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A CONVERGENCE ANALYSIS OF STOCHASTIC COLLOCATION
METHOD FOR NAVIER-STOKES EQUATIONS WITH RANDOM

INPUT DATA

Hoang Tran ∗ Catalin Trenchea † Clayton Webster ‡

Abstract. Stochastic collocation method has proved to be an efficient method and been widely applied
to solve various partial differential equations with random input data, including Navier-Stokes equations.
However, up to now, rigorous convergence analyses are limited to linear elliptic and parabolic equations;
its performance for Navier-Stokes equations was demonstrated mostly by numerical experiments. In this
paper, we present an error analysis of the stochastic collocation method for a semi-implicit Backward Euler
discretization for NSE and prove the exponential decay of the interpolation error in the probability space.
Our analysis indicates that due to the nonlinearity, as final time T increases and NSE solvers pile up, the
accuracy may be reduced significantly. Subsequently, an illustrative computational test of time dependent
fluid flow around a bluff body is provided.

1. Introduction. Flow of liquids and gases is ubiquitous in nature and obtaining an
accurate prediction of these flows is a central difficulty in diverse problems such as global
change estimation, improving the energy efficiency of engines, controlling dispersal of con-
taminants, designing biomedical devices and many other venues. Most applications of fluid
flows in engineering and science are affected by uncertainty in the input data and mathemat-
ical models, e.g., forcing terms, wall roughness, material properties, source and interaction
terms, geometry, model coefficients, etc. In this case, it is necessary to introduce uncer-
tainty in mathematical models to assess the reliability of predictions based on numerical
simulations.

The literature on numerical methods for stochastic differential equations has grown
extensively in the last decade. The Monte Carlo sampling method is the classical and
most popular approach for approximating expected values and other statistical moments of
quantities of interest (QoI) based on the solution of PDEs with random inputs. While being
very flexible and easy to implement, Monte Carlo method requires a very large number of
samples to achieve small errors. Recently, other approaches have been proposed that often
feature fast convergence. These include stochastic Galerkin methods, stochastic collocation
methods, and perturbation, Neumann and Taylor expansion methods.

Stochastic collocation methods (SCM) have emerged to be a modern, efficient technique
for quantifying uncertainty in physical applications [22, 26, 39]. One advantage of SCMs
concerns the much faster convergence rates, which can yield accurate predictions of the
uncertainty at a small fraction of the cost of a Monte-Carlo simulation, while maintaining
an ensemble-based, non-intrusive approach. The better convergence behavior of SCMs,
however, requires analyticity of the solutions with respect to the random variables. In
[3], such property was established and the error estimates of SCMs were given for elliptic
PDEs. These results have been extended to linear parabolic equations in [40]. Often
in nonlinear scientific and engineering problems, particularly in Navier-Stokes equations,
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complex solutions arise and their dependence on the random input data varies rapidly.
For these cases, the smoothness of solutions in probability space has been less studied.
Consequently, the accuracy of SCMs (and their variants) has been demonstrated mostly by
numerical experiments rather than by rigorous error analysis.

In this article, we establish, for the first time, some analyticity results and consequential
priori error estimates for the solutions of fully discrete approximations for stochastic Navier-
Stokes equations. Our primary goal is to give a convergence analysis in probability space
for the time-dependent backward Euler with constant extrapolation (BECE) scheme, whose
space-time error estimates were obtained in [33]:

un+1 − un

∆t
− ν∆un+1 + un · ∇un+1 +∇pn+1 = fn+1,

∇ · un+1 = 0.

(BECE)

This simple, first order scheme helps us focus on interpolation error of SCMs while avoiding
the long computation associating with more complex time discretizations.

The result we present here is twofold. First, we show that at a fixed time T , under mild
assumptions on the derivatives of random input data, the interpolation errors decay (sub-
)exponentially fast with respect to the tensor product polynomial degree. This guarantees
the efficiency of SCMs over Monte-Carlo method for Navier-Stokes modeling. In fact, SCMs
has been successfully applied in numerous Navier-Stokes problems, where fast convergence
was demonstrated, see, e.g., [6, 10, 29]. On the other side, the task of estimating and
controlling approximation errors over long time is particularly difficult. For space-time
discretizations, it is well-known that an error bound exists but this bound grows so rapidly
in time thus rendering the results less useful, see [13,18]. Our analysis reflects this situation
in stochastic context: At a fixed polynomial degree, we show that the upper bound of
interpolation errors grows fast to O(1) as T increases, leading to a possible accuracy decline
in long time simulation. A related analysis of long-term behavior of polynomial chaos was
derived by Wan and Karniadakis [35]. The authors indicated that for NSEs, polynomial
chaos will lose convergence after a short time and increasing the polynomial order does little
help. Their estimates, however, are limited to random frequency stochastic process and can
be applied to a few stochastic flows, e.g., vortex shedding. Different from their work, this
study conducts a convergence analysis for NSEs from a generic perspective.

