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Abstract. We propose and analyze a linear stabilization of CNLF that removes all timestep
conditions for stability, is parameter free and increases the SPD part of the linear system to be solved
at each time step. We prove unconditional stability and give applications to uncoupling groundwater
- surface water �ows and Stokes �ow plus a Coriolis term. The stabilization herein is not modular
(unlike time �lters) but it does remove all timestep conditions (also unlike time �lters) and thus
provides a complementary tool.

Key words. CNLF, stabilization, Stokes-Darcy

AMS subject classi�cation. Primary 65M12; Secondary 65J08

1. Introduction. The implicit-explicit Crank-Nicolson and Leap-Frog (CNLF)

method is widely used in atmosphere, ocean and climate codes, e.g., [3], [26], [28],
[30] and has recently been used for uncoupling groundwater-surface water �ows, [17].
Stability of CNLF by root conditions was proven in 1963 [15] and by energy methods
for systems in [18]. Two related stability questions remain. First, the unstable mode
(for which un+1+ un�1 � 0) of LF is not damped by CN. Thus, modular time �lters,
like the Roberts-Asselin-Williams �lter [3], [26], [30], have been developed. Second,
the timestep restriction (1.6) below from the LF component can be too restrictive if
the normal splitting into fast but low energy modes and slow but high energy modes
is not perfectly done and if the parameters in the Stokes-Darcy problem are small.

This report presents a new CNLF stabilization, CNLFstab, addressing both
issues. The method (1.4) below is unconditionally (no timestep condition) stable
(Theorem 1, Section 2) and the unstable mode, while not eliminated, is controlled,
Section 3. We test (1.4) in Section 3 for Stokes �ow with strong rotation and coupled
groundwater-surface water �ows.

To present the method, consider an evolution equation

du

dt
+N(u) + �u = 0: (1.1)

(Both the algorithm and theory extend easily to nonzero right hand sides.) We assume
that X ,! L ,! X 0 are Hilbert spaces. Let < �; � >; jj � jj denote the inner product and
norm on L. Suppose

N : X ! X 0 satis�es hN(u); ui � 0 for all u 2 X; (1.2)

� : L! L is a bounded, skew symmetric operator, (1.3)

where the X;X 0 duality pairing is an extension of the L inner product. These two
assumptions ensure that

jju(t)jj2 � jju0jj2 and jju(t)jj2 = jju0jj2 if N(u) � 0.
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These are the basic stability properties that must be preserved under discretization.
The method CNLFstab is: given u0; v0; u1; v1 2 X �nd un; vn 2 X for n � 2

satisfying

un+1 � un�1
24t +4t���

�
un+1�un�1

�
+ (1.4)

+N(
un+1 + un�1

2
) + �un = 0:

The stabilization (in bold) 4t���
�
un+1 � un�1

�
is linear and SPD in the unknown

un+1, has no undetermined tuning parameters and the extra consistency error it
contributes is formally4t2��� (ut) = O(4t2), the same order as CNLF. CNLFstab,
like CNLF, is a 3 level method and approximations are needed at the �rst two time
steps to appropriate accuracy, [29]. The stabilization in CNLFstab is similar in spirit
to [1], [DD], [8]. For a general theory of IMEX methods see [2], [7], [14].

1.1. The usual CNLF method. The usual CNLF method is

un+1 � un�1
24t +N(

un+1 + un�1

2
) + �un = 0: (1.5)

With jj � jj the operator norm, CNLF is stable under the CFL- like condition

4tjj�jj < 1; (1.6)

[15], [18]. When the nonlinear term is strictly positive

hN(u); ui � �jjujj2 for some � > 0 and all u 2 X;

then jju(t)jj ! 0 as t ! 1. In this common case, CNLF will damp only the mode
un+1 + un�1; there is no damping in the unstable mode where un+1 + un�1 � 0.
Roundo¤ error can lead to growth in the unstable mode, spurring development of
corrective time �lters, [3], [26], [30], [16].

