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Abstract. This work proposes and analyzes a compressed sensing approach

to polynomial approximation of complex-valued functions in high dimensions.
Of particular interest is the setting where the target function is smooth, char-

acterized by a rapidly decaying orthonormal expansion, whose most important

terms are captured by a lower (or downward closed) set. By exploiting this fact,
we present an innovative weighted `1 minimization procedure with a precise

choice of weights, and a new iterative hard thresholding method, for imposing

the downward closed preference. Theoretical results reveal that our computa-
tional approaches possess a provably reduced sample complexity compared to

existing compressed sensing techniques presented in the literature. In addition,

the recovery of the corresponding best approximation using these methods is
established through an improved bound for the restricted isometry property.

Our analysis represents an extension of the approach for Hadamard matrices in
[5] to the general case of continuous bounded orthonormal systems, quantifies

the dependence of sample complexity on the successful recovery probability,

and provides an estimate on the number of measurements with explicit con-
stants. Numerical examples are provided to support the theoretical results

and demonstrate the computational efficiency of the novel weighted `1 mini-

mization strategy.

1. Introduction

Compressed sensing (CS) is an appealing approach for reconstructing signals
from underdetermined systems, with far smaller number of measurements compared
to the signal length [6, 16]. Under the sparsity or compressibility assumption of
the signals, this approach enjoys a significant improvement in sample complexity
in contrast to traditional methods such as discrete least squares, projection, and
interpolation. As the solutions of many parameterized partial differential equations
(PDEs) are known to be compressible in the sense that they are well approximated
by a sparse expansion in an orthonormal system (see, e.g., [13] and the references
therein), it is no surprise that the interest in applying compressed sensing techniques
to the approximation of high-dimensional functions and parameterized systems has
been growing rapidly in recent years [17, 32, 24, 31, 39, 37, 25, 36, 33].
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In these works, the target function is a quantity of interest (QoI) associated with
the solution of a parameterized PDE of the form

(1.1) D(u,y) = 0,

where D is a differential operator and y := (y1, . . . , yd) is a parameter vector in

a compact tensor product domain U =
∏d
k=1 Uk ⊂ Rd, e.g., U = [−1, 1]d. The

solution u to such PDEs is therefore a map y ∈ U 7→ u(y) ∈ V where V is the
solution space, typically a Sobolev space, e.g., V = H1

0 . The algorithms proposed
in the previously cited works are designed to approximate a QoI consisting of a
function g : y ∈ U 7→ G(u(y)) which, e.g., is either the evaluation of u at a fixed
point of the space/time domain or a linear functional in u. Introducing F := Nd0 =

{ν = (νk)dk=1 : νk ∈ N0}, and a measure % : U → R+ with %(y) =
∏d
k=1 %k(yk),

the resulting functions are smooth, complex-valued, and can be expanded in an
L2(U , d%)-orthonormal basis {Ψν}ν∈F according to

(1.2) g(y) =
∑
ν∈F

cνΨν(y),

where Ψν =
∏d
k=1 Ψνk are tensor products of L2(Uk, d%k)-orthonormal polynomi-

als, and the coefficients cν belong to C. The series (1.2) is generally referred to as
the polynomial chaos (PC) expansion of g (see, e.g., [22, 30]), whose convergence
rates are well understood [39]. The orthonormal systems of particular interest in
this work consist of Legendre and Chebyshev expansions. The polynomial approx-
imation of the function g in the CS setting is fairly straightforward. First, one
truncates the expansion (1.2) in the multivariate polynomial space

(1.3) PJ := span{y 7→ yν : ν ∈ J }

with J := {ν1, . . . ,νN} a finite set of indices whose cardinality N := #(J ) is large
enough to yield g '

∑
ν∈J cνΨν . Then, for some m ≤ N , generate m samples

y1, . . . ,ym in the parametric domain U independently from the orthogonalization
measure % associated with {Ψν}ν∈F , and find an approximation g# of g of the form

g# =
∑
ν∈J

c#ν Ψν ,(1.4)

where c# := (c#ν )ν∈J is the sparsest signal with an inherent interpolatory aspect,
i.e., among solutions z of underdetermined system Ψz = g. Here, the matrix
Ψ ∈ Rm×N contains the samples of the PC basis and the vector g is the observation
of the target function, i.e.,

(1.5) Ψ :=
(

Ψνj (yi)
)

1≤i≤m
1≤j≤N

, and g := (g(y1), . . . , g(ym)).

respectively. In practice, noisy formulations of this problem are also considered by
investigating the expansion tail

∑
ν /∈J cνΨν .

To date, the sparse recovery of the polynomial expansion (1.2) via CS has shown
to be very promising. However, this approach requires a low uniform bound of the
underlying basis, given by

Θ = sup
ν∈J
‖Ψν‖L∞(U),
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as the sample complexity m required to recover the best s-term approximation (up
to a multiplicative constant) scales with the following bound (see, e.g., [20])

m & Θ2s× log factors.(1.6)

This poses a challenge for many multivariate polynomial approximation strategies
as Θ is prohibitively large in high dimensions. In particular, for d-dimensional
problems, Θ = 2d/2 for Chebyshev systems and 3d/2 for preconditioned Legendre
systems [40]. Moreover, when using the standard Legendre expansion, the num-
ber of samples can exceed the cardinality of the polynomial subspace, unless the
subspace a priori excludes all terms of high total order (see, e.g., [24, 25]). There-
fore, the advantages of sparse polynomial recovery methods, coming from reduced
query complexity, are eventually overcome by the curse of dimensionality, in that
such techniques require at least as many samples as traditional sparse interpolation
techniques in high dimensions [35, 34, 23].

Nevertheless, in many engineering and science applications, the target functions,
despite being high-dimensional, are smooth and often characterized by a rapidly
decaying polynomial expansion, whose most important coefficients are of low order
[14, 27, 11, 13]. In such situations, the quest for finding the approximation con-
taining the largest s terms can be restricted to polynomial spaces associated with
lower (or downward closed) sets.

Definition 1.1 (Lower set). An index set Λ ⊂ F is called a lower set (also called
downward closed set) if and only if

ν ∈ Λ and µ ≤ ν =⇒ µ ∈ Λ,(1.7)

where µ ≤ ν if and only if µk ≤ νk for all 1 ≤ k ≤ d.

The practicality of downward closed sets is mainly computational, and has been
demonstrated in different approaches such as quasi-optimal strategies [3], Taylor
expansion [8], interpolation methods [10], and discrete least squares [9]. For in-
stance, in the context of parametric PDEs such as (1.1), it was shown in [11] that
for a large class of operators D with a certain type of anisotropic dependence on
y, the solution map y 7→ u(y) can be approximated by best s-term PC expansions
associated with index sets of cardinality s, resulting in algebraic rates s−α, α > 0 in
the uniform and/or mean average sense. The same rates are preserved with index
sets that are lower. In addition, for U = [−1, 1]d, such lower sets of cardinality
s also enable the equivalence property ‖ · ‖L2(U,d%) ≤ ‖ · ‖L∞ ≤ sγ‖ · ‖L2(U,d%) in

arbitrary dimensions d with, e.g., γ = 2 for the uniform measure and γ = log 3
log 2 for

Chebyshev measure.
This paper is focused on developing and analyzing CS approximations confined

to downward closed sets, used to overcome the curse of dimensionality in the sam-
pling complexity bound (1.6). As such, our work also provides a fair comparison
with existing numerical polynomial approaches in high dimensions [8, 10, 9, 3, 43].
To achieve our goal, we study two sparse recovery approaches for imposing the
downward closed structure, namely a weighted `1-minimization with the specific
choice of weights ων = ‖Ψν‖L∞(Ω), and an iterative hard thresholding method con-
strained to lower sets. In addition, we also develop a rigorous theoretical framework
that provides the analytic evidence for the improved performance of our proposed
methods in reconstructing smooth functions.
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In the context of CS, it is a well-established fact that sparse recovery is strongly
tied to the concept of the restricted isometry property (RIP) of the (normalized)
sampling matrix Ψ. However, motivated by the fact that the best s-term approx-
imation is typically associated with a lower set, herein we adapt a weaker version
of the RIP in which we call the lower RIP. Unlike the standard RIP which requires
all sub-matrices formed by s columns of Ψ to be well conditioned, the lower RIP
involves only s-tuples of columns whose indices form a lower set. Given the lower
RIP assumption, we establish stable and robust reconstruction guarantees for the
best lower s-term approximation of g, which is the best among all approximations
of g supported on lower index sets of cardinality s. It is reasonable to expect that
this approximation, while weaker, is close to best s-term approximation for smooth
functions g considered throughout this effort.

More importantly, the improved sample complexity for high-dimensional function
recovery, using our methods, can be deduced directly from the sufficient condition
for lower RIP. For clarification, a complete technical description of (1.6) is given
by the condition

m ≥ CΘ2s log3(s) log(N),(1.8)

which was developed in [42, 38, 7], and is often cited in the case of the standard

RIP, used to guarantee uniform recovery with probability exceeding 1−N− log3(s).
In this work, we develop three critical components that enable us to systematically
reduce the number of samples given by (1.8):

1. The lower RIP is associated with downward closed sets which allows us to
employ efficient bounds of basis functions defined on those sets, derived in
[12, 9] for discrete least squares, and replace Θ2s by

K(s) = sup
Λ⊂J ,Λ lower

#(Λ)=s

∥∥∥∑
ν∈Λ

|Ψν |2
∥∥∥
L∞(U)

,(1.9)

which is significantly smaller.
2. We can reasonably choose J as the Hyperbolic Cross index set

Hs :=
{
ν ∈ F :

d∏
k=1

(νk + 1) ≤ s
}
,(1.10)

which is the smallest set that surely contains the best lower s indices (i.e.,
the union of all lower sets of cardinality s). The cardinality of Hs grows
mildly in s and d, compared to other common choices such as tensor product
and total degree. Indeed, from [18], we have N := #(Hs) ≤ 2s34d, which
facilitates both linear growth of m with respect to the dimension d, and
accelerates matrix-vector multiplication.

3. We extend the chaining arguments, recently developed in [5, 26] for uni-
tary matrices, to general bounded orthonormal systems, so as to decrease
the logarithm factor in (1.8) by one unit. Following the approach in [5],
we modify the covering argument for this task. In addition, we provide
the technical details necessary to quantify the universal constants, and the
constraint of the number of samples m on the success probability. It is
worth noting that our analysis shows a success probability slightly weaker
than that associated with (1.8).
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By combining all the above ingredients, the analysis herein (see Theorem 2.2
and 3.3) details the improvements to (1.8), by showing that the sufficient condi-
tion required to reconstruct the best lower s-term approximation, with probability
exceeding 1−N− log(s) is given by

m ≥ CK(s) log2(s)(log(s) + d).(1.11)

As shown in Lemma 3.5, for J = Hs in high dimensions, i.e., 2d > s,

Θ2s ≥

{
s2/2, if (Ψν) is Chebyshev basis,

s
log 3
log 2 +1/3, if (Ψν) is Legendre basis,

(1.12)

while as indicated in Lemma 3.7,

K(s) ≤

{
s

log 3
log 2 , if (Ψν) is Chebyshev basis,

s2, if (Ψν) is Legendre basis.
(1.13)

Therefore, the advantage of our sample complexity, given by (1.11), compared to the
well-known condition (1.8), is that our sufficient requirements for recovery possess:
lower order of s; lower order in the logarithmic factor; and an efficient and explicit
definition of log(N) given by log(s) + d.

1.1. Related works. Our lower RIP is a specific case of the weighted RIP intro-
duced in [41], several results on which carry over into our context. However, while
the analysis therein applies for general weights, it only leads to the best weighted s-
term error, which is incomparable to and, in case of large weights, much weaker than
the best s-term error, in regards to the number of terms to be recovered. There-
fore, the numerical benefit of weights in reducing the computational complexity is
inconclusive. The idea of using the weights to boost the recovery performance of
`1 minimization has appeared elsewhere, e.g., in the context of regularization or
removing aliasing [2, 41], as well incorporating a priori information related to the
support set or the decay of the polynomial coefficients [21, 46, 31, 37]. On the con-
trary, our approach does not require any such a priori knowledge; for an improved
recovery performance, the generic requirement on the target functions is that the
multi-indices of best (largest) polynomial coefficients are captured in a lower set.