The error estimation herein employs a standard approach [3] plus a special treatment of
the nonlinear term. The main ingredient in the analysis is a study of analyticity of numerical
solutions with respect to the probabilistic parameters. We prove the existence of analytical
extensions of solutions in a subregion of the complex plane. Loosely speaking, the larger
this extending region is, the better the convergence rate is. Unlike the parabolic equations
where the radius of analyticity is unchanged over time, it could shrink exponentially in T
for Navier-Stokes schemes, resulting in a reduction in accuracy.

The discrete scheme (BECE) we study here is just one example in the wide class of multi-
step backward differentiation methods coupled with semi-implicit or explicit scheme for the
nonlinear terms, see [2, 5]. These schemes are attractive because each time step requires
only one discrete Stokes system and linear solve. In addition, in many cases, no time step
restriction is needed for space-time stability and convergence. While the interpolation error
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estimations of higher order time discretization (such as Crank-Nicolson/Adams-Bashforth
[14], Crank-Nicolson with linear extrapolation [15]) are not considered in this work, we
expect they could be obtained in the same manner with longer computation.

Since a convection term with linearized schemes plays a pivotal role in our analysis,
direct extensions for fully implicit time stepping methods, e.g., Backward Euler, Crank-
Nicolson, are not likely. One possible alternative is to seek an error estimation of implicit
method coupled with an iterative algorithm, where the nonlinear term is again “lagged”,
as they naturally interwind in solving NSEs. As we shall see, a convergence analysis of
finite element approximation with fixed point iteration for stochastic steady-state NSEs
can be established as an easy modification of our analysis for (BECE). An estimate for
time-dependent schemes is nevertheless much trickier and beyond the scope of this paper.

The outline of the paper is as follows. In Section 2, we introduce the mathematical prob-
lem and the notation used throughout the paper, as well as a description of the stochastic
collocation methods. In Section 3, we derive the analyticity of the fully discrete solution
of (BECE) and the convergence rates of SCMs for this scheme. A brief analysis for fixed
point methods for steady-state NSEs is followed in Section 4. We then give an illustrative
numerical example of time dependent flow around a circular cylinder in Section 5. Finally,
concluding remarks are given in Section 6.

1.1. Related works. There have been many sparse-grid techniques developed to im-
prove the efficiency of stochastic numerical methods [27,28,32]. Numerous approaches have
been introduced to deal with stochastic problems whose solutions exhibit sharp variation
and even discontinuity with respect to random data. These include domain decomposition
of parametric spaces [7, 36], wavelet-base methods [23, 25], adaptive refinement strategies
for regions of singularity [11, 34, 41] and parameterization of output data [37, 38]. These
approaches show significant improvements in efficiency and accuracy in several nonlinear
(and particularly Navier-Stokes) applications.

Space-time convergence estimates for (BECE) are derived in [33]. For numerical analysis
for higher order non-iterative extrapolating schemes, we refer to [9,14,15]. Their application
in modeling engineering flows can be found in [30] (turbulent flows induced by wind turbine
motion), [1] (reacting flows in complex geometries such as gas turbine combustors), [24]
(turbulent flows transporting particles).

2. Problem setting.

2.1. Notation and preliminaries. Let D be a convex bounded polygonal domain in Rm
(m = 2, 3). The L2(D) norm and inner product will be denoted by ‖ · ‖ and (·, ·). Likewise,
the L∞(D) norm is denoted by ‖ · ‖L∞(D). H

1(D) is used to represent the Sobolev space
W 1,2(D) and H1

0 (D) is the closure in H1(D) of the space C∞c (D). The L2
0(D) space is given

by

L2
0(D) =

{
q : D → R : q ∈ L2(D) and

∫
D
qdx = 0

}
.

Copyright c© by ORNL. Unauthorized reproduction of this article is prohibited.
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For functions v(x, t) defined for almost every t ∈ (0, T ) on function space L(D), we define
the norms (1 ≤ p ≤ ∞)

‖v‖Lp(0,T ;L(D)) =

(∫ T

0
‖v‖pL(D)dt

)1/p

.

Let (Ω,F , P ) be a complete probability space. Here Ω is the set of outcomes, F ⊂ 2Ω

is the σ-algebra of events, and P : F → [0, 1] is a probability measure. We define two
random fields: the viscosity field ν(x, ω) : D × Ω → R and the forcing field f(t, x, ω) :
[0, T ]×D×Ω→ Rm. The stochastic time-dependent incompressible Navier-Stokes problem
can be written as follows: find a random velocity, u : [0, T ] × D × Ω → Rm and random
pressure p : [0, T ] ×D × Ω → R, such that P -almost surely (a.s.) the following equations
hold in (0, T ]×D × Ω:

∂tu− ν∆u+ u · ∇u+∇p = f,

∇ · u = 0, (2.1)

subject to the initial condition

u(0, x, ω) = u0(x), on D × Ω,

and the boundary condition

u(t, x, ω) = 0, on (0, T ]× ∂D × Ω.

Let y = (y1, ..., yd) denote a d-dimensional random variable in (Ω,F , P ) and define the
space L2

P (Ω) comprising all random variables y satisfying

d∑
n=1

∫
Ω
|yn(ω)|2dP (ω) <∞.