2. Stability without a timestep restriction. We prove unconditional sta-
bility of (1.4). The proof shows that the coe¢ cient of the stabilization term (here
taken to be 1) may be reduced retaining unconditional stability. It also shows that if
N(u) � 0, then the following quantity is exactly conserved:

1

4

�
jjun+1jj2 + jjunjj2

�
+
4t2
2

�
jj�un+1jj2 + jj�unjj2

�
+
4t
2



�un; un+1

�
:

Theorem 2.1. Consider (1.1) under (1.2) and (1.3). The method (1.4) is un-
conditionally stable (with no timestep restriction): for every n � 1

1

2
jjun+1jj2 + 1

4
jjunjj2 +4t2jj�unjj2 �

� 1

2

�
jju1jj2 + jju0jj2

�
+4t2

�
jj�u1jj2 + jj�u0jj2

�
+4t



�u0; u1

�
:

Proof. Broadly, the proof follows the CNLF case in [18] with modi�ed treatment
of the critical term



�un; un+1 + un�1

�
using the stabilizations. Multiply by 4t and
2



take the duality pairing of (1.4) with
�
un+1 + un�1

�
=2. Add and subtract jjunjj2;

this gives

1

4
(jjun+1jj2 + jjunjj2)� 1

4
(jjunjj2 + jjun�1jj2)+

+4t2
�
���

�
un+1 � un�1

�
;
un+1 + un�1

2

�
+

+4t
�
N(

un+1 + un�1

2
);
un+1 + un�1

2

�
+4t

�
�un;

un+1 + un�1

2

�
= 0:

From (1.2)

4t
�
N(

un+1 + un�1

2
);
un+1 + un�1

2

�
+4t2

�
���

�
un+1 � un�1

�
;
un+1 + un�1

2

�
� 4t2

2
< �

�
un+1 � un�1

�
;�(un+1 + un�1) >

=
4t2
2

�
jj�un+1jj2 � jj�un�1jj2

�
=
4t2
2

��
jj�un+1jj2 + jj�unjj2

�
�
�
jj�unjj2 + jj�un�1jj2

��
:

Thus, de�ne the stabilized system energy

En+1=2 :=
1

4

�
jjun+1jj2 + jjunjj2

�
+
4t2
2

�
jj�un+1jj2 + jj�unjj2

�
:

We then have

En+1=2 � En�1=2 � �4t
2



�un; un+1 + un�1

�
:

Let Cn+1=2 :=


�un; un+1

�
; using skew symmetry of � we have


�un; un+1 + un�1
�
= Cn+1=2 � Cn�1=2.

Thus, the stability equation becomes

En+1=2 +
4t
2
Cn+1=2 � En�1=2 +

4t
2
Cn�1=2; for n � 2,

so stability follows provided En+1=2 + 4t
2 C

n+1=2 > 0 for un; un+1 6= 0: By repeated
application of the Cauchy-Schwarz-Young inequality we have

4t
2
Cn+1=2 � 4t2

2
jj�un+1jj2 + 1

8
jjunjj2:

Thus, stability follows since:

En+1=2 +
4t
2
Cn+1=2 � 1

4
jjun+1jj2 + 1

8
jjunjj2 + 4t

2

2
jj�unjj2 > 0:
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3. Two Applications. We apply (1.4) to uncoupling groundwater-surface wa-
ter �ows and to Stokes �ow plus a Coriolis force term, a great simpli�cation of the
geophysical �ow, [16]. We give a stability analysis of an interpretation of (1.4) for
both problems, incorporating the time and space discretizations.

3.1. The evolutionary Stokes-Darcy problem. See, e.g., [6], [9], [22], [20],
[19], [10] for background on the numerical analysis of the Stokes-Darcy model. Let

f ;
p lie across an interface I from each other. For speci�city, we take 
f = (0; 1)�
(0; 1), 
p = (0; 1) � (�1; 0) and I = f(x; 0); 0 < x < 1g. The �uid velocity u and
porous media�s piezometric head � satisfy

ut � �4u+rp = ff (x; t);r � u = 0; in 
f ; (3.1)

S0�t �r � (Kr�) = fp(x; t), in 
p,

�(x; 0) = �0(x); in 
p and u(x; 0) = u0(x); in 
f ;

�(x; t) = 0; in @
pnI and u(x; t) = 0; in @
fnI.

