tp and td. Positive (negative) contours are given by solid (dashed) lines spaced by
0.008373, with a maximal (minimal) value  +(-)0.125594.
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Fig. 5.5 Calculated interferogram for the case of downhill energy transfer. Same parameters as Fig. 5.4
except ε1 ' = ε1 − 2EFC . Also shown is the absolute signal intensity, in which the temporal locations of
certain satellite peaks are readily discernible.

The fringe structure of the peaks in Fig. 5.4 corresponds to ∂Γ / ∂t p =  −∂Γ / ∂td ≅

−0.53ω  at the signal maxima, and these values imply

α ′1 qa − qa ξ ′1 = − α ′1 qb − qb ξ ′1 ≅ 0.53
α ′1 ξ ′1

mωd
ei2π (0.0775)

for the case of equal site energies. The phase derivatives at the signal maxima in Fig. 5.5 are

∂Γ / ∂t p ≅ −7.53ω  and ∂Γ / ∂td ≅ 0.14ω . Eqs. (F.7) and (F.8) in our case of downhill

energy transfer then yield

α ′1 qa − qa ξ ′1 = − α ′1 qb − qb ξ ′1 ≅ 0.14 i
α ′1 ξ ′1

mωd
 ,

a smaller (but still non-negligible) deviation from quasiclassical behavior than in the equal-

energy case.

Target and reference wave packets.  In order to clarify the relationship between the

experimentally measurable overlap α ′1 ξ ′1  and the spatial form of the target and reference

wave packets, we have calculated the target wavepacket using Eq. (E.5) from Appendix E

and the reference with which it interferes at intra-pair delays producing maximal overlap

using Eq. (E.7). These are shown in Figs. 5.6 and 5.7 for the case of equal site energies and
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Figs. 5.8 and 5.9 for downhill energy transfer.  The target wavepacket plotted as a function

of (qa, qb) is seen to bear a discernible resemblance to any single peak in the corresponding

interference signal plotted with respect to (td, tp) (i.e. transposed about the diagonal from our

Figs. 5.4 and 5.5), especially in the equal-energy case. While this vivid correspondence is a

feature of the two-vibration model, it serves to illustrate that the 2D interferograms are

sensitive records of the energy-transfer surface crossing amplitude.

Fig. 5.6 Real and imaginary parts of the target wave packet for the equal energy case. Eq. (E.5) is plotted as
qa , qb ξ1 '  divided by J µ 2( )areaBτ vib / d . Contour lines of the same sign are spaced by 0.013151 and

take maximal (minimal) values +(-)0.197261. Locations of potential minima for donor-excited (1) and
acceptor-excited (1')  states are also shown, as is the line of intersection between v1  and v1' .

Fig. 5.7 Real and imaginary parts of the reference wave packet for the equal energy case at (tp, td)max. Eq.
(E.7) is plotted as qa , qb α1 '  divided by µ 2( )3 areaAareaCareaD / d . Contours of the same sign are
spaced by 0.10227 and take maximal (minimal) values +(-)1.53411.
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Sources for detailed features in the wavepacket interferometry signals of Figs. 5.4

and 5.5 can be identified in the corresponding target amplitudes of Figs. 6 and 8,

respectively. For instance, the temporally varying signal oscillation frequency observed in

Fig. 5.4 can be attributed in part to the spatially varying local de Broglie wavelengths seen in

Fig. 5.6. The equal energy interferogram (Fig. 5.4) exhibits small satellite peaks near

(t p ,td )  = (m + 0.5,n + 0.5)τ vib . Phase-space diagrams make it clear that reference wave

packets prepared with these delays (not shown) will overlap the small trailing region of

target amplitude near (qa ,qb ) = (2d,0)  that is visible in Fig. 5.6. This trailing region of

target probability amplitude arises from non-resonant electronic energy transfer late in the

waiting period. The wavepacket launched by the Bx pulse reaches the outer qa turning point

on the donor-excited surface after half a period, and amplitude transfer can occur because

the wavepacket lingers there for a time ~ 2π / EFC , which is only slightly longer than the

local electronic nutation period 2π / (v ′1 − v1) ~ 2π / 4EFC .