Then the following Hilbert spaces can be defined

V = L2(0, T ;H1
0 (D))⊗ L2

P (Ω) with norm ‖u‖2V =

∫ T

0

∫
D
E[|∇u|2]dxdt,

W = L2(0, T ;L2
0(D))⊗ L2

P (Ω) with norm ‖p‖2W =

∫ T

0

∫
D
E[|p|2]dxdt.

In order to define the weak form of the Navier-Stokes equations, introduce two continuous
bilinear forms

a(u, v) = 2ν

m∑
i,j=1

∫
D
Dij(u)Dij(v)dx, ∀u, v ∈ H1(D),

b(v, q) = −
∫
D
q∇ · vdx, ∀q ∈ L2(D), v ∈ H1(D),

Copyright c© by ORNL. Unauthorized reproduction of this article is prohibited.
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where Dij(v) = 1
2(∂vi/∂xj + ∂vj/∂xi), and the continuous trilinear form

c(w;u, v) =
1

2

m∑
i,j=1

(∫
D
wj

(
∂ui
∂xj

)
vidx−

∫
D
wj

(
∂vi
∂xj

)
uidx

)
, ∀w, u, v ∈ H1(D).

We now define weak solution of the problem (2.1) a pair (u, p) ∈ V ×W which satisfies the
initial condition u(0, x, ω) = u0(x, ω) and for T > 0

E[(∂tu, v)] + E[a(u, v)] + E[c(u;u, v)] + E[b(v, p)]

= E[(f, v)], for all v ∈ H1
0 (D)⊗ L2

P (Ω), (2.2)

E[b(u, q)] = 0, for all q ∈ L2
0(D)⊗ L2

P (Ω).

Recall that m is the dimension of domain D. In the forthcoming analysis, we will make use
of the following inequalities

Poincaré inequality :

‖v‖ ≤ CP ‖∇v‖, ∀v ∈ L2(D),

Ladyzhenskaya inequalities (see [17]): For any u, v, w ∈ H1
0 (D),

(u · ∇v, w) ≤
√

2‖u‖1/2‖∇u‖1/2‖∇v‖‖w‖1/2‖∇w‖1/2 (if m = 2),

(u · ∇v, w) ≤ 16

27
‖u‖1/4‖∇u‖3/4‖∇v‖‖w‖1/4‖∇w‖3/4 (if m = 3),

and a consequence of Cauchy-Bunyakovsky-Schwarz inequality :(
n∑
i=1

aibici

)2

≤
n∑
i=1

a2
i

n∑
i=1

b2i

n∑
i=1

c2
i , ∀ai, bi, ci ∈ R. (2.3)

2.2. Finite dimensional noise assumption. In many problems the source of randomness
can be approximated using just a small number of uncorrelated or independent random
variables; take, for example, the case of a truncated Karhunen-Loève expansion, [19]. This
motivates us to make the following assumption.

Assumption 1. The random input functions of the equation (2.1) have the form

ν(x, ω) = ν(x,y(ω)), on D × Ω,

f(t, x, ω) = f(t, x,y(ω)), on [0, T ]×D × Ω,

where y(ω) = (y1(ω), ..., yd(ω)) is a vector of real-valued random variables with mean
value zero and unit variance.

We will denote with Γn ≡ yn(Ω) the image of yn, Γ =
∏d
n=1 Γn and assume that the

random variables [y1, ..., yd] have a joint probability density function ρ : Γ → R+, with
ρ ∈ L∞(Γ). Hence the probability space (Ω,F , P ) can be replaced by (Γ,Bd, ρdy), where
Bd is the d-dimensional Borel space.

Copyright c© by ORNL. Unauthorized reproduction of this article is prohibited.
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Similar to V and W , we can define Vρ and Wρ as

Vρ = L2(0, T ;H1
0 (D))⊗ L2

ρ(Γ) with norm ‖u‖2Vρ =

∫
Γ
‖u‖2L2(0,T ;H1

0 (D))ρdy,

Wρ = L2(0, T ;L2
0(D))⊗ L2

ρ(Γ) with norm ‖p‖2Wρ
=

∫
Γ
‖p‖2L2(0,T ;L2

0(D))ρdy.

After making Assumption 1, the solution (u, p) of the stochastic NSE (2.2) can be described
by just a finite number of random variables, i.e., u(ω, x) = u(y1(ω), ..., yd(ω), x), p(ω, x) =
p(y1(ω), ..., yd(ω), x). Thus, the goal is to approximate the functions u = u(y, x) and
p = p(y, x), where y ∈ Γ and x ∈ D. Observe that the stochastic variational formulation
(2.2) has a “deterministic” equivalent which is the following: find u ∈ Vρ, p ∈Wρ satisfying
the initial condition and, for T > 0∫

Γ
ρ(∂tu, v)dy +

∫
Γ
ρa(u, v)dy +

∫
Γ
ρc(u;u, v)dy +

∫
Γ
ρb(v, p)dy

=

∫
Γ
ρ(f, v)dy, for all v ∈ H1

0 (D)⊗ L2
ρ(Γ), (2.4)∫

Γ
ρb(u, q)dy = 0, for all q ∈ L2

0(D)⊗ L2
ρ(Γ).