The RIP estimate herein extends the strategy in [5], introduced to improve the
standard RIP for Hadamard matrices, to the general case of continuous bounded
orthonormal systems. Upon completion of this work, we became aware of the work
[26], in which a different strategy of net constructions was introduced, leading to
a reduction in sample complexity (1.8) by one logarithmic factor, as well as an
improved dependence on restricted isometry constant. While [26] is only concerned
with asymptotic estimates for Fourier matrices, we believe that one might extend
such arguments to the setting presented in this effort. Finally, the compressed
sensing approaches presented in this work as well as any RIP-based polynomial ap-
proximation framework require an a priori estimate of the expansion tail, whereas,
the RIPless approach presented in [1] refrains from this requirement.

1.2. Notation and preliminaries. Throughout this paper, we use C to denote
a generic positive constant whose value may be different from place to place but
which is independent of any parameters. For Λ ⊂ F , Λc denotes the complement of
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Λ, zΛ is the restriction of z = (zν)ν∈F to Λ. For convenience, ‖ · ‖L∞ := ‖ · ‖L∞(U).
Given the multi-index notation ν = (ν1, . . . , νd) ∈ F , we define

supp(ν) := {k : νk 6= 0}, ‖ν‖0 := #(supp(ν)).

For g =
∑
ν∈F cνΨν and Λ a set of indices, we denote gΛ :=

∑
ν∈Λ cνΨν . We

normalize the sampling matrix and observation in (1.5) as

A :=
Ψ√
m

=
(Ψνj (yi)√

m

)
1≤i≤m
1≤j≤N

, g̃ :=
g√
m

=
(g(yi)√

m

)
1≤i≤m

.(1.14)

Also, the normalized expansion tail is referred as

ξ :=
(gJ c(yi)√

m

)
1≤i≤m

.(1.15)

Under the newly introduced notation, the exact coefficients c = (cν)ν∈J satisfy
Ac + ξ = g̃. Assuming that ξ is small (whose a priori upper bound is assumed
if `1 minimization is used), we approximate g via g# =

∑
ν∈J c

#
ν Ψν , where c# =

(c#ν )ν∈J is among the solutions z of Az ≈ g̃.

1.3. Organization. Our paper is organized as follows. First, using the recently
developed chaining technique, in Section 2 a new RIP estimate for general bounded
orthonormal systems is provided. To avoid unimportant technicalities, the discus-
sion in this section will focus on standard RIP, however, the analysis is general and
does not depend on whether standard RIP or lower RIP is considered. In Section
3, we describe the new mathematical tools necessary to establish the concept of
the lower RIP and the sparse recovery on lower sets. Section 4 is devoted to pre-
senting the innovative theoretical results and analysis for polynomial approximation
using our versions of weighted `1 minimization and iterative hard thresholding algo-
rithms. Several high-dimensional computational experiments supporting the theory
are given in Section 5. Finally, several critical lemmas and the complete technical
details of the rigorous proofs of our RIP estimates can be found in the Appendix.

2. Improved RIP estimate for bounded orthonormal system

The restricted isometry property (RIP) is an important ingredient for sparse
recovery guarantees, which is given by the following definition.

Definition 2.1 (RIP). For A ∈ Cm×N , the restricted isometry constant δs asso-
ciated to A is the smallest number for which

(1− δs)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δs)‖z‖22,(2.1)

for all z ∈ CN satisfying #(supp(z)) ≤ s. We say that A satisfies the restricted
isometry property if δs is small for reasonably large s.

In this paper, we prove the following RIP estimate for bounded orthonormal
system, inspired by the approach in [5].

Theorem 2.2. Let δ, γ be fixed parameters with 0 < δ < 1/13, 0 < γ < 1 and
{Ψν}ν∈J be an orthonormal system of finite size N = #(J ). Assume that

m ≥ 26e
Θ2s

δ2
log
(Θ2s

δ2

)
max

{
25

δ4
log
(

40
Θ2s

δ2
log
(Θ2s

δ2

))
log(4N),(2.2)

1

δ
log
( 1

γδ
log
(Θ2s

δ2

))}
,
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and y1,y2, . . . ,ym are drawn independently from the orthogonalization measure %
associated to {Ψν}. Then with probability exceeding 1−γ, the normalized sampling
matrix A ∈ Cm×N satisfies

(1− 13δ)‖z‖22 < ‖Az‖22 < (1 + 13δ)‖z‖22,(2.3)

for all z ∈ CN , #(supp(z)) ≤ s.

The complete detailed proof of Theorem 2.2 is given in the Appendix A.2. How-
ever, to assist the reader in better understanding the logic of our proof we next
provide a sketch that explains the essential features on how we achieved the im-
proved RIP estimate.
Sketch of proof. To begin, let us denote

ψ(y, z) :=
∑
ν∈J

zνΨν(y), ∀y ∈ U , z ∈ CN ,

and Es := {z ∈ CN : ‖z‖2 = 1, #(supp(z)) ≤ s}.

Our goal is to derive conditions on m such that for a set of m random samples
{yi}mi=1 ⊂ U , drawn according to %, then with high probability, there holds ∀z ∈ Es:

1

m

m∑
i=1

|ψ(yi, z)|2 ≈
∫
U
|ψ(y, z)|2d%.(2.4)

We construct a “discrete” approximation ψ̃ of ψ such that (see Appendix A.2, Step
1):

1. for any z ∈ Es, ψ̃(·, z) ≈ ψ(·, z);

2. ψ̃(·, z) can be represented as a piecewise constant function on U : ψ̃(·, z) =∑
l∈L ψ̃

z
l (·), where each ψ̃zl is a constant function, supported on a subset of

U , representing a scale of ψ̃(·, z) and L is a finite set of scale; and

3. for each l ∈ L, {ψ̃zl : z ∈ Es} belongs to a finite class whose cardinality is
optimized.

With the use of 1. and 2. one can establish the bound (see Appendix A.2, Step 2):∣∣∣∣∣ 1

m

m∑
i=1

|ψ(yi, z)|2 −
∫
U
|ψ(y, z)|2d%

∣∣∣∣∣ .
∣∣∣∣∣ 1

m

m∑
i=1

|ψ̃(yi, z)|2 −
∫
U
|ψ̃(y, z)|2d%

∣∣∣∣∣
≤
∑
l∈L

∣∣∣∣∣ 1

m

m∑
i=1

|ψ̃zl (yi)|2 −
∫
U
|ψ̃zl (y)|2d%

∣∣∣∣∣ .(2.5)

Using the basic tail estimate given by Lemma A.2 yields for any l and z, with high
probability

1

m

m∑
i=1

ψ̃zl (yi) ≈
∫
U
ψ̃zl (y)d%.(2.6)

We can then obtain (2.4) by employing (2.5) and applying the union bound for
(2.6) over all l,z (see Appendix A.2, Step 3). For this argument to yield small m,

it is critical to construct ψ̃(·, z) in such a way that the total number of functions

ψ̃zl (over l ∈ L, z ∈ Es) is finite and optimized, justifying the requirement given by
3. above.
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As an example, for each l ∈ L, we can define ψ̃zl according to a covering of Es
under the pseudo-metric

d(z, z′) = sup
y∈U
|ψ(y, z − z′)|,

so that #{ψ̃zl : z ∈ Es} is roughly a covering number of Es. However, one can check
that in our high-dimensional setting, this covering number grows exponentially in
the dimension of U . Fortunately, an inspection of |ψ(·, z − z′)| reveals that these
functions often have tall spikes in a small subregion of U , while are relatively small
for the rest of the domain. This motivates us to consider a new “distance” between
z and z′, which is significantly smaller than d(z, z′), given by an upper bound of
|ψ(y, z − z′)| for most y ∈ U . More rigorously, we define

dς(z, z
′) := inf

Ũ⊂U
%(Ũ)=1−ς

sup
y∈Ũ
|ψ(y, z − z′)|.

Although dς is not a proper pseudo-metric, an adaptation of the covering number
result can still be derived in this case (see Lemma A.3). This argument is similar

in spirit to [26, Lemma 3.5]. The approximation ψ̃, constructed with dς , may not
agree with ψ in a small subdomain of U , but one can tune ς so as to not affect the
estimate (2.5).

This completes the sketch of the main proof. �

Remark 2.3. In brief, the RIP (and subsequently, best s-term reconstruction) occurs
with probability exceeding 1− γ under the condition

m ≥ CΘ2smax{log2(Θ2s) log(N), log(Θ2s) log(log(Θ2s)/γ)}.(2.7)

The first constraint in (2.7) therefore reduces the order of log(s) in (1.8) by one unit.
The second constraint, on the other hand, has an additional log factor compared
to the well-known one, i.e., m ≥ CΘ2s log(1/γ), see [38], after balancing leading to
a weaker success probability, as discussed in Section 1.

3. Sparse recovery on lower sets

In this section we focus on a smooth g, given by (1.2), and exploit the fast
decay of its polynomial expansion to further improve (2.7). Central to this task is
the concept of lower or downward closed sets, given Definition 1.1. With this in
mind, instead of best s-term approximations, we are interested in best lower s-term
approximation of g, which is the best among all approximations of g supported on
lower sets of cardinality s. More rigorously, let Λ∗ be a lower subset of F which
realizes the infimum

Λ∗ := arg min
Λ lower
#(Λ)≤s

‖g − gΛ‖,(3.1)

where the norm to be specified later. Here ‖g− gΛ∗‖ is the best lower s-term error,
and our goal is to find approximations of g with error scaling linearly in ‖g− gΛ∗‖.
We expect the best lower s-term error, while generally larger, is close to best s-term
error in our setting. These quantities are particularly identical provided that g is
s-sparse, supp(g) lower, represented by finite Legendre and Chebyshev expansions.
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To achieve our goal, it is reasonable to consider a relaxed version of RIP that
specifically involves s-tuples of columns associated with lower sets. Given a multi-
index set Λ ⊂ F , we introduce the quantity

K(Λ) :=
∥∥∥∑
ν∈Λ

|Ψν |2
∥∥∥
L∞

,(3.2)

and, with an abuse of notation, denote

K(s) := sup
Λ⊂J ,Λ lower

#(Λ)=s

K(Λ),(3.3)

which has already been mentioned in (1.9). We define next the lower restricted
isometry property (lower RIP). This property is exclusive to the present setting
and defined here for submatrices whose columns are associated with indices ν ∈ F .

Definition 3.1 (Lower RIP). For A ∈ Cm×N as in (1.14), the lower restricted
isometry constant δ`,s associated to A is the smallest number for which

(1− δ`,s)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ`,s)‖z‖22(3.4)

for all z ∈ CN satisfying K(supp(z)) ≤ K(s). We say that A satisfies the lower
restricted isometry property if δ`,s is small for reasonably large s.

Remark 3.2. The lower RIP is a specific case of the weighted RIP, introduced in
[41] for general weights, here with the weights ων = ‖Ψν‖L∞ . By introducing the
notation ‖z‖0,ω =

∑
ν∈supp(z) ω

2
ν for z ∈ CN , the weighted RIP constant δω,s was

defined as the smallest number δω,s for which

(1− δω,s)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δω,s)‖z‖22, ‖z‖0,ω ≤ s.(3.5)

By (3.2), observe that K(supp(z)) ≤ ‖z‖0,ω, hence given z such that ‖z‖0,ω ≤
K(s), then K(supp(z)) ≤ K(s) so that (3.4) is satisfied showing that δω,K(s) ≤ δ`,s.
For the Chebyshev and Legendre systems, the polynomials Ψν all attain their
supremums at (1, . . . , 1), hence for any z ∈ CN , thenK(supp(z)) = ‖z‖0,ω, showing
that

δ`,s = δω,K(s).(3.6)

Note the change of order in this relation: loosely speaking, the lower RIP of order
s corresponds to the weighted RIP of order K(s).