Fig. 5.8 Same as Fig. 5.6, but for the downhill case. The absolute value of the target wave packet is also
plotted in order to emphasize the spatial locations of local maxima in the probability amplitude due to
nonresonant electronic nutation and resonant transfer from the edges of the nuclear wave packet.  Both of
these secondary energy-transfer mechanisms proceed efficiently at the inner and outer turning points of
motion in the donor-excited potential well.
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Fig. 5.9 Real part, imaginary part, and absolute value of the reference wave packet for the downhill case at
(tp, td)max. Note the quasi-classical coherent-state structure of the reference wave packet. Plotting parameters
are the same as in Fig. 5.7.

There is also a series of satellite peaks near (t p ,td ) = (m + 0.5,n + 0.5)τ vib  in the

downhill interferogram of Fig. 5.5. These derive only in part from electronic nutation at the

outer a-mode turning point (with local period 2π / (v ′1 − v1) ~ 2π / 2EFC , somewhat longer

than in the equal-energy case). In the downhill case, the edge of the donor-excited

wavepacket  prepared by the Bx pulse still penetrates the v1 = v ′1  crossing region in the

vicinity of (qa ,qb ) = (3d / 2,d / 2)  as the packet reaches the outer turning point, and

resonant energy transfer ensues. Both of these processes contribute to the trailing region of

target probability amplitude near (qa ,qb ) ≈ (2d,0)  in Fig. 5.8 and the corresponding

satellites in the interferogram. The downhill interferogram has additional satellite peaks near

(t p ,td ) = (m,n)τ vib . These come once again from both non-resonant electronic nutation

(near (qa ,qb ) = (0,0) ) and resonant transfer (for (qa ,qb ) ≈ (d / 2, −d / 2) ) when the Bx

wavepacket is in the Franck-Condon region. The resulting contributions to the target

wavepacket evolve as a leading region of probability amplitude that is localized between

(qa ,qb ) = (0,2d)  and (qa ,qb ) = (−d / 2, 5d / 2)  by the end of the waiting period.
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Discussion

Measuring P ′1 . In the case study above and Appendix D, we determined the contributions

to P ′1 (ABCD) , that are isolable by phase cycling under various polarization combinations.

While P ′1  is independently observable in the sense of being the expectation value of the

Hermitian operator ′1 ′1  (or the quadralinear contribution to that quantity), we still need

to consider how it could be measured in practice.

One strategy would be to monitor the time- and frequency-integrated y-polarized

emission from ′1 → 0 . But any quadralinear contribution to the population of the two-

exciton state 2 could give rise to y-polarized 

� 

2 → 1 emission that would obscure the sought-

for signal. This complication can perhaps be overcome by the simple expedient of spectrally

filtering the y-polarized emission. While we have assumed that ε2 = ε1 + ε ′1  in our

calculations, this is an inessential choice not strictly obeyed in practice. In actuality, the peak

frequency of relaxed emission from the acceptor chromophore will depend slightly on

whether the acceptor molecule is or is not electronically excited. Thus y-polarized emission

from P1’ and P2 should be spectrally distinguishable.

Spectral filtration of the emitted light may not be necessary in the case of downhill

energy transfer, however. In this case x-polarized emission can serve as an independent

measure of the relevant contribution to 

� 

P2 under 

� 

AyBxCxDx. With these polarizations, the

amplitudes that overlap to produce a quadralinear contribution to the population of state 2

result from the electronic transitions

and not phase-locked (5.30)
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and   exp{-i(φp+φd)} (5.31)

 and   exp{-i(φp-φd)} (5.32)

The phase structure of each term is indicated; there is no contribution to 

� 

P2 of zeroth order

in J.

We showed in the case study that phase-cycling selection of the signal proportional

to exp(−iφ p + iφd )  could be used to extract the single overlap Ay( ) ′1
DxCx JBx( ) ′1

(0)
 from

the other contributions to P ′1 . Expression (5.32) shows, though, that a portion of 

� 

P2 with

the same optical phase could make an additional contribution to y-polarized emission. State

2 can also emit with x-polarization, and we can check the phase structure of the quadralinear

x-emitting donor state population, P1(AyBxCx Dx ) , to see whether an exp(−iφ p + iφd )  term

exists there as well. It happens that two contributions to P1(AyBxCx Dx ) , those arising from

overlaps between the amplitudes,

and (5.33)

and  (5.34)
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both carry an exp(iφ p − iφd )  phase factor; so phase-selection of the x-polarized emission

would not generally give an unobscured view of the exp(−iφ p + iφd )  contribution to 

� 

P2. But

the overlaps (5.33) and (5.34) involve backward energy transfer from the acceptor to the

donor. If the acceptor site energy is sufficiently far below that of the donor (as in our

downhill case, where the acceptor-excited Franck-Condon point is itself EFC below the

intersection energy between v1’ and v1), the backwards transition cannot occur for energetic

reasons, and the corresponding contribution to P1 vanishes. Thus for the downhill case, the

exp(−iφ p + iφd )  component of 

� 

P2 can be determined as the sole contribution to x-polarized

emission having this phase signature.  Having been determined independently, this 

� 

P2

contribution can be unambiguously removed from the y-polarized emission without spectral

filtration, leaving the sought-for overlap Ay( ) ′1
DxCx JBx( ) ′1

(0)
 as the only remaining

signal.