For a fixed T , the solution has the form u(ω, x)=u(y1(ω), ..., yd(ω), x), p(ω, x) = p(y1(ω), ..., yd(ω), x)
and we use the notation u(y), p(y), ν(y), f(y), and u0(y) in order to emphasize the de-
pendence on the variable y. Then, the weak formulation (2.4) for T > 0 is equivalent
to

(∂tu(y), v) + a(u(y), v) + c(u(y);u(y), v) + b(v, p(y))

= (f(y), v), for all v ∈ H1
0 (D), ρ-a.e. in Γ, (2.5)

b(u(y), q) = 0, for all q ∈ L2
0(D), ρ-a.e. in Γ.

2.3. Collocation method. Denote the conforming velocity, pressure finite element spaces
based on an edge to edge triangulation of D (with maximum triangle diameter h) by

Hh ⊂ H1
0 (D) , Lh ⊂ L2

0(D).

We assume that Hh and Lh satisfy the usual discrete inf-sup condition. Taylor-Hood ele-
ments, discussed in [4], [8], are one commonly used choice of velocity-pressure finite element
spaces. The discretely divergence free subspace of Hh is

Vh := {vh ∈ Hh : (∇ · vh, qh) = 0 , ∀qh ∈ Lh}.

Copyright c© by ORNL. Unauthorized reproduction of this article is prohibited.
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The spatial discrete approximation of (2.5) can be written as: find uh ∈ L2(0, T ;Hh)⊗L2
ρ(Γ)

and ph ∈ L2(0, T ;Lh)⊗ L2
ρ(Γ) satisfying initial condition and for T > 0

(∂tuh(y), vh) + a(uh(y), vh) + c(uh(y);uh(y), vh) + b(vh, ph(y))

= (f(y), vh), for all vh ∈ Hh, ρ-a.e. in Γ, (2.6)

b(uh(y), qh) = 0, for all qh ∈ Lh, ρ-a.e. in Γ,

or more simply: find uh ∈ L2(0, T ;Vh)⊗ L2
ρ(Γ) satisfying initial condition and for T > 0

(∂tuh(y), vh) + a(uh(y), vh) + c(uh(y);uh(y), vh) = (f(y), vh),

for all vh ∈ Vh, ρ-a.e. in Γ,
(2.7)

We apply the stochastic collocation method to the weak form (2.6). Define Pr(Γ) ⊂
L2
ρ(Γ) as the span of tensor product polynomials with degree at most r = (r1, ..., rd). (We

avoid using the popular notation p for the polynomial degree, since it is already reserved
for the pressure). The dimension of Pr(Γ) is Nr =

∏d
n=1(rn + 1). We seek a numerical

approximation to the solution of (2.6) in finite dimensional subspaces Vρ,h = L2(0, T ;Hh)⊗
Pr(Γ) and Wρ,h = L2(0, T ;Lh)⊗ Pr(Γ).

The procedure for solving (2.6) is divided into two parts. First, for a fixed T > 0, at
each collocation point (root of orthogonal polynomials) y ∈ Γ, construct an approximation
uh(T, ·,y) ∈ Hh(D) and ph(T, ·,y) ∈ Lh(D) satisfying

(∂tuh(y), vh) + a(uh(y), vh) + c(uh(y);uh(y), vh)

+ b(vh, ph(y)) = (f(y), vh), for all vh ∈ Hh(D), (2.8)

b(uh(y), qh) = 0, for all qh ∈ Lh(D).

Next, we collocate (2.8) on those points and build the discrete solutions uh,r ∈ Hh(D) ⊗
Pr(Γ) and ph,r ∈ Lh(D)⊗ Pr(Γ) by interpolating in y the collocated solutions, i.e.,

uh,r(T, x,y) = Iruh(T, x,y)

=

r1+1∑
j1=1

· · ·
rd+1∑
jd=1

uh(T, x, yj1 , · · · , yjd)(lj1 ⊗ · · · ⊗ ljd),

where, for example, the functions {ljk}dk=1 can be taken as Lagrange polynomials. Obviously,

the above product requires
∏d
n=1(rn + 1) function evaluations.

Because the random input data depend on a finite number of independent random
variables and we collocate the weak formulation (2.8) at the zeros of orthogonal polynomials,
the solution uh,r becomes a solution of uncoupled deterministic problems as in a Monte Carlo
simulation but with much fewer collocation points.

3. Error analysis of the time stepping BECE scheme. In this section, we carry out an
error analysis for the fully discrete scheme (BECE) for the approximation of the stochastic
Navier-Stokes equation (2.1) in 3 spatial dimensions. The 2-dimensional case should follow

Copyright c© by ORNL. Unauthorized reproduction of this article is prohibited.
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similarly. Let N ∈ N+ and consider the uniform partition of the time interval [0, T ]

0 = t0 < t1 < · · · < tN = T

with tj = t0 + j∆t, j = 0, 1, ..., N , and the time step ∆t = T/N . For discretizing system
(2.8), we apply and study the convergence of the first order backward Euler scheme with a
semi-implicit treatment for the nonlinear term

Algorithm 1. Given j ∈ {0, . . . , N − 1} and ujh ∈ Hh, p
j
h ∈ Lh, find uj+1

h ∈ Hh, p
j+1
h ∈

Lh satisfying(
uj+1
h − ujh

∆t
, vh

)
+ a(uj+1

h , vh)+ c(ujh;uj+1
h , vh) + b(vh, p

j+1
h )

= (f j+1, vh), for all vh ∈ Hh,

b(uj+1
h , qh) = 0, for all qh ∈ Lh.