An important subclass of z satisfying (3.4) is z ∈ CN with #(supp(z)) ≤ s and
supp(z) lower. One may want to consider a more natural isometry property which
requires (3.4) for only vectors z in the above class. We can see from the following
analysis that this property is weaker but requires the same sampling cost as (3.4).
The sample complexity for lower RIP is established in the following theorem.

Theorem 3.3. Let δ, γ be fixed parameters with 0 < δ < 1/13, 0 < γ < 1 and
{Ψν}ν∈J be an orthonormal system of finite size N = #(J ). Assume that

m ≥ 26e
K(s)

δ2
log
(K(s)

δ2

)
max

{
25

δ4
log
(

40
K(s)

δ2
log
(K(s)

δ2

))
log(4N),

(3.7)

1

δ
log
( 1

γδ
log
(K(s)

δ2

))}
,
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and y1,y2, . . . ,ym are drawn independently from the orthogonalization measure %
associated to {Ψν}. Then with probability exceeding 1−γ, the normalized sampling
matrix A ∈ Cm×N satisfies

(1− 13δ)‖z‖22 < ‖Az‖22 < (1 + 13δ)‖z‖22,(3.8)

for all z ∈ CN , K(supp(z)) ≤ K(s).

The proof of Theorem 3.3 is discussed in the Appendix A.3. This proof essentially
follows the same path as the proof of Theorem 2.2 with few minor changes.

Remark 3.4. In brief, the random matrix A satisfies the lower RIP of order s and,
subsequently, guarantees lower reconstruction with probability exceeding 1 − γ if
the sample size m satisfies

m ≥ CK(s) max{log2(K(s)) log(N), log(K(s)) log(log(K(s))/γ)}.(3.9)

Next, we present a theoretical comparison between the complexity bounds re-
quired by standard RIP (2.7) and lower RIP (3.9), showing the computational cost
saving with our best lower approximations. Assuming that no information about
the support set or the decay of the polynomial coefficients is a priori known, we
reasonably make the choice J = Hs, which is the smallest set that surely contains
the best lower s indices. For the sake of notational clearness, we denote (Lν)ν∈F
and (Tν)ν∈F the Legendre and Chebyshev basis of L2(U , d%) with % being the uni-
form or Chebyshev measure respectively. For such polynomials, we have for any
ν ∈ F

‖Tν‖L∞ = 2‖ν‖0 , and ‖Lν‖L∞ =

d∏
k=1

√
2νk + 1.(3.10)

First, we have the following sharp estimates.

Lemma 3.5. Let Hs be defined as in (1.10) with s ≤ 2d+1. There holds

s/2 ≤ sup
ν∈Hs

‖Tν‖2L∞ ≤ s, and s
log 3
log 2 /3 ≤ sup

ν∈Hs

‖Lν‖2L∞ ≤ s
log 3
log 2 .(3.11)

Proof. For ν ∈ Hs, it is easy to see that ‖Tν‖2L∞ = 2‖ν‖0 ≤
∏d
k=1(νk + 1) ≤ s.

Also, since b 7→ log(2b+1)
log(b+1) is decreasing over [1,+∞), (2b+ 1) ≤ (b+ 1)log 3/ log 2 for

any b ≥ 1 which implies ‖Lν‖2L∞ =
∏d
k=1(2νk + 1) ≤

∏d
k=1(νk + 1)

log 3
log 2 ≤ s

log 3
log 2 .

On the other hand, since s ≤ 2d+1, then 2d
′
< s ≤ 2d

′+1 for some d′ ≤ d, so
that the index ν = e1 + · · ·+ ed′ belongs to Hs and yields ‖Tν‖2L∞ = 2d

′ ≥ s/2 and

‖Lν‖2L∞ = 3d
′

= (2d
′
)

log 3
log 2 ≥ (s/2)

log 3
log 2 = s

log 3
log 2 /3.

For the polynomial systems such as Chebyshev or Legendre (or more generally
Jacobi systems), log(Θ) . log(s) over the hyperbolic cross Hs regardless of the
dimension d. An immediate consequence of the previous lemma and condition
(2.7) is that the RIP can be obtained for J = Hs with the bound

m ≥ C s1+β max
{

log2(s) log(N), log(s) log(log(s)/γ)
}
,(3.12)

where β = 1 for Chebyshev systems and β = log 3
log 2 ' 1.58 for Legendre systems

respectively. Following from the estimate (see [18])

#(Hs) ≤ ε−1s1+1/ε(1− ε)−d/ε, 0 < ε < 1,(3.13)
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it is easy to see that N = #(Hs) ≤ 2s34d, and if we set ε = 1/2 we obtain

m ≥ C s1+β max
{

log2(s)(log(s) + d), log(s) log(log(s)/γ)
}
.(3.14)

Although we have eliminated the exponential growth on d, the condition (1.6) has
not been broken up to this step. Rather, the bound (3.14) is merely acquired from
(1.6) with an estimate of Θ on the Hyperbolic Cross subspace.

We proceed to detail the complexity bound of lower RIP. As the Chebyshev and
Legendre polynomials attain their supremum at the point 1 = (1, . . . , 1) with the
supremums given in (3.10), the value of K defined in (3.2)-(3.3) is then known and
one can derive estimates for it. For these two systems, we use the notations KT (Λ),
KT (s), KL(Λ) and KL(s) respectively, where

(3.15) KT (Λ) =
∑
ν∈Λ

2‖ν‖0 , and KL(Λ) =
∑
ν∈Λ

d∏
k=1

(2νk + 1).

The following estimates of KT (Λ) and KT (Λ) can be found in [9].

Lemma 3.6. Let Λ ⊂ F be a lower set with #(Λ) ≥ 2. There holds

2#(Λ)− 1 ≤ KT (Λ) ≤ (#(Λ))
log 3
log 2 ,(3.16)

3#(Λ)− 1 ≤ KL(Λ) ≤ (#(Λ))2.(3.17)

We note that the left sides in (3.16) and (3.17) follow from
∏d
k=1(2νk + 1) ≥ 3

and 2‖ν‖0 ≥ 2 for any index ν 6= 0. We also note that the right side inequalities
are sharp, equalities hold for lower sets of the form {µ ≤ e1 + · · · + ed′}. An

immediate implication of the Lemma 3.6 are the bounds 2s − 1 ≤ KT (s) ≤ s
log 3
log 2

and 3s− 1 ≤ KL(s) ≤ s2. The upper bounds are actually sharp in high dimension.
We indeed have

Lemma 3.7. Let s ≤ 2d+1. There holds

s
log 3
log 2

3
≤ KT (s) ≤ s

log 3
log 2 ,

s2

4
≤ KL(s) ≤ s2.(3.18)

Proof. For ν ∈ Hs, the rectangular block Rν := {µ ≤ ν} ⊂ Hs is lower and has a

tensor format, so that from identities 1 +
∑b
b′=1 2 = 1 + 2b and

∑b
b′=0(2b′ + 1) =

(1 + b)2, one infers

KT (Rν) = Πd
k=1(1 + 2νk), and KL(Rν) = Πd

k=1(1 + νk)2.

Since s ≤ 2d+1, then 2d
′
< s ≤ 2d

′+1 for some d′ ≤ d. For ν = e1 + · · ·+ ed′ ∈ Hs,
one obtains KT (Rν) = 3d

′
= (2d

′
)

log 3
log 2 and KL(Rν) = (2d

′
)2, which implies

KT (Rν) ≥ (s/2)
log 3
log 2 = s

log 3
log 2 /3, KL(Rν) ≥ (s/2)2 = s2/4,

which completes the proof.

Combining the complexity bound (3.9) with the estimate (3.18), we arrive at the
following condition for uniform recovery of best lower s-term approximations, with
probability exceeding 1− γ,

m ≥ Cs1+β′ max{log2(s)(log(s) + d), log(s) log(log(s)/γ)},(3.19)
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where β′ = log 3
log 2 − 1 ' 0.58 for Chebyshev system and β′ = 1 for Legendre system.

These conditions eliminate the dependence on Θ2s at the cost of a super-linear
growth on s, yet are clearly weaker than those required by standard RIP, see (3.14).

We close this section by pointing out that (3.19) still depends linearly on d. This
dependence can be fully eliminated if instead of J = Hs, we work with J = As, the
union of all anchored sets Λ of cardinality smaller than s. Such sets are described
in [15] and are characterized by Λ lower and ek ∈ Λ if and only if ek′ ∈ Λ for any
k′ = 1, . . . , k−1. Indeed, it is easy to see that As is included in the projection of Hs
into an s-dimensional space, hence d in (3.19) can be replaced by s. Such subclass
of lower sets is also relevant in polynomial approximation of parametric PDEs (see,
e.g., [13]). It should also be emphasized that other types of polynomial spaces, e.g.,
Total Degree, have been attempted to overcome the fast growth of query complexity
in high-dimensional problems (see, e.g., [24]). However, these approaches impose an
a priori choice of the polynomial subspace and, additionally, employ the standard
RIP, given by (1.8). On the contrary, in our work J is determined optimally, based
on the number of terms to be reconstructed, and our lower RIP requires less samples
than standard RIP, as discussed throughout.

4. Basis pursuit and thresholding algorithms for polynomial
approximation on lower sets

In this section, we study two different approaches that enable us to realize sparse
reconstruction under the lower RIP. The algorithms considered herein include a
weighted `1-minimization, with a precise choice of weights, and a new iterative
hard thresholding method. To begin, let ω = (ων)ν∈F ∈ (0,∞)F be a sequence
of weights. Given a vector z = (zν)ν∈F of complex components or a function
g =

∑
ν∈F zνΨν , we define the weighted `1-norm of z and g by

‖g‖ω,1 = ‖z‖ω,1 :=
∑
ν∈F

ων |zν |,

and the best lower s-term error in weighted `1 norm by

σ(`)
s (g)ω,1 := inf

Λ lower
#(Λ)≤s

‖g − gΛ‖ω,1.

Recall that we are working with J = Hs, unless otherwise stated.

4.1. Weighted `1 minimization. Assuming that an estimate η of the tail gHc
s

is
available (specified later), our weighted `1-minimization procedure for recovering
an approximation g# of g, defined by

(4.1) g# =
∑
ν∈Hs

c#ν Ψν ,

is given in the following: Given ων = ‖Ψν‖L∞ . Find g# from (4.1), where
c# = (c#ν )ν∈Hs

solves the following constrained optimization problem

c# = arg min
z∈CN

‖z‖ω,1 subject to ‖g̃ −Az‖2 ≤
η√
m
.(4.2)

The recovery guarantees using weighted `1 minimization have been analyzed in [41]
for general choice of (ων)ν∈J . As discussed in Section 1, the benefit of weighting in
terms of query complexity is inconclusive therein. In this work, we specifically de-
fine the weights ων = ‖Ψν‖L∞ for use with `1-minimization, and how that smooth
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functions can be reconstructed with a significantly reduced number of samples com-
pared to the unweighted method (thanks to lower RIP). Such choice of weight has
not been previously discussed in the literature although the condition ων ≥ ‖Ψν‖L∞
has been imposed elsewhere [41, 2].

In what follows we consider and analyze two scenarios using our weighted `1
minimization procedure (4.1)-(4.2). First, we assume only an upper estimate of the
tail gHc

s
is available, and second, exact knowledge of the tail is assumed.

4.1.1. Given an upper estimate of the tail. In this case, the proof of the recovery
guarantee of g# in (4.1), using the optimization procedure (4.2), follows the ar-
guments of general weighted `1-minimization analysis (see [41, Theorem 6.1]), and
will not be repeated here. However, we remove the condition of large s required in
the work [41], based on an improvement of the null space property specific to our
setting (see Proposition 4.3). We first need some intermediate estimates.