Prospects for state determination.  The collection of reference wave packets  (5.26)

available under AyBxCx Dx  polarization is limited to both a-mode and b-mode Franck-

Condon energy shells (see Fig. 5.3). The inter-pair delay tw = τvib / 2  places the target

(5.25) on the same energy shell, allowing sizable overlap. Since reference packet formation

occurs first on the v ′1  surface (where only qb is displaced) and then on v2  (where both qa

and qb  are displaced), the prospects for determining overlaps with an exhaustive collection

of reference packets—including many with average energy off the Franck-Condon shell—

might appear dim. But measuring overlaps between target wave packets with 

� 

tw  slightly

different from τvib / 2  and on-shell reference packets can be nearly equivalent to measuring

overlaps between targets with tw = τvib / 2  and off-shell reference wave packets.
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To exhibit this equivalence we note that

[tw + δtw ]1 = [δtw ]0[tw ]1 + [δtw ]1[tw ]0  (5.35)

(see footnote 53). For slight increments in waiting time, the second term in Eq. (5.35) can

be neglected (unless ε1 − ε ′1 ≅ 4EFC , a still greater energy difference than in our downhill

case), and

α ′1 ξ ′1 tw +δ tw
(5.36)

= n0 0 Ay
†[-t p − tw − δtw − td ]0 Dx[td ]0 Cx ′1 ′1 [tw + δtw ]1 Bx[t p ]0 0 n0

 ≅ n0 0 Ay
†[-t p − tw − δtw − td ]0 Dx[td ]0 Cx[δtw ]0 ′1 ′1 [tw ]1 Bx[t p ]0 0 n0

 = α ′1 ξ ′1 tw

 The effective reference wavepacket α ′1  of Eq. (5.36) follows a phase-space trajectory that

lies off the Franck-Condon shell for the internal vibration of the donor, increasing the

dimensionality of the accessible a-mode phase space from one to two. This is a step toward

providing an exhaustive set of reference wave packets to interfere with the target packet.  To

gain a second dimension in the b-mode space may require additional optical transitions to

access state-0 or state-1 surfaces during reference state preparation.

Echo-like versus non echo-like signals.  When experiments of the kind considered here are

carried out on chromophores in low-temperature solids, it will be necessary to consider the

effects of inhomogeneous broadening. As a result of differences in local environment, the

site energies 

� 

ε1, ε ′1 , and 

� 

ε2  in Eqs. (5.3) through (5.6) may vary with location in the sample.

This spatial inhomogeneity in the site energies could affect the nonlinear wavepacket

interferometry signal from a bulk sample,65 but in energy-transfer systems, the effects of

inhomogeneity would depend on the degree of correlation between donor and acceptor

energy shifts.
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The simplest situation would entail perfect correlation between donor and acceptor

site energies, so that ε1 = ε 1 + δε , ε ′1 = ε ′1 + δε , and ε2 = ε2 + 2δε . In this case, the single

overlap (5.24) that is isolable under 

� 

AyBxCxDx polarization depends on the site-energy shift

as

Ay( ) ′1
DxCx JBx( ) ′1

(0)
∝ exp{iδε(t p − td )} , (5.37)

and the overlap that is isolable under 

� 

AxByCxDx polarization (see Eq. (A3)) goes as

By( ) ′1
DxCx JAx( ) ′1

(0)
∝ exp{−iδε(t p + td )} . (5.38)

In this limiting situation, we would naturally identify the overlaps (5.37) and (5.38) as

arising from echo-like and non echo-like signals, respectively; the former overlap

suppresses the effects of (correlated) inhomogeneous broadening along the 

� 

td ≈ tp  diagonal

and the latter does not.66

Dynamical considerations come into play as well, however. The semiclassical criteria