(BECE)

We will investigate the analyticity of the solution uh with respect to y, which is critical
to establish the interpolation error estimates. Introducing the weight function σ(y) =∏d
n=1 σn(yn) ≤ 1, where

σn(yn) = 1 if Γn is bounded,

σn(yn) = e−λn|yn| for some λn > 0 if Γn is unbounded,

and the function space

C0
σ(Γ;V ) ≡

{
v : Γ→ V, v continuous in y, max

y∈Γ
‖σ(y)v(y)‖V < +∞

}
.

We denote

Γ∗n =

d∏
j=1
j 6=n

Γj and σ∗n =

d∏
j=1
j 6=n

σj

with y∗n being an arbitrary element of Γ∗n and make the following assumption on ν and f .
Assumption 2. In what follows we assume that

• f ∈ C0
σ(Γ;L2(0, T ;L2(D))),

• ν is uniformly bounded away from zero,

• f(y) and ν(y) are infinitely differentiable with respect to each component of y,

• There exists γn < +∞ such that

∥∥∥∥∥∂`ynν(y)

ν(y)

∥∥∥∥∥
L∞(D)

≤ γ`n`!,

[
∆t
∑N−1

j=0 ‖∂`ynf
j+1(y)‖2

]1/2

1 + ‖f(y)‖L2(0,T ;L2(D))
≤ γ`n`!,

for every y ∈ Γ, 1 ≤ n ≤ d.
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Under the finite dimensional noise assumption made in Section 2.2, Assumption 2 is
fulfilled by wide classes of random fields ν(x, ω) and f(t, x, ω), such as linear truncated
Karhunen-Loève or truncated exponential expansion. Details can be found in [3].

The following theorem makes the core of our paper. We prove there exists an analytical
extension of solution in a subregion of the complex plane, and in the same time, indicate
that that extending region can decay rapidly.

Theorem 1. Under Assumption 2, if the solution uJh(yn,y
∗
n, x) to (BECE), as a function

of yn, satisfies uJh : Γn → C0
σ∗n

(Γ∗n;Hh(D)), then for all n, 1 ≤ n ≤ d, there exists αn >
0 only depending on γn,∆t and system parameters such that for every J ∈ {1, . . . , N},
uJh(yn,y

∗
n, x) admits an analytic extension uJh(z,y∗n, x) in the region of the complex plane

Σ(Γn; τn,J) ≡ {z ∈ C | dist(z,Γn) ≤ τn,J}, (3.1)

with 0 < τn,J < 1/αJn.

Proof. At every point y ∈ Γ, the `-th derivative of uh w.r.t. yn satisfies(
1

∆t
∂`ynu

j+1
h (y)− 1

∆t
∂`ynu

j
h(y), vh

)
+ (∂`yn(ν(y)∇uj+1

h (y)),∇vh) (3.2)

+
(
∂`yn(ujh(y) · ∇uj+1

h (y)), vh

)
=
(
∂`ynf

j+1(y), vh

)
, ∀vh ∈ Vh(D),

or equivalently

1

∆t
(∂`ynu

j+1
h (y), vh)− 1

∆t
(∂`ynu

j
h(y), vh) +

∑̀
m=0

(
`
m

)(
∂mynν(y)∇∂`−myn uj+1

h (y),∇vh
)

+
∑̀
m=0

(
`
m

)(
∂mynu

j
h(y) · ∇∂`−myn uj+1

h (y), vh

)
=
(
∂`ynf

j+1(y), vh

)
.

This implies that(
ν(y)∇∂`ynu

j+1
h (y),∇vh

)
+
(
ujh(y) · ∇∂`ynu

j+1
h (y), vh

)
+

1

∆t

(
∂`ynu

j+1
h (y), vh

)
− 1

∆t

(
∂`ynu

j
h(y), vh

)
=
(
∂`ynf

j+1(y), vh

)
−
∑̀
m=1

(
`
m

)[
(∂mynν(y)∇∂`−myn uj+1

h (y),∇vh) + (∂mynu
j
h(y) · ∇∂`−myn uj+1

h (y), vh)
]

for all vh ∈ Vh(D). Choosing vh := ∂`ynu
j+1
h (y) and utilizing the divergence free condition

and the skew adjoint properties of the nonlinear term we obtain
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‖
√
ν(y)∇∂`ynu

j+1
h (y)‖2 +

1

2∆t
‖∂`ynu

j+1
h (y)‖2 − 1

2∆t
‖∂`ynu

j
h(y)‖2 (3.3)

+
1

2∆t
‖∂`ynu

j+1
h (y)− ∂`ynu

j
h(y)‖2

=
(
∂`ynf

j+1(y), ∂`ynu
j+1
h (y)

)
−
∑̀
m=1

(
`
m

)[(
∂mynu

j
h(y) · ∇∂`−myn uj+1

h (y), ∂`ynu
j+1
h (y)

)
+

(
∂mynν(y)

ν(y)

√
ν(y)∇∂`−myn uj+1

h (y),
√
ν(y)∇∂`ynu

j+1
h (y)

)]
.