Lemma 4.1. For any d ≥ 1 and any s ≥ 2

(4.3) KT (2s) ≥ 2KT (s), and KL(2s) ≥ 4KL(s).

In addition,

KT (s) ≥ 3

2
max
ν∈Hs

‖Tν‖2L∞ , and KL(s) ≥ 4

3
max
ν∈Hs

‖Lν‖2L∞ .(4.4)

Proof. For ν = (νk)1≤k≤d, we use the notation ν̂ = (νk)2≤k≤d. Let Λ be a lower
set of cardinality s. We introduce

Λ′ := {(2ν1, ν̂), (2ν1 + 1, ν̂) : ν = (ν1, ν̂) ∈ Λ}.

It is easily checked that Λ′ ⊂ F is lower and #(Λ′) = 2#(Λ) = 2s. Therefore
Λ′ ⊂ H2s. Moreover, for the tensorized Chebyshev and Legendre systems, ων =∏d
k=1 ωνk where ωνk denote the sup norm in one dimension. Hence

K(2s) ≥ K(Λ′) =
∑
µ∈Λ′

ω2
µ =

∑
ν∈Λ

(ω2
2ν1

+ ω2
2ν1+1)ω2

ν̂ ≥
∑
ν∈Λ

2ω2
ν1
ω2
ν̂ = 2K(Λ),(4.5)

where we have used the increase of the weights which yields ω2ν1 , ω2ν1+1 ≥ ων1 .
For Legendre system, we have

(ω2
2ν1

+ ω2
2ν1+1) = (4ν1 + 1 + 4ν1 + 3) = 4(2ν1 + 1) = 4ω2

ν1
.(4.6)

Since Λ is an arbitrary lower set included in Hs, (4.5) and (4.6) imply (4.3).
Now let ν ∈ Hs be the index that maximizes ‖Tν‖L∞ over Hs. We have Rν ⊂

Hs, so that KT (s) ≥ KT (Rν) =
∏d
k=1(1 + 2νk) ≥ 3‖ν‖0 = (3/2)‖ν‖0‖Tν‖2L∞ .

Similarly, for ν ∈ Hs maximizing ‖Lν‖L∞ , KL(s) ≥ KL(Rν) =
∏d
k=1(1 + νk)2 ≥

(4/3)‖ν‖0
∏d
k=1(1 + 2νk), where we have used (1 + t)2 ≥ 4

3 (1 + 2t) for any t ≥ 1.
Since for s ≥ 2, we get that ν 6= 0 and ‖ν‖0 ≥ 1. The proof is complete.

Remark 4.2. In the previous proof, if we define Λ′ by copying Λ using 3ν1, 3ν1 + 1,
3ν1 + 2, we get KT (3s) ≥ 3KT (s). For convenience, in the next proposition, we
will employ the estimates: for any d ≥ 1 and any s ≥ 2,

(4.7) KT (3s) ≥ 3KT (s), and KL(2s) ≥ 3KL(s),

where the second one is slightly weaker than (4.3).
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We now are able to provide the null space property associated with Chebyshev
and Legendre systems, defined on the Hyperbolic Cross index set.

Proposition 4.3. Let s ≥ 2, J = Hs and A ∈ Cm×N be a normalized sampling
matrix satisfying the lower RIP (3.4) with

δ`,αs < 1/3,(4.8)

where α = 2 for Legendre system and α = 3 for Chebyshev system. Then, for any
Λ ⊂ Hs with K(Λ) ≤ K(s) and any z ∈ CN ,

‖zΛ‖2 ≤
ρ√
K(s)

‖zΛc‖ω,1 + τ‖Az‖2(4.9)

with ρ = 4δ
1−δ , τ =

√
1+δ

1−δ and δ = δ`,αs.

Proof. We have K(s) ≥ K(Λ) =
∑
ν∈Λ ω

2
ν , therefore proving (4.9) is equivalent

to showing that A satisfies the weighted robust null space property of order K(s)
with constants ρ and τ , see [41, Definition 4.1]. In view of [41, Theorem 4.5] and
by an inspection of its proof, this can follow with ρ and τ as in our proposition
if A satisfies weighted RIP with δω,3K(s) < 1/3 for K(s) > (4/3) supν∈Hs

ω2
ν . In

view of (4.7), 3K(s) ≤ K(αs) for both Legendre and Chebyshev systems. Since
δω,t is increasing in t, δω,3K(s) ≤ δω,K(αs) = δ`,αs < 1/3, see Remark 3.2 for the

equality. We also have from (4.4) that K(s) > (4/3) supν∈Hs
ω2
ν for any s > 2 for

both systems, which completes the proof.

Combining (3.19) and Proposition 4.3 yields the uniform recovery of g up to the
best lower s-term error and the tail bound.

Theorem 4.4. Let s ≥ 2, J = Hs and N = #(Hs). Consider a number of samples

m ≥ Cs1+β′ max{log2(s)(log(s) + d), log(s) log(log(s)/γ)},(4.10)

where β′ = log 3
log 2−1 if {Ψν} is a Chebyshev system and β′ = 1 if {Ψν} is a Legendre

system. Let y1,y2, . . . ,ym be drawn independently from the orthogonalization mea-
sure % associated to {Ψν} and A ∈ Cm×N be the associated normalized sampling
matrix as in (1.14). Then, with probability exceeding 1 − γ, the following holds
for all functions g =

∑
ν∈F cνΨν : Given g̃, ξ as in (1.14)-(1.15) and η satisfying

‖ξ‖2 ≤ η√
m

, the function g# =
∑
ν∈Hs

c#ν Ψν , with c# = (c#ν )ν∈Hs solving (4.2),

satisfies

‖g − g#‖∞ ≤ ‖g − g#‖ω,1 ≤ c1σ(`)
s (g)ω,1 + d1η

√
K(s)

m
,

‖g − g#‖2 ≤ c2
σ

(`)
s (g)ω,1√
K(s)

+ d2η

√
1

m
.

Above, c1, c2, d1 and d2 are universal constants.

Remark 4.5. In Theorem 4.4, ξ is actually a random variable varying with the
sampling points (yi)1≤i≤m. It can be shown however that ‖ξ‖2 ≤ ‖gHc

s
‖ω,1 for

every set of samples, thus η can be set deterministically as
√
m‖gHc

s
‖ω,1 ≤ η.
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4.1.2. Given an exact estimate of the tail. In this section, we seek to prove a
stronger error rate which is independent of tail bound. It should be mentioned
that a result of this type has been derived in [41], where the index set is condi-
tioned by the weight as

J = {ν ∈ Nd0 : ω2
ν ≤ CK(s)},(4.11)

and is used to the best weighted K(s)-term reconstruction. Note that this is com-
parable to best lower s-term in our setting, as a lower set of cardinality s has a
weighted cardinality approximately equal to K(s) (see Remark 3.2). In our work,
however, J is specified instead to be the smallest set that contains the supports of
all downward closed sets of cardinality s, i.e., J = Hs. As shown in Lemma 4.1,
ω2
ν ≤ 3

4 K(s) for all ν ∈ Hs. The converse, i.e., ω2
ν ≥ CK(s) for all ν /∈ Hs, how-

ever, does not hold. Indeed, for our Chebyshev weights, definition (4.11) would lead
to a J with infinite cardinality. Therefore, Hs represents a significantly smaller in-
dex set than those considered in [41]. Nonetheless, the recovery of g up to the best
lower s-term error is still available without condition (4.11), provided that cν/ων
is small in Hcs. To clarify this assumption, for g =

∑
ν∈F cνΨν , we introduce a

parameter λ ≥ 0 such that

max
ν∈Hc

s

|cν |
ων
≤ (1 + λ) min

ν∈J̃

|cν |
ων

(4.12)

for some set J̃ ⊂ Hs with K(J̃ ) ≥ 2K(s), or equivalently,

λ := min
J̃⊂Hs

K(J̃ )≥2K(s)

max
ν∈Hc

s

|cν |/ων

min
ν∈J̃
|cν |/ων

− 1.(4.13)

Many subsets J̃ of Hs with cardinality 2s satisfy K(J̃ ) ≥ 2K(s), see (4.3). Thus,
the minimum in the right hand side of (4.12) can be taken over only 2s multi-indices
in Hs. On the other hand, for function g whose expansion coefficients decay fast,

it is reasonable to assume small max
ν∈Hc

s

|cν |
ων

, due to small cν and possibly big ων for

ν ∈ Hcs. As a result, λ is expected to be small in this effort.
We first need an estimate of ‖cHc

s
‖2. The choice J = Hs is not essential in this

development, for which reason we state the result for general ‖cJ c‖2.

Lemma 4.6. Let c = (cν)ν∈F and J be a subset of F . For all s ≥ 1, there holds

‖cJ c‖2 ≤
‖cJ c‖ω,1√

K(s)
+
√
K(s) max

ν∈J c

|cν |
ων

.(4.14)

Proof. We introduce J ′ = {ν ∈ J c : ω2
ν ≥ K(s)} and J ′′ = J c \ J ′. By definition

of J ′, we have

‖cJ ′‖2 ≤
√∑
ν∈J ′

ω2
νc

2
ν

K(s)
≤ ‖cJ

′‖ω,1√
K(s)

.

Since ‖cJ c‖2 ≤ ‖cJ ′‖2 + ‖cJ ′′‖2 and ‖cJ c‖ω,1 = ‖cJ ′‖ω,1 + ‖cJ ′′‖ω,1, one only
needs to show that

‖cJ ′′‖2 ≤
‖cJ ′′‖ω,1√

K(s)
+
√
K(s) max

ν∈J ′′
|cν |
ων

.
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We order J ′′ according to a non-increasing order of (|cν |/ων)ν∈J ′′ and then parti-
tion J ′′ as J ′′ = ∪Ll=1Jl where we inductively choose the sets Jl according to: J0 =
∅; for l ≥ 1 and J0, . . . ,Jl−1 having been built, we setMl = J ′′ \{J0∪· · ·∪Jl−1},
and let Jl = Ml if K(Ml) < K(s), or be a subset containing largest elements of
Ml such that K(s) ≤ K(Jl) ≤ 4K(s). If the induction does not terminate, L =∞
in which case

K(s) ≤ K(Jl) ≤ 4K(s), ∀ l ≥ 1.

If the induction terminates, L <∞ and we have only K(JL) < K(s).
Now, we denote by r+

l and r−l the largest and smallest entries in (|cν |/ων)ν∈Jl
.

An easy extension of [20, Lemma 6.14] yields for all 1 ≤ l < L:

‖cJl
‖2 ≤

‖cJl
‖ω,1√

K(Jl)
+

√
K(Jl)

4
(r+
l − r

−
l ) ≤ ‖cJl

‖ω,1√
K(s)

+
√
K(s)(r+

l − r
−
l ).

In the case L < ∞, we have ‖cJL
‖2 ≤ r+

L

√
K(JL) ≤ r+

L

√
K(s). There follows in

both cases L <∞ and L =∞:

‖cJ ′′‖2 ≤
L∑
l=1

‖cJl
‖2 ≤

‖cJ ′′‖ω,1√
K(s)

+
√
K(s)r+

1 .

Since r+
1 ≤ max

ν∈J ′′
|cν |
ων

the proof is complete.

We are now ready to state and prove the recovery guarantee, assuming an exact
estimate of gHc

s
exists.