(5.27) and (5.28) suggest that the overlap Ay( ) ′1
DxCx JBx( ) ′1

(0)
 can be nonzero when the

delay difference in Eq. (5.37) takes on values

t p − td = (m − n + 1 − α )τ vib , (5.39)

some or all of which may appear off the diagonal. On the other hand, Eq. (D.7) indicates

that By( ) ′1
DxCx JAx( ) ′1

(0)
 can be nonzero when

t p + td = (n + α )τ vib . (5.40)

This time can be sufficiently short (e.g., for n = 0) that the non echo-like signal arising from

the overlap in Eq. (5.38) would not be suppressed by inhomogeneous dephasing.
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Related theoretical work. V. Szöcs et al.67 very recently made a theoretical study of 2-

dimensional photon echo spectroscopy on an excitonic two-site model system somewhat

related to the present investigation. As a step toward a full analysis of vibrational and

electronic coherence effects in photon echo signals from conjugated polymers, they

considered the frequency resolved time-dependent third order polarization from a purely

electronic equal-energy two-site (four-level) system. The formal treatment and specializing

conditions differ in several respects from those adopted here. V. Szöcs et al. found that the

positions of off-diagonal peaks in the frequency domain interferogram carry information on

the energy-transfer coupling strength, the relative heights of four characteristic peaks reflect

the angle between the site-localized transition dipole moments, and the peak shapes depend

on the ratio of homogeneous to inhomogeneous dephasing. Consistent with the conclusions

of the present study, they concluded that the (heterodyne detected) frequency domain signal

carried more structural and dynamical information than its (homodyne detected) time-

domain counterpart.

In an earlier and more general study, Zhang, Chernyak, and Mukamel4 0 also

analyzed two-dimensional electronic spectroscopy from small aggregates coupled to a

vibrational bath. Like those of V. Szöcs et al.,6 7 the specializing conditions of Zhang et al.

are rather different from ours, and the possibility of coherent vibrational motion is

suppressed. Emphasizing the structural information content of these methods, they showed

how various 2D techniques could provide information on intermolecular coupling strengths

and patterns. Their study did not dwell explicitly on the possibility of separately addressing

donor and acceptor moieties with differently polarized pulses.68 Interestingly, Appendix F

of Ref. 40 contains expressions for the contributions to various 2D four-wave mixing signal

of first order in the electronic coupling constant J.
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Relationship to time-resolved CARS. Nonlinear wavepacket interferometry measurements of

the kind suggested here and elsewhere25,26 share some experimental and theoretical features

with ultrafast time-resolved coherent anti-Stokes Raman scattering measurements recently

made by Karavistas, Zadoyan, and Apkarian 1 8 The tr-CARS measurements did not involve

electronic energy transfer, but—like wavepacket interferometry—are sensitive to coherently

excited electronic transitions and nuclear dynamics in a low-temperature medium (I2 in an

cryogenic argon matrix), where quantum mechanical wavepacket motion is observed to play

a significant role. Similar samples, along with molecular beams, could naturally be studied

by wavepacket interferometry measurements as well. Consideration of time-resolved CARS

from the viewpoint developed here sheds light on features of many-body coherent dynamics

that will have to be taken into account in treating wavepacket interferometry data from

condensed-phase samples, and highlights some differences between nonlinear wavepacket

interferometry and tr-CARS.

Time-resolved CARS experiments measure the integrated intensity of a third-order

signal beam, which is itself proportional to the induced electronic dipole moments d(t)  (tri-

linear in incident fields 

� 

E1, 

� 

E2 , and 

� 

E3 ).  The signal is given schematically by

S(t) ∝ dt∫ ε sig
2 (t) , (5.41)

where

 
ε sig (t) ∝ &&d(t - | R - ri |

c
)

i
∑ .    (5.42)

The sum in Eq. (5.42) is over chromophores in the sample volume, and the relevant portion

of the dipole moment is

d(t) = 2µ Re ng g [−t + t1] g e [t − t3]P3[t3 − t2 ]P2[t2 − t1]P1 g ng , (5.43)
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where 