Denoting the left hand side of (3.3) by LHS, applying Poincaré inequality and Ladyzhen-
skaya inequality, we get

LHS ≤ CP√
νmin
‖∂`ynf

j+1(y)‖‖
√
ν(y)∇∂`ynu

j+1
h (y)‖ (3.4)

+
∑̀
m=1

(
`
m

)∥∥∥∥∂mynν(y)

ν(y)

∥∥∥∥
L∞(D)

‖
√
ν(y)∇∂`−myn uj+1

h (y)‖‖
√
ν(y)∇∂`ynu

j+1
h (y)‖

+
16

27ν
7/8
min

∑̀
m=1

(
`
m

)∥∥∥∂mynujh(y)
∥∥∥1/4 ∥∥∥∇∂mynujh(y)

∥∥∥3/4∥∥∥√ν(y)∇∂`ynu
j+1
h (y)

∥∥∥×
×
∥∥∥∂`−myn uj+1

h (y)
∥∥∥1/4 ∥∥∥√ν(y)∇∂`−myn uj+1

h (y)
∥∥∥3/4

≤ CP√
νmin
‖∂`ynf

j+1(y)‖‖
√
ν(y)∇∂`ynu

j+1
h (y)‖

+
∑̀
m=1

(
`
m

)∥∥∥∥∂mynν(y)

ν(y)

∥∥∥∥
L∞(D)

‖
√
ν(y)∇∂`−myn uj+1

h (y)‖‖
√
ν(y)∇∂`ynu

j+1
h (y)‖

+
16

27

C
1/2
P

ν
3/2
min

∑̀
m=1

(
`
m

)∥∥∥√ν(y)∇∂mynu
j
h(y)

∥∥∥∥∥∥√ν(y)∇∂`−myn uj+1
h (y)

∥∥∥∥∥∥√ν(y)∇∂`ynu
j+1
h (y)

∥∥∥ .
For m ≥ 0, J ≥ 1, we define

F Jm =

∆t
J−1∑
j=0

‖∂mynf
j+1(y)‖2

1/2

and RJm =

∆t
J−1∑
j=0

‖
√
ν(y)∇∂mynu

j+1
h (y)‖2

1/2

.

Multiplying (3.4) by 2∆t, summing from j = 0 to J − 1 for any J ≥ 2, ` ≥ 1 and applying
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(2.3), it gives

‖∂`ynu
J
h‖2 + 2(RJ` )2 ≤ 2CP√

νmin
F J` R

J
` + 2

∑̀
m=1

(
`
m

)∥∥∥∥∂mynν(y)

ν(y)

∥∥∥∥
L∞(D)

RJ`−mR
J
`

+
32

27

C
1/2
P

∆t1/2ν
3/2
min

∑̀
m=1

(
`
m

)
RJ−1
m RJ`−mR

J
` . (3.5)

For J = 1, ` ≥ 1, utilizing the fact that u0
h is independent of y, there follows

‖∂`ynu
J
h‖2 + 2(RJ` )2 ≤ 2CP√

νmin
F J` R

J
` + 2

∑̀
m=1

(
`
m

)∥∥∥∥∂mynν(y)

ν(y)

∥∥∥∥
L∞(D)

RJ`−mR
J
` .

Therefore, assigning R0
m = 0, ∀m ≥ 1, (3.5) holds for every J ≥ 1, ` ≥ 1. This leads us to

‖∂`ynu
J
h‖2

2RJ`
+RJ` ≤

CP√
νmin

F J` +
∑̀
m=1

(
`
m

)∥∥∥∥∂mynν(y)

ν(y)

∥∥∥∥
L∞(D)

RJ`−m

+
16

27

C
1/2
P

∆t1/2ν
3/2
min

∑̀
m=1

(
`
m

)
RJ−1
m RJ`−m, ∀J ≥ 1, ` ≥ 1.

Dividing both sides by `! and denoting SJm = RJm
m! , using Assumption 2 we get

‖∂`ynu
J
h‖2

2RJ` `!
+ SJ` ≤

CP√
νmin

γ`n(1 + ‖f‖) +
∑̀
m=1

γmn S
J
`−m

+
16

27

C
1/2
P

∆t1/2ν
3/2
min

∑̀
m=1

SJ−1
m SJ`−m, ∀J ≥ 1, ` ≥ 1.

(3.6)

Denoting two parameters independent of J , ` and uh

A =
CP√
νmin

(1 + ‖f‖), and B =
16

27

C
1/2
P

∆t1/2ν
3/2
min

.