Theorem 4.7. Let s ≥ 2, J = Hs, N = #(Hs), and m as in (4.10). Consider
a function g =

∑
ν∈F cνΨν with ‖g‖ω,1 < ∞, and λ defined as in (4.13). We

introduce Eg := max{
√

2‖gHc
s
‖2,
√

2‖gHc
s
‖ω,1√

K(s)
} and let η be such that

Eg ≤
η√
m
≤ (1 + ε)Eg.(4.15)

for some ε > 0. Then, with probability exceeding 1 − γ, the function g# =∑
ν∈Hs

c#ν Ψν , with the vector c# = (c#ν )ν∈Hs solving (4.2), satisfies

‖g − g#‖∞ ≤ ‖g − g#‖ω,1 ≤ (1 + λ+ ε)c3σ
(`)
s (g)ω,1,

‖g − g#‖2 ≤ (1 + λ+ ε)c4
σ

(`)
s (g)ω,1√
K(s)

.
(4.16)

Here, c3 and c4 are universal constants.

Proof. We introduce ξ̂ = (ξ̂i)1≤i≤m = (gHc
s
(yi))1≤i≤m. Since yi are i.i.d. random

variables with respect to %, by Lemma 4.6,

E[ξ̂2
i ] = ‖cHc

s
‖22 ≤

2‖cHc
s
‖2ω,1

K(s)
+ 2K(s)M2

Hc
s
,(4.17)

where we have defined MHc
s

:= maxν∈Hc
s

|cν |
ων

. We consider two cases:

• Case 1: ‖cHc
s
‖2 >

‖cHc
s
‖ω,1√

K(s)
. Since |ξ̂i| ≤ ‖cHc

s
‖ω,1 <

√
K(s)‖cHc

s
‖2, it holds

E
[
(ξ̂2
i − E[ξ̂2

i ])2
]
≤ E[ξ̂4

i ] ≤ K(s)‖cHc
s
‖22 E[ξ̂2

i ] ≤ K(s)‖cHc
s
‖42.
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Applying Bernstein’s inequality with the mean-zero random variable ξ̂2
i − E[ξ̂2

i ]

P
( m∑
i=1

ξ̂2
i

m
− ‖cHc

s
‖22 ≥ κ

)
≤ exp

(
− mκ2/2

K(s)‖cHc
s
‖42 + κ

3K(s)‖cHc
s
‖22

)
.

Choose κ = ‖cHc
s
‖22, there follows

P
( m∑
i=1

ξ̂2
i

m
≥ 2‖cHc

s
‖22
)
≤ exp

(
− 3m

8K(s)

)
.

• Case 2: ‖cHc
s
‖2 ≤

‖cHc
s
‖ω,1√

K(s)
. Similarly to [41], by Bernstein’s inequality,

P
( m∑
i=1

ξ̂2
i

m
≥

2‖cHc
s
‖2ω,1

K(s)

)
≤ P

( m∑
i=1

ξ̂2
i

m
− ‖cHc

s
‖22 ≥

‖cHc
s
‖2ω,1

K(s)

)
≤ exp

(
− 3m

8K(s)

)
.

In both cases, given that m ≥ (8/3)s1+β′ log(1/γ) ≥ (8/3)K(s) log(1/γ), then
with probability exceeding 1− γ,

1

m
‖ξ̂‖22 ≤ max

{
2‖cHc

s
‖22,

2‖cHc
s
‖2ω,1

K(s)

}
≤

4‖cHc
s
‖2ω,1

K(s)
+ 4K(s)M2

Hc
s
,

where the second inequality follows from (4.17). Under the condition (4.15), an
application of Theorem 4.4 yields

‖g − g#‖ω,1 ≤ c1σ(`)
s (c)ω,1 + (1 + ε)d1‖cHc

s
‖ω,1 + (1 + ε)d1K(s)MHc

s
.(4.18)

Let Λ∗ denote the support of best lower s-term approximation of g in `ω,1-norm, J̃
be determined by (4.12)-(4.13). For every ν ∈ Ĵ := J̃ \ Λ∗, there holds ω2

νMHc
s
≤

(1 + λ)ω2
ν
|cν |
ων

= (1 + λ)ων |cν |. Summing these over Ĵ gives

K(s)MHc
s
≤ K(Ĵ )MHc

s
≤ (1 + λ)‖cĴ ‖ω,1,(4.19)

the first inequality coming from K(J̃ ) ≥ 2K(s). We finally combine (4.18) and
(4.19) to obtain (4.16), which completes the proof.

4.2. Iterative hard thresholding. Thresholding algorithms for finding best s-
term approximations consist of solving problems of the form:

min ‖Az − g̃‖2 subject to supp(z) ≤ s.(4.20)

In this section, we study a specific thresholding approach for lower sparse recovery,
which is guaranteed with the reduced query complexity (3.19). The method solves
the following constrained minimization problem:

min ‖Az − g̃‖2 subject to supp(z) ≤ s, supp(z) lower.(4.21)

To achieve the minimum in (4.21) we first define the hard lower thresholding oper-
ator

H`
s(z) = arg min

supp(z̃) lower
|supp(z̃)|=s

‖z − z̃‖2.(4.22)

Our goal is to approximate a smooth function of the form g =
∑
ν∈F cνΨν by a

sparse expansion supported in a predefined polynomial subspace PJ . We let s be
the sparsity level, J = Hs defined as in (1.10), with A ∈ Cm×N and g̃ ∈ Cm
be the normalized sampling matrix and vector of observations respectively. In
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what follows, we consider the following lower version of iterative hard thresholding
algorithm [4].

Algorithm 4.8. (Iterative hard thresholding on lower sets)

(1) Initialization: set the initial approximation c0 as an s-sparse lower vector,
e.g., c0 = 0.

(2) Iteration: repeat until a stopping criterion is met at n = n:

cn+1 = H`
s(c

n +A∗(g̃ −Acn)).

(3) Output: c# = cn, and g# =
∑
ν∈Hs

c#ν Ψν .

We remark that a related thresholding approach entitled iterative hard weighted
thresholding has been proposed in [29]. Similarly to that work, our method is de-
signed for function reconstruction with preference to low-indexed terms. However,
we focus on high-dimensional polynomial approximations and use the lower instead
of weighted sparsity constraint for the thresholding operator. A surrogate of H`

s

can exploit the lower set structure and is independent of weights, whose optimal
choice is an important problem for iterative hard weighted thresholding. Below we
provide the convergence result for Algorithm 4.8.

Theorem 4.9. Let J = Hs. For s ≥ 2, consider a number of samples as in
(4.10). Let y1, . . . ,ym be drawn independently from the orthogonalization measure
% associated to {Ψν} and A ∈ Cm×N the normalized sampling matrix. Then:

(i) with probability exceeding 1−γ, the following holds for all g =
∑
ν∈F cνΨν :

the function gn=
∑
ν∈Hs

cnνΨν , with cn = (cnν)ν∈Hs solving (2), satisfies

‖gn − gΛ∗‖2 ≤ ρn‖g0 − gΛ∗‖2 +
τ√
m
‖ξ̃‖2,(4.23)

where ξ̃ = (ξ̃i)1≤i≤m = (g(Λ∗)c(yi))1≤i≤m.
(ii) for a fixed function g =

∑
ν∈F cνΨν with ‖g‖ω,1 < ∞, with probability

exceeding 1 − γ, for all n ∈ N, the function gn =
∑
ν∈Hs

cnνΨν , with cn =

(cnν)ν∈Hs solving (2), satisfies

‖gn − g‖2 ≤ ρn‖g0 − gΛ∗‖2 + (τ
√

2 + 1)σ(`)
s (g)2 +

τ
√

2√
K(s)

‖g(Λ∗)c‖ω,1.(4.24)

Here, ρ and τ are universal constants with ρ < 1, Λ∗ is the support of best lower

s-term approximation of g in `2-norm, and σ
(`)
s (g)2 = ‖g(Λ∗)c‖2 is the best lower

s-term error in `2-norm.

Proof. We will prove that the assertion (i) holds provided that δ`,αs < 1/2 (where
α = 2 for Legendre system and α = 3 for Chebyshev system), following the tech-
nique in [19] for standard iterative hard thresholding. First, let vn = cn +A∗(g̃ −
Acn). On one hand, by definition (2) of cn+1 in Algorithm 4.8, and since Λ∗ is
lower of cardinality smaller than s

‖vn − cΛ∗‖22 ≥ ‖vn − cn+1‖22 = ‖(vn − cΛ∗)− (cn+1 − cΛ∗)‖22
= ‖vn − cΛ∗‖22 + ‖cΛ∗ − cn+1‖22 − 2<〈vn − cΛ∗ , c

n+1 − cΛ∗〉.
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This yields that ‖cΛ∗ − cn+1‖22 ≤ 2<〈vn − cΛ∗ , c
n+1 − cΛ∗〉. On the other hand,

〈vn − cΛ∗ , c
n+1 − cΛ∗〉 = 〈(Id−A∗A)cn +A∗g̃ − cΛ∗ , c

n+1 − cΛ∗〉

= 〈(Id−A∗A)(cn − cΛ∗), c
n+1 − cΛ∗〉+

1√
m
〈ξ̃,A(cn+1 − cΛ∗)〉.

It is easy to see that Λn,∗ := supp(cn)∪supp(cn+1)∪supp(cΛ∗) is a lower set which
satisfies K(Λn,∗) ≤ 3K(s) ≤ K(αs) (see (4.7) for the second inequality), thus from
Theorem 3.3,

|〈(Id−A∗A)(cn − cΛ∗), c
n+1 − cΛ∗〉| ≤ δ`,αs‖cn − cΛ∗‖2‖cn+1 − cΛ∗‖2,

|〈ξ̃,A(cn+1 − cΛ∗)〉| ≤
√

1 + δ`,αs‖ξ̃‖2‖cn+1 − cΛ∗‖2.

We have then

‖cΛ∗ − cn+1‖2 ≤ 2δ`,αs‖cn − cΛ∗‖2 +
2
√

1 + δ`,αs√
m

‖ξ̃‖2.

The inequality (4.23) follows given δ`,αs < 1/2.

For (ii), note that we have E(ξ̃2
i ) = ‖c(Λ∗)c‖22 and |ξ̃i| ≤ ‖c(Λ∗)c‖ω,1 implying

that

E
(
ξ̃2
i − E[ξ̃2

i ]
)2

≤ E[ξ4
i ] ≤ ‖c(Λ∗)c‖2ω,1‖c(Λ∗)c‖22.

We can consider two cases ‖c(Λ∗)c‖22 >
‖c(Λ∗)c‖2ω,1

K(s) and ‖c(Λ∗)c‖22 ≤
‖c(Λ∗)c‖2ω,1

K(s) and

prove using Bernstein’s inequality, similarly to Theorem 4.7, that with probability
exceeding 1− γ, we always have

‖ξ̃‖22
m
≤ 2‖c(Λ∗)c‖22 +

2‖c(Λ∗)c‖2ω,1
K(s)

.

Substituting the previous inequality to (4.23), we obtain

‖gn − gΛ∗‖2 ≤ ρn‖g0 − gΛ∗‖2 + τ
√

2‖c(Λ∗)c‖2 +
τ
√

2√
K(s)

‖c(Λ∗)c‖ω,1.

The inequality (4.24) then can be concluded by virtue of the triangle inequality.

In general, it may not be feasible to find the optimal vector H`
s(z) exactly.

Greedy procedures can be used to explore a near optimal lower, s-sparse truncation

of z and provide a surrogate H̃`
s(z) of H`

s(z) (see [8]). A significant advantage in
our context is that we do not have to compute the components of z inductively
but have them all at hand. The exploration cost is therefore a fraction of that of
matrix multiplication. We can also consider new additional algorithms that take
advantage of full knowledge of z. The numerical realization of Algorithm 4.8 and
comparison with standard iterative hard thresholding and iterative hard weighted
thresholding will be conducted in future work.