Let bnf=p;b� i denote the normal and tangent vectors on I. The coupling conditions
across I are conservation of mass, balance of forces on I and the Beavers-Joseph-
Sa¤man condition

u � bnf �Kr� � bnp = 0 and p� � bnf � ru � bnf = g� on I,

��b� i � ru � bnf = �

r
�gb� i � K � b� iu � b� i; on I.

see [5], [27]. Here g, K, � and S0 are the gravitational acceleration constant, hy-
draulic conductivity tensor, kinematic viscosity and speci�c storage, all positive. Of-
ten �min(K) and S0 are small, [4], [21], [17].

We denote the L2(I) norm by jj � jjI and the L2(
f=p) norm and inner product by
jj � jjf=p; (�; �)f=p, respectively; the HDIV (
f ) norm is jjujj2DIV := jjujj2f + jjr �ujj2f . To
discretize the Stokes-Darcy problem in space by the �nite element method we choose
conforming Velocity, Pressure, and Darcy pressure �nite element spaces

Velocity: Xh
f � Xf := fv 2

�
H1(
f )

�d
: v = 0 on @
fnIg;

Darcy pressure: Xh
p � Xp := f 2 H1(
p) :  = 0 on @
pnIg;

Stokes pressure: Qhf � Qf := L2(
f ).

Continuity of any discrete variable across the interface I is not imposed strongly. The
Stokes velocity-pressure �nite element spaces (Xh

f ; Q
h
f ) are assumed to satisfy the

usual discrete inf-sup condition, [12], [11]. De�ne

af (u; v) = (�ru;rv)f +
X
i

Z
I

�

r
�gb� i � K � b� i (u � b� i)(v � b� i)ds;

ap(�;  ) = g(Kr�;r )p; and

cI(u; �) = g

Z
I

�u � bnfds:
4



CNLFstab adapted to the Stokes-Darcy problem: Find (un+1h ; pn+1h ; �n+1h )
2 Xh

f �Qhf �Xh
p satisfying, for all vh 2 Xh

f ; qh 2 Qhf ;  h 2 Xh
p

gS0(
�n+1h � �n�1h

24t ;  h)p+

+4tg2(r(�n+1h � �n�1h );r h)p +4tg2(�n+1h � �n�1h ;  h)p

+ap(
�n+1h + �n�1h

2
;  h)� cI(unh;  h) = g(fnp ;  h)p; (3.2)

(
un+1h � un�1h

24t ; vh)f + (r �
un+1h � un�1h

24t ;r � vh)f + af (
un+1h + un�1h

2
; vh)

�(pn+1=2h ;r � vh)f + cI(vh; �nh) = (fnf ; vh)f ;

(qh;r �
un+1h + un�1h

2
)f = 0.

The stabilization terms in (3.2) are similar in spirit to [1] in the porous medium and
grad-div stabilization of ut, [23], in the �uid region. The following trace inequality
from Moraiti [21], which holds for our 
f ;
p with constant 1, is essential:����Z

I

�u � bnds���� � jjujjDIV jj�jjH1(
p); for all u 2 Xf ; � 2 Xp: (3.3)

Remark 3.1 (On the form of the stabilization). In 4t���
�
un+1�un�1

�
one

must de�ne � = (�f ;�p) : Xh
f �Xh

p ! Xh
f �Xh

p through

(�f (u; �); v)f + (�p(u; �);  )p =

Z
I

 u � bnds� Z
I

�v � bnds:
Ignoring technical issues, the stabilization motivated by 4t���

�
un+1�un�1

�
most

natural in appearance are boundary integral terms of the form

4tg2
Z
I

(�n+1h � �n�1h ) hds and 4t
Z
I

�
un+1h � un�1h

�
� bnvh � bnds:

It is an open problem to analyze if this stabilization su¢ ces. The inequality (3.3)
above suggests that the stabilization in (3.2) is connected to the one on I above.