We will prove that there exists αn > 0 independent of J , ` and uh such that

SJ` ≤ α`Jn for all 1 ≤ ` <∞, 1 ≤ J ≤ N. (3.7)

First, we consider three specific cases:

1. ` = 0: Take v = uj+1
h (y) in (BECE), we have

1

2∆t
‖uj+1

h (y)‖2 − 1

2∆t
‖ujh(y)‖2 + ‖

√
ν(y)∇uj+1

h (y)‖2

≤
C2
P

2νmin
‖f j+1(y)‖2 +

1

2
‖
√
ν(y)∇uj+1

h (y)‖2

11



Summing from j = 0 to J − 1 and multiplying by 2∆t, there follows

‖uJh(y)‖2 + ∆t

J−1∑
j=0

‖
√
ν(y)∇uj+1

h (y)‖2

≤
C2
P

νmin
∆t

J−1∑
j=0

‖f j+1(y)‖2 + ‖u0
h‖2,

(3.8)

which gives SJ0 ≤ ξ0, ∀ 1 ≤ J ≤ N , where ξ0 = CP√
νmin

(1 + ‖f‖) + ‖u0
h‖.

2. ` = 1: From (3.6) and Case 1, we have

SJ1 ≤ Aγn + γnS
J
0 +BSJ−1

1 SJ0 ≤ Aγn + γnξ0 +Bξ0S
J−1
1 .

There follows

SJ1 ≤ (Aγn + γnξ0)
J−1∑
j=0

(Bξ0)j ≤ (Aγn + γnξ0)
(Bξ0)J − 1

Bξ0 − 1

≤
[

Bξ0

Bξ0 − 1
(Aγn + γnξ0)

]
· (Bξ0)J−1 ≤ αJn, ∀1 ≤ J ≤ N,

with αn = max
{
Bξ0,

Bξ0
Bξ0−1(Aγn + γnξ0)

}
.

3. J = 1: From (3.6) and Case 1, recall that S0
m = 0, ∀m ≥ 1, we have

S1
` ≤ Aγ`n +

∑̀
m=1

γmn S
1
`−m = Aγ`n + ξ0γ

`
n +

`−1∑
m=1

γmn S
1
`−m.

By induction, we will prove that S1
` ≤ α`n, ∀` ≥ 1, ` < ∞. Assuming in addition

αn ≥ max{4γn, 2(A+ ξ0)γn}, it gives

S1
` ≤ min

{
A+ ξ0

2`(A+ ξ0)`
,
A+ ξ0

4`

}
α`n +

`−1∑
m=1

αmn
4m

α`−mn

≤ 1

2
α`n + α`n

`−1∑
m=1

1

4m
< α`n.

Next, suppose that (3.7) occurs for all J ≤ N with ` ≤ L − 1 and all J ≤ M − 1 with
` = L (L ≥ 2, M ≥ 2), we will prove that (3.7) also occurs for J = M, ` = L. Indeed, from
(3.6),

SML ≤ AγLn +
L∑

m=1

γmn S
M
L−m +B

L∑
m=1

SM−1
m SML−m.
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By induction hypothesis, we have

SML ≤ A
αLn
4L

+ ξ0
αLn
4L

+

L−1∑
m=1

αmn
4m

αML−mM
n +Bξ0α

ML−L
n +B

L−1∑
m=1

αML−m
n

≤ (A+ ξ0 +Bξ0)αML−1
n + αML−1

n

L−1∑
m=1

1

4m
+BαML−1

n

αn
αn − 1

≤
(
A+ ξ0 +Bξ0 +

1

3
+ 2B

)
αML−1
n (assuming in addition that αn ≥ 2)

≤ αML
n (assuming in addition that αn ≥ (A+ ξ0 +Bξ0 +

1

3
+ 2B))

and (3.7) is proved completely.
Back to (3.6), it gives

‖∂`ynu
J
h‖2

2RJ` `!
+ SJ` ≤ Aγ`n +

∑̀
m=1

γmn S
J
`−m +B

∑̀
m=1

SJ−1
m SJ`−m

for all `. Employing the above estimation, we get

‖∂`ynu
J
h‖2

2RJ` `!
≤ α`Jn , ∀ 1 ≤ ` <∞, 1 ≤ J ≤ N,

and there holds

‖∂`ynu
J
h‖ ≤

√
2(`!)α`Jn .

We now define for every yn ∈ Γn the power series uJh : C→ C0(Γ∗n;Hh(D)) as

uJh(z,y∗n, x) =
∞∑
`=0

(z − yn)`

`!
∂`ynu

J
h(yn,y

∗
n, x).

Hence,

σn(yn)‖uJh(z)‖C0
σ∗n

(Γ∗n,Hh(D)) ≤
∞∑
`=0

|z − yn|`

`!
σn(yn)‖∂`ynu

J
h(yn)‖C0

σ∗n
(Γ∗n,Hh(D))

≤‖uJh‖C0
σ(Γ;Hh(D))

∞∑
`=0

(|z − yn|αJn)`,

≤

(∥∥∥∥ CP√
νmin

+ ‖u0
h‖
∥∥∥∥
C0
σ(Γ;R)

+

∥∥∥∥ CP√
νmin

f

∥∥∥∥
C0
σ(Γ;L2(0,T ;L2(D)))

) ∞∑
`=0

(|z − yn|αJn)`

(from (3.8)).

The series converges for all z ∈ C satisfying |z − yn| ≤ τn,J < 1/αJn and the function uJh

13
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admits an analytical extension in the region Σ(Γn, τn,J).