5. Numerical illustrations

In this section, we provide several numerical examples to demonstrate the effi-
ciency of our weighted `1 minimization with ων = ‖Ψν‖L∞ for smooth multivariate
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Figure 1. Comparison of the averaged L2
% error in approxi-

mating g(y) =
∏dd/2e

k=1 cos(16yk/2
k)∏d

k=dd/2e+1(1−yk/4k)
using weighted `1 minimiza-

tion with various choices of weights. (Top) d = 8, N = 1843,
and ‖gHc

s
‖2 = 1.7487e − 06. (Bottom) d = 16, N = 4129, and

‖gHc
s
‖2 = 1.3482e− 06.

function recovery. We focus here on the approximation of g in terms of orthonormal
Legendre expansions by solving

(5.1) min
z∈CN

‖z‖ω,1 subject to ‖g̃ −Az‖2 ≤
η√
m
,

where η =
√
m‖gHc

s
‖2 for various choices of weights. As we test with simple func-

tions, the expansion of g can be computed numerically with the use of a quadra-
ture approximation yielding an estimate of the tail η a priori. The software code
SPGL1 [45, 44] is employed to solve (5.1). In each example, we choose the poly-
nomial subspace PJ ≡ PHs

, and increase the number of samples m up to some
mmax < N = #(Hs). For each ratio m/N , the set of random samples is fixed over
various choices of weights for a performance comparison. We then run 50 trials for
the averaged L2

% error, setting the maximum number of iterations in SPGL1 per trial
to 10,000. Our results are shown in Figures 1-4 for several multivariate functions.
The left panels represent the magnitudes of polynomial coefficients (computed with
MATLAB via a sparse-grid algorithm) indexed in Hs and sorted lexicographically.
The center panels depict the decay of the coefficients once sorted by magnitude.
The right panels show the corresponding convergence results.

Our experiments indicate that for functions with very fast decaying polynomial
expansions, ων = ‖Ψν‖L∞ is virtually the optimal weight. Indeed, for the function
concerned in Figure 1, consisting of trigonometric and rational univariate functions,
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Figure 2. Comparison of the averaged L2
% error in approximat-

ing g(y) = exp
(
−

∑d
k=1 cos(yk)

8d

)
using weighted `1 minimization

with various choices of weights. (Top) d = 8, N = 1843, and
‖gHc

s
‖2 = 4.0232e − 07. (Bottom) d = 16, N = 4129, and

‖gHc
s
‖2 = 2.0155e− 06.

we see in both d = 8 and d = 16 that the weight ων = ‖Ψν‖L∞ significantly out-
performs the unweighted `1 approach. We also note that in d = 16, higher weights
begin to have decreasing benefit, performing worse than our proposed weight.

The results in Figure 2 are related to a function that involves the exponent of
a sum of univariate trigonometric functions. We note that only a small fraction
of coefficients exceed 10−16 in both d = 8 and d = 16. In this case, we see that
the weighted `1 with the weight ων = ‖Ψν‖L∞ performs the best out of all of
the weights supplied. We also observe that increasing the weights beyond ‖Ψν‖L∞
leads to a corresponding increase in the averaged L2

% error.
In Figure 3, we test with a root of a rational function. Here again, the weight

ων = ‖Ψν‖L∞ performs the best, and the approximation errors grow as the weights
increase beyond this weight. The two highest weights even perform worse than un-
weighted `1 for higher values of m/N . Comparing Figures 1 and 3, the similar center
panels suggest similar decay rates for both functions inside Hs. The performance
of the weights between the two examples however drastically differs, possibly due
to the different support of the large coefficients. For this function, we were unable
to test with d = 16 and N = 4129 due to the high expansion tail.

On the other hand, if the polynomial expansion is less sparse, our weight may
be not optimal. Figure 4 shows the results for an exponential function of a linear
combination of the 1-d variables. For this function, over half of the coefficients inHs
exceed 10−8, and ων = ‖Ψν‖L∞ performs worse than the larger weights. Still, we
observe here, as in all tests for smooth functions in higher dimensions, i.e., d = 8
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and d = 16, that our weight consistently provides improved accuracy compared
with the unweighted `1, thus confirming the theory presented throughout.
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Figure 3. Comparison of the averaged L2
% error in approximating

g(y) =

[ ∏dd/2e
k=1 (1+4ky2

k)∏d
k=dd/2e+1(100+5yk)

]1/d

using weighted `1 minimization

with various choices of weights. d = 8, N = 1843 and ‖gHc
s
‖2 =

6.1018e− 3.

j
0 500 1000 1500 2000

jc
888
j
j

10-20

10-15

10-10

10-5

100

105

j (after sorting)
0 500 1000 1500 2000

jc
888
j
j

10-20

10-15

10-10

10-5

100

105

m=N
0.1 0.2 0.3 0.4 0.5

E
# kg

!
g

#
k 2
$

10-5

10-4

10-3

10-2
!888 = 1

!888 =
Qd

k=1(8k + 1)1=4

!888 =
Qd

k=1

p
28k + 1

!888 =
Qd

k=1(8k + 1)

!888 =
Qd

k=1(8k + 1)3=2

!888 =
Qd

k=1(8k + 1)2

j
0 1000 2000 3000 4000 5000

jc
888
j
j

10-20

10-15

10-10

10-5

100

j (after sorting)
0 1000 2000 3000 4000 5000

jc
888
j
j

10-20

10-15

10-10

10-5

100

m=N
0.1 0.2 0.3 0.4 0.5

E
# kg

!
g

#
k 2
$

10-5

10-4

10-3

!888 = 1

!888 =
Qd

k=1(8k + 1)1=4

!888 =
Qd

k=1

p
28k + 1

!888 =
Qd

k=1(8k + 1)

!888 =
Qd

k=1(8k + 1)3=2

!888 =
Qd

k=1(8k + 1)2

Figure 4. Comparison of the averaged L2
% error in approxi-

mating g(y) = exp
(
−

∑d
k=1 yk
2d

)
using weighted `1 minimization

with various choices of weights. (Top) d = 8, N = 1843, and
‖gHc

s
‖2 = 7.2714e − 07. (Bottom) d = 16, N = 4129, and

‖gHc
s
‖2 = 3.7412e− 07.
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6. Concluding remarks

In this work we present several novel compressed sensing approaches for sparse
Legendre and Chebyshev approximations of real and complex functions in high
dimensions. Motivated by the fact that the target function in many applications
is smooth and characterized by a rapidly decaying orthonormal expansion, whose
most important terms are captured by a lower set, we develop new `1 minimization
and hard thresholding procedures to impose the lower preference. Through rigor-
ous analysis and numerical illustrations we demonstrate that the proposed methods
possess a significantly reduced sample complexity compared to existing techniques.
This advantage is established through the introduction of lower RIP, a weaker ver-
sion of RIP that is associated with lower sets, and an optimal choice of polynomial
subspace. In addition, we prove a generalized version of the result in [5] for bounded
orthonormal systems and improve the RIP estimate by one logarithm factor.

Extending the theory and the procedures developed herein for approximating
high-dimensional parameterized PDE systems is the next logical step, as it has
been known that for a large class of such systems, the polynomial chaos expan-
sions of parameterized solutions decay exponentially. A significant challenge as-
sociated with this problem is that the “signal” c = (cν)ν∈J to be recovered has
Hilbert-valued, rather than real or complex, components, i.e., cν ∈ V. As shown in
[17, 32, 31, 37, 39, 25], standard compressed sensing techniques only approximate a
functional of PDE solutions, for instance, u(x?,y) (via cν(x?)) at a single location
x? in physical space. Although u(·,y) can be constructed from these pointwise
evaluations using piecewise polynomial interpolation, least square regression, etc.,
this practice faces two limitations. First, a priori information concerning the decay
of (‖cν‖V), available in many applications, cannot be exploited for improving the
convergence of recovery algorithms. Second, each u(x?,y) is only successfully recon-
structed, with a certain probability, and there may be a fraction of selected nodes
x? in which u(x?,y) is ill-approximated (i.e., with low probability). To address
these difficulties, we aim to investigate new convex optimization and thresholding
frameworks for Hilbert-valued functions, so that cν ∈ V can be directly computed.
The mathematical analysis and computational aspect of this approach will be doc-
umented in future work.

Appendix A. Proofs of the RIPs

We recall the following notations, which will be used throughout this section:

B1,N := {z ∈ CN : ‖z‖1 = 1},
Es := {z ∈ CN : ‖z‖2 = 1, #(supp(z)) ≤ s},

E`s := {z ∈ CN : ‖z‖2 = 1, K(supp(z)) ≤ K(s)}, and

ψ(y, z) :=
∑
ν∈J

zνΨν(y), with y ∈ U , z ∈ CN .

A.1. Supporting lemmas. First, we derive a Chernoff-Hoeffding bound for com-
plex random variables, as well as a tail bound for Bernoulli random variables.

Lemma A.1. Let X1, . . . , XM be M independent identically distributed complex-
valued random variables satisfying |Xk| ≤ a and E[Xk] = X for all k. We denote
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X = 1
M

∑M
k=1Xk. For every µ > 0,

P
(∣∣X −X∣∣ ≥ µ) ≤ 4 exp

(
−Mµ2

4a2

)
.(A.1)

Proof. We have

P
(∣∣X −X∣∣ ≥ µ) ≤ P

(∣∣<(X −X)
∣∣ ≥ µ√

2

)
+ P

(∣∣=(X −X)
∣∣ ≥ µ√

2

)
.

Applying Hoeffding’s inequality [28] for two sequences of bounded real random
variables {<(Xk)} and {=(Xk)}, there holds

P
(∣∣<(X−X)

∣∣ ≥ µ√
2

)
≤ 2 exp

(
−Mµ2

4a2

)
, P

(∣∣=(X−X)
∣∣ ≥ µ√

2

)
≤ 2 exp

(
−Mµ2

4a2

)
.

The proof is then complete.

Lemma A.2. Let X1, . . . , XM be M independent identically distributed Bernoulli

random variables with E[Xk] = X for all k. Denote X = 1
M

∑M
k=1Xk. Then, for

every 0 < µ1 < 1, µ2 > 0 and M ≥ 16e
µ1µ2

, there holds

P
(
|X −X| ≥ µ1X + µ2

)
≤ exp

(
−Mµ1µ2

16e

)
.(A.2)

Proof. Let ε1, . . . , εM be a Rademacher sequence. Using symmetrization and Khint-
chine inequality [20, Section 8], we have for any q ≥ 1

EX
∣∣X −X∣∣q ≤ 2q

Mq
EXEε

∣∣∣∣∣
M∑
k=1

εkXk

∣∣∣∣∣
q

≤ 2q+
3
4 e−q/2qq/2

Mq
EX

(
M∑
k=1

X2
k

)q/2
=

(
21+ 3

4q
√
q

√
eM

)q
EXX

q/2
.

Denote C = 27/4e−1/2, there follows(
EX

∣∣X −X∣∣q) 1
q ≤

21+ 3
4q
√
q

√
eM

(
EXX

q
2

) 1
q

≤ C
√

q

M

√
X + C

√
q

M

(
EX

∣∣X −X∣∣q) 1
2q

,

the last inequality implies(
EX

∣∣X −X∣∣q) 1
q ≤ C2 q

M
+ 2C

√
q

M

√
X.

Applying Markov’s inequality gives

P
(∣∣X −X∣∣ ≥ eC2 q

M
+ 2eC

√
q

M

√
X

)
≤ e−q.

Finally, it is easy to see that

eC2 q

M
+ 2eC

√
q

M

√
X ≤ µ1X +

C2qe

M

(
e

µ1
+ 1

)
< µ1X +

C2qe2
√

2

Mµ1
.

Defining q = Mµ1µ2

16e so that µ2 = C2qe2
√

2
Mµ1

, we conclude the proof.

Next, we state and prove an extended covering number result.