Theorem 3.2 (Unconditional stability for Stokes-Darcy). (3.2) is stable: for
any N > 0, there holds

1

2
jjuN+1h jj2DIV +

1

2
jjuNh jj2DIV + gS0

�
jj�N+1h jj2p + jj�Nh jj2p

�
+

+4t
NX
n=1

�jjr
�
un+1h + un�1h

�
jj2f + gkminjjr

�
�n+1h + �n�1h

�
jj2p �

� jju1hjj2DIV + jju0hjj2DIV
+gS0jj�1hjj2p +4t2g2jj�1hjj2H1(
p)

+ gS0jj�0hjj2p + 24t2g2jj�0hjj2H1(
p)

+24t[cI(�0h; u1h)� cI(�1h; u0h)]+

+24t
NX
n=1

�
(fnf ; u

n+1
h + un�1h )f + g(f

n
p ; �

n+1
h + �n�1h )p

�
:
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Proof. We adapt the proof of Theorem 1 to the setting of (3.2). Set vh =
(un+1h + un�1h )=2,  h = (�

n+1
h + �n�1h )=2, and add and subtract jjunhjj2DIV . Similarly,

in the porous media equation, set  h = �n+1h + �nh and add and subtract jj�nhjj2p:
Adding the two energy estimates gives

En+1=2 � En�1=2 + Coupling

+4tDn+1=2 =
�t

2

�
(fnf ; u

n+1
h + un�1h )f + g(f

n
p ; �

n+1
h + �n�1h )

�
:

Here

En+1=2 =
1

4

�
jjun+1h jj2DIV + jjunhjj2DIV

�
+

+
1

4
gS0

�
jj�n+1h jj2p + jj�nhjj2p

�
+
1

2
4t2g2

�
jj�n+1h jj2H1(
p)

+ jj�nhjj2H1(
p)

�
Dn+1=2 =

1

4
af (u

n+1
h + un�1h ; un+1h + un�1h ) +

1

4
ap(�

n+1
h + �n�1h ; �n+1h + �n�1h ):

The coupling terms are

Coupling =
4t
2

�
cI(�

n
h; u

n+1
h + un�1h )� cI(�n+1h + �n�1h ; unh)

�
=

=
4t
2

�
cI(�

n
h; u

n+1
h )� cI(�n+1h ; unh)

�
� 4t
2

�
cI(�

n�1
h ; unh)� cI(�nh; un�1h )

�
:

Let us denote Cn+1=2 = cI(�
n
h; u

n+1
h )� cI(�n+1h ; unh) so we have�

En+1=2 +
�t

2
Cn+1=2

�
�
�
En�1=2 +

�t

2
Cn�1=2

�
+4tDn+1=2 =

�t

2

�
(fnf ; u

n+1
h + un�1h )f + g(f

n
p ; �

n+1
h + �n�1h )

�
:

Standard coercivity estimates show that

Dn+1=2 � �

4
jjr

�
un+1h + un�1h

�
jj2f +

gkmin
4

jjr
�
�n+1h + �n�1h

�
jj2p:

Summing, stability and the stated energy inequality thus follow provided

En+1=2 +
4t
2
Cn+1=2 � 1

8

�
jjuN+1h jj2DIV + jjuNh jj2DIV

�
+

+
1

4
gS0

�
jj�N+1h jj2p + jj�Nh jj2p

�
:

Consider the coupling terms. Using (3.3)

�t

2

���Cn+1=2��� = �t

2
g

����Z
I

�nhu
n+1
h � bnf � �n+1h unh � bnfds����

� �t

2
g
�
jjun+1h jjDIV jj�nhjjH1(
p) + jjunhjjDIV jj�

n+1
h jjH1(
p)

�
� 1

8

�
jjun+1h jj2DIV + jjunhjj2DIV

�
+
�t2g2

2

h
jj�n+1h jj2H1(
p)

+ jj�nhjj2H1(
p)

i
:

We subtract this from En+1=2 and cancel terms, completing the proof.
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3.2. Application to Stokes �ow plus Coriolis force. The use of CNLF in
geophysical �ows is based on fast-slow wave decompositions and time �lters, see [28],
[30]. There are many complexities in geophysics we shall avoid in this �rst test by
focusing on Stokes �ow plus a Coriolis force fC � u:

ut � �4u+rp+ fC � u = f(x; t) and r � u = 0 in 
,
u = 0 on @
, and u(x; 0) = u0(x) in 
.