� 

P1, 

� 

P2, and 

� 

P3 are pulse propagators69 that transfer amplitude between ground (g) and

excited (e) electronic states, and 

� 

ng  is a nuclear eigenfunction for the system as a whole

(the chromophore plus the surrounding medium).70

In the experiments of Karavitas et al.1 8 the 

� 

t2 − t1  delay between pump and dump

pulses is a small fraction of the excited state (I2(B-state)) vibrational period. The dipole

moment (5.43) can be non-zero only when 

� 

t3 − t2  falls within one of two sequences of

values (integer multiples of the vibrational period or just less than half-odd multiples of the

period).71 As observed by Karavitas and co-workers, these values of 

� 

t3 − t2  allow the

excited-state wavepacket launched by the third pulse to pass through the Franck-Condon

point 

� 

(ωg x, ˙ x ) = (0,0) , giving significant overlap with the vibrational eigenfunction from

which it originated (as is necessary for (5.43) to be non-zero). For 

� 

t3 − t2  delays in the first

sequence the molecule begins B-state motion while stretching (positive momentum) and for

delays in the second sequence (an example of which appears in the illustration) the molecule

begins B-state motion while contracting (negative momentum).

In one-dimensional wavepacket simulations of the time-resolved CARS data,1 8 it was

found that only the negative momentum states contributed to the signal. We can follow the

explanation given for “momentum filtration” by taking account of the net effect of the

small-amplitude dynamics that are induced in each of the (lower-frequency) lattice phonon

modes of the Ar matrix. Because the frequency of the lattice phonon is low and its B-state

displacement is small, the phonon wavepacket never gets very far from 

� 

(ω p hq, ˙ q ) = (0,0)

during the pulse sequence. The same is true during the short post-sequence interval 

� 

t − t3

(about equal to 

� 

t2 − t1 ) needed for a negative-momentum vibration to reach 

� 

(ωg x, ˙ x ) = (0,0) .

But during the longer 

� 

t − t3  (a B-state period minus 

� 

t2 − t1 ) required for a positive-

momentum vibration to make its way back to the Franck-Condon point, many of the lattice
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modes will reach relatively large distances from 

� 

(0,0); the cumulative effect of the decrease

in overlap in many modes will be to turn off positive-momentum contributions to the

induced dipole moment (5.43).

If the 

� 

t3 − t2  delay between the dump and re-excitation pulses becomes many times

the period of the ground-state molecular vibration, then even very low-frequency lattice

modes will be distributed by 

� 

t3  at many different points around their phase-space origin.

Even the short 

� 

t − t3  needed for the negative-momentum molecular vibration to return to the

Franck-Condon point could then produce a significant loss of overlap in the lattice degrees

of freedom, contributing (along with vibrational inhomogeneity and anharmonicity) to the

observed decay of the time-resolved CARS signal.

Electronic dephasing (or decoherence) effects of this kind will undoubtedly come

into play in nonlinear wavepacket interferometry measurements as well. Because of the

nearly-harmonic nature of low temperature host lattices, both time-resolved CARS and

wavepacket interferometry experiments on chromophores in solid matrices should be

valuable testing grounds for quantitative models of electronic decoherence.72,73,74

Concluding Remarks. Our analysis of nonlinear wavepacket interferometry for an energy-

transfer complex illustrates the potential power of this form of multi-dimensional electronic

spectroscopy for observing coupled electronic and nuclear dynamics of many-body

condensed molecular systems at the amplitude level. Our calculations for a simple model

complex show that this from of ultrafast multi-dimensional electronic spectroscopy—along

with the tools of polarization spectroscopy and optical phase control—has the capacity to

measure not just the evolution of electronic populations and nuclear probability densities,

but the time-development of nuclear wave functions accompanying energy-transfer surface-

crossing transitions.
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Further research along the lines initiated here can address the important issues of

multiple intra- and intermolecular modes, electronic dephasing, thermal effects, orientational

disorder, and for gas phase samples, rotational dynamics and congestion. In this connection

it is worth mentioning that while the treatment given in this paper is based on a pure-state

description of the energy-transfer complex (in keeping with our interest in predicting and

observing quantum mechanical effects), the approach is also directly applicable to isolated

or condensed-phase systems with population distributed over thermally occupied levels.

This generalization is accomplished formally by the elementary step of summing with

Boltzmann weight over the initially populated energy states of the complex plus bath.2 2

Since the numerical calculations reported here (but not the basic theoretical expressions) use

laser pulses that are arbitrarily abrupt on the vibrational timescale, it will be necessary to

further investigate the practical consequences of nonzero pulse duration and finite spectral

bandwidth. We have specialized to pulse sequences with a few specific polarization

combinations that are sensitive to the nuclear wave function arising from energy-transfer to

the acceptor-excited potential energy surface. Future studies can include pulse sequences of

arbitrary polarization.75
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