Lemma A.3. For 0 < ς < 1, µ > 0, there exists a set D ⊂ CN such that
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(i) For all z ∈ Es, y1, . . . ,ym ∈ U , there exists z′ ∈ D satisfying:

|ψ(y, z − z′)| ≤ µ with probability exceeding 1− ς in (U , %), and(A.3)

|ψ(yi, z − z′)| ≤ µ for at least (1− ς)m indices i ∈ {1, . . . ,m}.(A.4)

(ii) The cardinality of D satisfies

log(#(D)) ≤ (8/µ2)Θ2s log(4N) log(12/ς).(A.5)

Proof. We will find D using the empirical method of Maurey. First, we observe
that Es ⊂

√
sB1,N , hence if we denote P = {±ej

√
2s,±iej

√
2s}1≤j≤N , where (ej)

are canonical unit vectors in CN , we have Es ⊂ conv(P). Every z ∈ Es can be

represented as z =
∑4N
r=1 λrvr, for some λr ≥ 0,

∑4N
r=1 λr = 1 and vr listing 4N

elements of P. There exists a probability measure λ on P that takes the values
vr ∈ P with probability λr.

Let z1, . . . ,zM be i.i.d random variables with law λ. Note that Ezk = z, for all
k = 1, . . . ,M . For each y ∈ U , ψ(y, zk) is also a complex-valued random variable
on probability space (ψ(y,P), λ) with

|ψ(y, zk)| ≤ Θ
√

2s, and Eψ(y, zk) = ψ(y, z).

Denote z = 1
M

∑M
k=1 zk, let D be the set of all possible outcomes of z and λ be

the probability measure on D according to z. We define a characteristic function
χ on (U ×D, %⊗ λ) such that

χ(y, z) =

{
1, if |ψ(y, z − z)| ≥ µ,
0, if |ψ(y, z − z)| < µ.

Applying Lemma A.1 yields for all y ∈ U ,∫
D

χ(y, z)dλ = Pz
(
|ψ(y, z − z)| ≥ µ

)
≤ 4 exp

(
−Mµ2

8Θ2s

)
.

There follows∫
D

(∫
U
χ(y, z)d%

)
dλ =

∫
U

(∫
D

χ(y, z)dλ

)
d% ≤ 4 exp

(
−Mµ2

8Θ2s

)
,

which by Markov’s inequality yields that with probability exceeding 2/3, z satisfies

Py
(
|ψ(y, z − z)| ≥ µ

)
=

∫
U
χ(y, z)d% ≤ 12 exp

(
−Mµ2

8Θ2s

)
.(A.6)

Now, repeating the above arguments to the set {y1, . . . ,ym} with discrete uniform
distribution, one can also derive that with probability of z exceeding 2/3, there
holds

|ψ(yi, z − z)| ≥ µ, for at most 12 exp
(
−Mµ2

8Θ2s

)
m indices i ∈ {1, . . . ,m}.(A.7)

Hence, there exists a realization z′ of z in D fulfilling both (A.6) and (A.7). Note

that #(D) ≤ (4N)M . By defining a new variable ς = 12 exp
(
−Mµ2

8Θ2s

)
and elimi-

nating M , we conclude the proof.
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We observe that a sharper estimate of log(#(D)) is possible. Indeed, one can

bound #(D) by
(

4N+M
M

)
instead of (4N)M , under which the assertion (ii) is replaced

by

log(#(D)) ≤ 8

µ2
Θ2s log

(
e+

eNµ2

Θ2s log(12/ς)

)
log
(

12/ς
)
.(A.8)

Consequently, the RIP estimate can be improved with a slightly weaker logarithm
factor. We will detail this point later in Remark A.5.

A.2. Proof of Theorem 2.2.

Proof. We define the set of integers

L = Z ∩
( log(δ)

log(1 + δ)
+ 1,

log(Θ
√
s)

log(1 + δ)
+ 1
)
,(A.9)

and denote by l, l the minimum and maximum of L respectively, where L has been
chosen so that the integers l and l satisfy

(1 + δ)l−2 ≤ δ and (1 + δ)l ≥ Θ
√
s.(A.10)

Let Q := {y1, . . . ,ym} be the sample set containted in U and denote by %Q the
discrete uniform measure associated with Q.

Step 1: For 0 < ς < 1 (exact value will be set later), we seek to construct ψ̃
approximating ψ such that:

(i) For all z ∈ Es, the following holds with probability exceeding 1−ς in (U , %),
as well as probability exceeding 1− ς in (Q, %Q)

(1− 3δ/2) ψ̃(y, z) <|ψ(y, z)| < (1 + 3δ/2) ψ̃(y, z), if ψ̃(y, z) > 0,

|ψ(y, z)| < 6δ/5, if ψ̃(y, z) = 0.
(A.11)

(ii) For all z ∈ Es, there exists a pairwise disjoint family of subsets (I
(z)
l )l∈L of

U depending on z such that

ψ̃(·, z) =
∑
l∈L

(1 + δ)lχ
I

(z)
l

.(A.12)

(iii) For every l ∈ L, (I
(z)
l )z∈Es belongs to a finite class Fl of subsets of U

satisfying

log(#Fl) ≤
32

δ3(1 + δ)2l−2
Θ2s log (4N) log

(
12 log(δ−1Θ

√
s)

ς log(1 + δ)

)
.(A.13)

First, for l ∈ L, let Dl be a finite subset of CN determined as in Lemma A.3

with µ = δ(1+δ)l−1

2 and 0 < ς ′ < 1 (to be set accordingly to meet our needs). We
have

log(#Dl) ≤
32

δ2(1 + δ)2l−2
Θ2s log (4N) log (12/ς ′) .(A.14)

For a fixed z ∈ Es, there exists zl ∈ Dl and a measurable set Ul ⊂ U with %(Ul) ≥
1− ς ′ such that

|ψ(y, z − zl)| ≤
δ(1 + δ)l−1

2
, ∀y ∈ Ul,

and yi’s are contained in Ul for at least (1− ς ′)m indices i ∈ {1, . . . ,m}.
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We construct a pairwise disjoint family of subsets (I
(z)
l )l and mapping ψ̃(·, z) :

U → R which depend on z and Q, inductively for the integers l > · · · > l according
to:

I
′(z)
l = {y ∈ U : (1 + δ)l−1 < |ψ(y, zl)| < (1 + δ)l+1},

I
(z)
l = I

′(z)
l \

⋃
r>l

I ′(z)
r , and

ψ̃(·, z) =
∑
l∈L

(1 + δ)lχ
I

(z)
l

.

(A.15)

In the following, we prove that ψ̃ satisfies (A.11)–(A.13). First, consider y ∈⋂
l∈L Ul. If y ∈ I(z)

l for some l ∈ L, then

ψ̃(y, z) = (1 + δ)l > 0 and (1 + δ)l−1 < |ψ(y, zl)| < (1 + δ)l+1.

Since ||ψ(y, z)| − |ψ(y, zl)|| ≤ |ψ(y, z)− ψ(y, zl)| ≤ δ(1 + δ)l−1/2, we have

|ψ(y, z)| < (1 + δ)l+1 +
δ

2
(1 + δ)l−1 <

(
1 +

3

2
δ

)
ψ̃(y, z),

and |ψ(y, z)| > (1 + δ)l−1 − δ

2
(1 + δ)l−1 >

(
1− 3δ

2

)
ψ̃(y, z).

If y /∈
⋃
l∈L I

(z)
l , then ψ̃(y, z) = 0 and for every l ∈ L,

|ψ(y, zl)| /∈ ((1 + δ)l−1, (1 + δ)l+1).

We notice that ||ψ(y, z)| − |ψ(y, zl)|| < δ(1 + δ)l−1/2, there follows

|ψ(y, z)| /∈
⋃
l∈L

(
(1 +

δ

2
)(1 + δ)l−1, (1 +

3δ

2
+ δ2)(1 + δ)l−1

)
.

Observe that (1+ 3δ
2 +δ2)(1+δ)l−1 > (1+ δ

2 )(1+δ)l, the previous intervals intersect
for any two consecutive values of l. We infer

|ψ(y, z)| ≤ (1 +
δ

2
)(1 + δ)l−1, or |ψ(y, z)| ≥ (1 +

3δ

2
+ δ2)(1 + δ)l−1.

In view of the identities in (A.10) and ‖ψ‖L∞ ≤ Θ
√
s, the second inequality can-

not occur. As for the first, it implies by (A.10) and assumption δ < 1/13 that
|ψ(y, z)| ≤ δ(1 + δ/2)(1 + δ) < 6δ/5.

Next, consider y /∈
⋂
l∈L Ul. Condition (A.11) is not guaranteed in this case.

However, these only hold with probability not exceeding

(A.16)

%

(
U \

⋂
l∈L

Ul
)
≤
∑
l∈L

%(U \ Ul) ≤ ς ′(#L) ≤ log(δ−1Θ
√
s)

log(1 + δ)
ς ′ = ς,

and #

{
i : yi /∈

⋂
l∈L

Ul
}
≤ ς ′m(#L) ≤ log(δ−1Θ

√
s)

log(1 + δ)
ς ′m = ςm,

when setting ς ′ =
log(1 + δ)

log(δ−1Θ
√
s)
ς.
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In summary, we have proved that for all z ∈ Es, the following is satisfied

(1− 3δ/2) ψ̃(y, z) < |ψ(y, z)| < (1 + 3δ/2) ψ̃(y, z), for y ∈ I,(A.17)

0 ≤ |ψ(y, z)| < 6δ/5, and ψ̃(y, z) = 0, for y ∈ Î ,(A.18)

%(U ′) ≤ ς,(A.19)

where the three sets I :=
(⋂

l∈L Ul
)⋂(⋃

l∈L I
(z)
l

)
, Î :=

(⋂
l∈L Ul

)
\
(⋃

l∈L I
(z)
l

)
,

and U ′ := U \
(⋂

l∈L Ul
)

define a partition of U , and depend on z and Q.

It remains to verify (A.13). For any l ∈ L, #{I ′(z)
l | z ∈ Es} ≤ #Dl and #Fl ≤∏

r≥l #Dr. From (A.14), we see that

log(#Fl) ≤
∑
r≥l

log(#Dr) ≤
32

δ3(1 + δ)2l−2
Θ2s log (4N) log (12/ς ′) .

Step 2: Derive essential estimates of ‖z‖2 and ‖Az‖2 in terms of ψ̃(·, z). First,
given z ∈ Es, we observe that

1 = ‖z‖22 =

∫
U
|ψ(y, z)|2d%, and ‖Az‖22 =

m∑
i=1

|ψ(yi, z)|2

m
=

∫
Q

|ψ(y, z)|2d%Q.

(A.20)

It is easy to check that if δ ≤ 1/13, one has for real numbers a, b > 0, (1 −
3δ
2 )a < b < (1 + 3δ

2 )a implies (1 − 3δ)a2 < b2 < (1 + 4δ)a2, which also implies

(1 − 4δ)b2 < a2 < (1 + 4δ)b2, so that |b2 − a2| < 4δmin(a2, b2). Therefore, from
(A.17) we get that∣∣∣|ψ(y, z)|2 − |ψ̃(y, z)|2

∣∣∣ < 4δ|ψ(y, z)|2, for y ∈ I,

and
∣∣∣|ψ(y, z)|2 − |ψ̃(y, z)|2

∣∣∣ < 4δ|ψ̃(y, z)|2, for y ∈ I.