Choose conforming velocity-pressure FEM spaces Xh � H1
0 (
)

d, Qh � L20(
) satis-
fying the usual discrete inf-sup condition, [12], [11]. De�ne the bilinear form (with a
grad-div term, [23])

a(u; v) = (�ru;rv) + (r � u;r � v)

Let �u := fC � u. The (1.4) realization is: �nd (un+1h ; pn+1h ) 2 Xh � Qh satisfying,
for all vh 2 Xh; qh 2 Qh,

(
un+1h � un�1h

24t ; vh) + 24t(�(un+1h � un�1h );�(vh)) (3.4)

+(fC � unh; vh) + a(
un+1h + un�1h

2
; vh)+

�(p
n+1
h + pn�1h

2
;r � vh) + (qh;r �

un+1h + un�1h

2
) = (fn; vh):

Theorem 3.3 (Unconditional stability for �ow + rotation). (3.4) is uncondi-
tionally stable: for any N > 0,

1

2
[jjuN+1h jj2 + 3

4
jjuNh jj2 + 4�t2jj�h(uNh )jj2]

+
�t

2

NX
n=1

�
�jjr(un+1h + un�1h )jj2 + jjr � (un+1h + un�1h )jj2

�
� 1

2
[jju1hjj2 + 4�t2jj�h(u1h)jj2 + jju0hjj2 + 4�t2jj�h(u0h)jj2]

+ �t(�h(u
0
h); u

1
h) + �t

NX
n=1

(fn; un+1n + unh):

Proof. The proof in essential details follows that of Theorems 1 and 2.

4. Numerical Illustrations. We present two tests of stability, performed using
FreeFEM++ [13], one for Stokes-Darcy and one for Stokes �ow plus strong rotation.

Example 1: Stokes-Darcy. We solve the Stokes-Darcy problem with and with-
out stabilization, for small values of the parameters S0 and kmin (all other parameters
are 1) and h = 4t = 0:1. The true solution decays to zero as t ! 1 so any growth
in the approximate solution is an instability. The �rst test (and two �gures) are for
parameters S0 = 1; kmin = 10�4 and time steps that satisfy the timestep condition.
CNLFstab is stable, as predicted, and after a long enough time, CNLF becomes
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weakly unstable, as often reported.
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Figure 1: CNLFstab vs. CNLF, CFL condition holds

Thus CNLFstab controls CNLF�s weak instability in this test. The second test
(and two �gures) are for parameters S0 = 0:1; kmin = 10�4 and the timestep condition
violated. CNLFstab is stable, as predicted while CNLF is unstable, as expected.
We have performed tests for other parameter values with the same result.
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Figure 2: CNLFstab vs. CNLF, CFL condition violated

Example 2: Stokes �ow + strong rotation. In this example we consider
the 2d Stokes problem plus Coriolis forces with a speed of rotation ! = 100. The
computational domain is the square [0; 1] � [0; 1]. Let g1(x) = x2(1 � x2) exp(7x),
g2(y) = y2(1 � y)2 and the initial conditions be de�ned by u0 = g1(x)g

0
2(y); v0 =

�g01(x)g2(y). We solve the problem and plot the kinetic energy vs. time for CNLF
�rst without and then with stabilization. As predicted by the theory, CNLF is

8



unstable until 4tjj�jj < 1 while CNLFstab is stable for all time steps.

CNLF: unstable until 4t small CNLFstab: always stable

Figure 3: Stability of CNLF vs. CNLFstab

5. Conclusions. The accepted view of CNLF without additional stabilizations
or time �lters is that it has two issues. First, a CFL type timestep condition is
necessary for stability. Second, even under a CFL condition, non-damping of noise in
the unstable mode over long time intervals can also lead to instabilities. Time �lters
are a wonderfully elegant and modular tool that addresses the second issue but not
the �rst. We have presented a stabilization herein that, while not modular, addresses
both issues. For the Stokes-Darcy problem CNLFstab is stable for all S0 and kmin
and is, to our knowledge, the �rst second order, parameter-uniform, long time stable
partitioned method. Naturally, when a timestep condition is grossly violated (as the
tests here did purposefully), the di¢ culty may be shifted from stability to accuracy.
Thus, the next important step in studying CNLFstab must be precise error analysis
and careful testing of accuracy for speci�c applications, like the two in Section 3.
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