This, combined with (A.18) and (A.19) and the fact that |ψ(·, z)|2 and |ψ̃(·, z)|2
are uniformly bounded in U by Θ2s and by (1 + δ)2Θ2s ≤ 2Θ2s, implies∣∣∣∣‖z‖22 − ∫

U
|ψ̃(y, z)|2d%

∣∣∣∣ ≤ ∫
I

∣∣∣|ψ(y, z)|2 − |ψ̃(y, z)|2
∣∣∣ d%

+

∫
Î

∣∣∣|ψ(y, z)|2 − |ψ̃(y, z)|2
∣∣∣ d%+

∫
U ′

∣∣∣|ψ(y, z)|2 − |ψ̃(y, z)|2
∣∣∣ d%

≤ 4δ

∫
I

|ψ(y, z)|2d% +
36δ2

25
%(Î) + 2Θ2sς.(A.21)

By noticing that %(Î) ≤ 1 and setting ς = δ
6Θ2s , we infer∣∣∣∣‖z‖22 − ∫

U
|ψ̃(y, z)|2d%

∣∣∣∣ < 4δ +
δ

6
+
δ

3
=

9δ

2
.(A.22)

Repeating the above argument for the probability space (Q, %Q) with notice that
%Q(U ′ ∩Q) ≤ ς yields∣∣∣∣‖Az‖22 − ∫

Q

|ψ̃(y, z)|2d%Q
∣∣∣∣ ≤ 4δ

∫
Q

|ψ̃(y, z)|2d%Q +
δ

2
.(A.23)
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From (A.22) and (A.23), we obtain∣∣∣‖Az‖22 − ‖z‖22∣∣∣ ≤ 4δ

∫
U
|ψ̃(y, z)|2d%+ 5δ

+ (1 + 4δ)

∣∣∣∣∫
Q

|ψ̃(y, z)|2d%Q −
∫
U
|ψ̃(y, z)|2d%

∣∣∣∣(A.24)

≤ 4δ
(

1 +
9δ

2

)
+ 5δ + (1 + 4δ)

∣∣∣∣∫
Q

|ψ̃(y, z)|2d%Q −
∫
U
|ψ̃(y, z)|2d%

∣∣∣∣ .
Step 3: We derive an upper bound of

∣∣∣‖Az‖22−‖z‖22∣∣∣ via (A.24), by employing

a basic tail estimate (Lemma A.2) and the union bound. From the definition of ψ̃,
we have that

∣∣∣∣∫
Q

|ψ̃(y, z)|2d%Q −
∫
U
|ψ̃(y, z)|2d%

∣∣∣∣ ≤∑
l∈L

(1 + δ)2l

∣∣∣∣∣#(Q ∩ I(z)
l )

m
− %(I

(z)
l )

∣∣∣∣∣ .
(A.25)

Let (κl)l∈L be a sequence of positive numbers. Applying Lemma A.2, for any set

∆ in the class Fl, with probability of Q exceeding 1− exp
(
−mκlδ

16e

)
, there holds∣∣∣∣#(Q ∩∆)

m
− %(∆)

∣∣∣∣ ≤ δ%(∆) + κl.(A.26)

By the union bound, with probability exceeding 1−
∑
l∈L exp

(
−mκlδ

16e

)
(#Fl), the

previous inequality holds uniformly for all sets ∆ ∈ ∪l∈LFl. Therefore, with prob-

ability exceeding 1−
∑
l∈L exp

(
−mκlδ

16e

)
(#Fl), we can apply (A.26) with ∆ = I

(z)
l

(l ∈ L) to the sum in (A.25) and combine with (A.24) to infer that for all z ∈ Es,∣∣∣‖Az‖22−‖z‖22∣∣∣ ≤ 4δ
(

1+
9δ

2

)
+ 5δ + δ(1+4δ)

∫
U
|ψ̃(y, z)|2d%+ (1+4δ)

∑
l∈L

(1 + δ)2lκl

≤ 4δ
(

1+
9δ

2

)
+ 5δ + δ(1+4δ)

(
1+

9δ

2

)
+ (1+4δ)

∑
l∈L

(1 + δ)2lκl

≤ 12δ + δ/3 + (1+4δ)
∑
l∈L

(1 + δ)2lκl,

for the last inequality we have used δ < 1/13.
Finally, in order to obtain Theorem 2.2, we need to assign appropriate values for

κl and derive conditions on m such that∑
l∈L

(1 + δ)2lκl ≤ δ/2, and
∑
l∈L

exp
(
−mκlδ

16e
+ log(#Fl)

)
≤ γ.

The two inequalities can be fulfilled if for example the numbers κl and the integer
m are chosen as follows

κl :=
δ/2

(#L)(1 + δ)2l
, −mκlδ

16e
+ log(#Fl) ≤ log

(
γ

#L

)
, l ∈ L.

This implies that

m ≥ 32e (#L)
(1 + δ)2l

δ2

[
log(#Fl) + log

(
#L
γ

)]
, l ∈ L.
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Observe that since ς =
δ

6Θ2s
, we have in view of (A.13) that

32e (#L)
(1 + δ)2l

δ2
log(#Fl)

≤ 210e
(1 + δ)2

δ5 log(1 + δ)
Θ2s log (4N) log

(
Θ
√
s

δ

)
log

(
72Θ2s

δ
· log(Θ

√
s/δ)

log(1 + δ)

)
< 210e

Θ2s

δ6
log(4N) log

(Θ2s

δ2

)
log
(

40
Θ2s

δ2
log
(Θ2s

δ2

))
,

32e (#L)
(1 + δ)2l

δ2
log

(
#L
γ

)
≤ 32e

(1 + δ)2

δ2 log(1 + δ)
Θ2s log

(Θ
√
s

δ

)
log
( 1

γ
· log(Θ

√
s/δ)

log(1 + δ)

)
< 25e

Θ2s

δ3
log
(Θ2s

δ2

)
log
( 1

γδ
log
(Θ2s

δ2

))
.

Here, we employed estimates (1+δ)2 < (14/13)2 and log−1(1+δ) < 1.1/δ, obtained
from the small condition of δ. Combining the two estimates and (a+b) ≤ 2 max(a, b)
shows that m as in Theorem 2.2 is suitable.

We conclude this subsection with two remarks detailing some slight technical
improvements of Theorem 2.2.

Remark A.4. We can give a sharper approximation of ψ by refining the map ψ̃(·, z).
For example, given an integer k ≥ 1, we define L as

L =
Z
k
∩
( log(δ)

log(1 + δ)
+

1

k
,

log(Θ
√
s)

log(1 + δ)
+

1

k

)
,(A.27)

and construct the domains Dl using µ = δ(1+δ)l−1/k

2k . We replace the domains I
′(z)
l

in (A.15) by

I
′(z)
l := {y ∈ U : (1 + δ)l−1/k < |ψ(y, zl)| < (1 + δ)l+1/k}.

Using the elementary inequalities (1 + δ)1/k ≤ 1 + δ/k and (1 + δ)1/k− δ
2k(1+δ)1/k ≥

1 + δ
2k and assuming δ/k ≤ 1/13, we verify that (A.17) can be improved as(

1− 3δ

2k

)
ψ̃(y, z) < |ψ(y, z)| <

(
1 +

3δ

2k

)
ψ̃(y, z), for y ∈ I,(A.28)

while (A.18) and (A.19) are unchanged. An inspection of the proof shows that this
yields (A.21) with 4δ/k instead of 4δ and with 36δ2/25 and 2Θ2sς unchanged. We
mention however that the cardinality #(L) and the bound in (A.13) on log(#(Fl))
gets roughly multiplied by k and k3 respectively.

Remark A.5. If (A.8) is applied to bound log(#Dl), we can obtain

log(#Dl) ≤
32

δ2(1 + δ)2l−2
Θ2s log

(
e+

eNδ2(1 + δ)2l−2

4Θ2s log(12/ς ′)

)
log(12/ς ′)

≤ 32

δ2(1 + δ)2l−2
Θ2s log

(
e+

eNδ2

4 log(12/ς ′)

)
log(12/ς ′), l ∈ L,
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where ς ′ = δ log(1+δ)
6Θ2s log(δ−1Θ

√
s)

, instead of (A.14). Subsequently, the term log(4N) in

sample complexity (2.2) and (3.7) can be replaced by log
(
e+

eNδ2

4 log
(

36Θ2s
δ2 log

(
Θ2s
δ2

))).

A.3. Proof of Theorem 3.3.

Proof. The proof of Theorem 3.3 follows closely that of Theorem 2.2 with one
critical change: Instead of Es, we only approximate ‖Az‖2 on the set E`s defined as

E`s = {z ∈ CN : ‖z‖2 = 1 and K(supp(z)) ≤ K(s)}.(A.29)

We have that E`s ⊂ conv(P`), where P` = {± ejωj

√
2K(s),±i ejωj

√
2K(s)}1≤j≤N ,

with ωj = ‖Ψj‖L∞ and (ej) being canonical unit vectors in CN . On the other
hand,

|ψ(y, z)| ≤
√
K(s), ∀z ∈ E`s , y ∈ U .(A.30)

We thus can derive an extended covering number result for E`s (similar to Lemma

A.3 for Es), then replace the bound Θ
√
s by

√
K(s) throughout the previous proofs,

resulting in Theorem 3.3.

References

1. B. Adcock, Infinite-dimensional compressed sensing and function interpolation, preprint

(2015).

2. , Infinite-dimensional `1 minimization and function approximation from pointwise
data, preprint (2015).

3. J. Beck, F. Nobile, L. Tamellini, and R. Tempone, Convergence of quasi-optimal stochastic

galerkin methods for a class of pdes with random coefficients, Computers and Mathematics
with Applications 67 (2014), no. 4, 732–751.

4. T. Blumensath and M. Davies, Iterative hard thresholding for compressed sensing, Applied

and Com- putational Harmonic Analysis 27 (2009), 265–274.
5. J. Bourgain, An improved estimate in the restricted isometry problem, Geometric Aspects of

Functional Analysis, Lecture Notes in Mathematics, 2014, pp. 65–70.

6. E.J. Candès, J. Romberg, , and T. Tao, Robust uncertainty principles: exact signal reconstruc-
tion from highly incomplete frequency information, IEEE Trans. Inform. Theory 52 (2006),

no. 1, 489–509.

7. M. Cheraghchi, V. Guruswami, and A. Velingker, Restricted isometry of fourier matrices and
list decodability of random linear codes, SODA, 2013, pp. 432–442.

8. A. Chkifa, A. Cohen, R. DeVore, and C. Schwab, Sparse adaptive taylor approximation al-
gorithms for parametric and stochastic elliptic pdes, Modél. Math. Anal. Numér. 47 (2013),
no. 1, 253–280.

9. A. Chkifa, A. Cohen, G. Migliorati, F. Nobile, and R. Tempone, Discrete least squares poly-
nomial approximation with random evaluations - application to parametric and stochastic

elliptic pdes, ESAIM: M2AN 49 (2015), no. 3, 815–837.
10. A. Chkifa, A. Cohen, and C. Schwab, High-dimensional adaptive sparse polynomial interpo-

lation and applications to parametric pdes, Foundations of Computational Mathematics 14
(2014), no. 4, 601–633.

11. , Breaking the curse of dimensionality in sparse polynomial approximation of para-
metric pdes, J. Math. Pures Appl. 103 (2015), no. 2, 400–428.

12. A. Cohen, M. A. Davenport, and D. Leviatan, On the stability and accuracy of least squares
approximations, Found Comput Math 13 (2013), 819–834.

13. A. Cohen and R. Devore, Approximation of high-dimensional parametric pdes, Acta Numer.

24 (2015), 1–159.
14. A. Cohen, R. DeVore, and C. Schwab, Analytic regularity and polynomial approximation of

parametric and stochastic elliptic pdes, Analysis and Applications 9 (2011), no. 1, 11–47.



32 ABDELLAH CHKIFA, NICK DEXTER, HOANG TRAN, AND CLAYTON G. WEBSTER

15. A. Cohen, G. Migliorati, and F. Nobile, Discrete least-squares approximations over optimized

downward closed polynomial spaces in arbitrary dimension, submitted (2015).

16. D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52 (2006), no. 4, 1289–1306.
17. A. Doostan and H. Owhadi, A non-adapted sparse approximation of pdes with stochastic

inputs, Journal of Computational Physics 230 (2011), 3015–3034.

18. D. Dung and M. Griebel, Hyperbolic cross approximation in infinite dimensions, Journal of
Complexity 33 (2016), 55–88.

19. S. Foucart, Sparse recovery algorithms: sufficient conditions in terms of restricted isometry

constants, Approximation Theory XIII: San Antonio 2010, Springer Proceedings in Mathe-
matics, vol. 13, 2010, pp. 65–77.

20. S. Foucart and H. Rauhut, A mathematical introduction to compressive sensing, Applied and

Numerical Harmonic Analysis, Birkhäuser, 2013.
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