With the analyticity result proved in Theorem 1, we proceed to estimate the interpola-
tion error ε = uh−uh,r. The proof follows the same procedure as in [3], and thus, is omitted
here.

Theorem 2. Under the assumption of Theorem 1, suppose that the joint probability
density ρ satisfies

ρ(y) ≤ CMe−
∑d
n=1(δnyn)2 ∀y ∈ Γ

for some constant CM > 0 and δn strictly positive if Γn is unbounded and zero otherwise.
Then, for any integer J ∈ {1, . . . , N}, there exists a positive constant C independent of h
and r such that

‖uJh − uJh,r‖L2(D)⊗L2
ρ(Γ) ≤ C

d∑
n=1

βn(rn) exp(−Rn,Jrθnn ), (3.9)

where

θn = βn = 1 and Rn,J = log

[
2τn,J
|Γn|

(
1 +

√
1 +
|Γn|2
4τ2
n,J

)]
if Γn is bounded

and

θn =
1

2
, βn = O(

√
rn) and Rn,J = τn,Jδn if Γn is unbounded,

where τn,J is the minimum distance between Γn and the nearest singularity in the complex
plane, as defined in Theorem 1.

In short, Theorem 2 implies that:

• At a fixed time step J , the convergence rate of SCMs for bounded random variables
is O(exp(−r)) and for unbounded random variables is O(exp(−

√
r)),

• τn,J converges to 0 as J increases, as indicated in Theorem 1, and so does Rn,J . Thus,
at a fixed polynomial degree r, the interpolation error uJh − uJh,r becomes O(1) as
J →∞.

4. Error analysis of the fixed-point iteration method for steady Navier-Stokes ap-
proximation. We proceed to give an error estimation of the fixed-point method for sta-
tionary NSEs. This can be obtained by slightly modifying the analysis in the last section.
Assuming ν and f to be random fields, the finite element approximation of steady NSEs is
given by: find uh ∈ Hh ⊗ L2

ρ(Γ) and ph ∈ Lh ⊗ L2
ρ(Γ) satisfying

a(uh(y), vh) + c(uh(y);uh(y), vh) + b(vh, ph(y))

= (f(y), vh), for all vh ∈ Hh, ρ-a.e. in Γ, (4.1)

b(uh(y), qh) = 0, for all qh ∈ Lh, ρ-a.e. in Γ,

Copyright c© by ORNL. Unauthorized reproduction of this article is prohibited.
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Fixed point iteration is a commonly used method to solve nonlinear systems. Applying
to (4.1), it reads:

Algorithm 2. Let N ≥ 1 be the maximum number of iterations and 0 ≤ j ≤ N − 1 be
the current loop. Given ujh ∈ Hh, p

j
h ∈ Lh, find uj+1

h ∈ Hh, p
j+1
h ∈ Lh satisfying

a(uj+1
h , vh)+ c(ujh;uj+1

h , vh) + b(vh, p
j+1
h ) = (f, vh), ∀vh ∈ Hh,

b(uj+1
h , qh) = 0, ∀qh ∈ Lh.

(FP)

Here, at each collocation point, we start the process with some initial guess value u0
h,

which is deterministic. At each step, using the current intermediate solution (ujh, p
j
h) and

formula (FP), the next (and hopefully better) approximation (uj+1
h , pj+1

h ) is computed.
The process will continue until a sufficiently accurate solution (uJh , p

J
h) (in physical error

meaning) or the maximum number N is reached. If the method is convergent, in many
cases, quite few iteration steps are needed.

Like the analysis for (BECE) above, we need some restrictive assumptions on the regu-
larity of ν and f . Note that now f is a steady-state function.

Assumption 3. In what follows we assume that

• f ∈ C0
σ(Γ;L2(D)),

• ν is uniformly bounded away from zero,

• f(y) and ν(y) are infinitely differentiable with respect to each component of y,

• There exists γn < +∞ such that∥∥∥∥∥∂`ynν(y)

ν(y)

∥∥∥∥∥
L∞(D)

≤ γ`n`!,
‖∂`ynf(y)‖
1 + ‖f(y)‖

≤ γ`n`!,

for every y ∈ Γ, 1 ≤ n ≤ d.

Let J ≥ 0, recall that uJh is the solution to (FP) after J iteration. The analyticity result
for uh is presented in the following theorem. We prove there exists an analytical extension
of solution in a subregion of the complex plane, and in the same time, indicate that that
extending region can decay rapidly with the number of iteration steps.

Theorem 3. Under Assumption 3, if uJh(yn,y
∗
n, x), as a function of yn, satisfies uJh :

Γn→C0
σ∗n

(Γ∗n;Hh(D)), then for all n, 1 ≤ n ≤ d, there exists αn > 0 only depending on γn
and system parameters such that uJh(yn,y

∗
n, x) admits an analytic extension uJh(z,y∗n, x) in

the region of the complex plane

Σ(Γn; τn,J) ≡ {z ∈ C | dist(z,Γn) ≤ τn,J}, (4.2)

with 0 < τn,J < 1/αJn.

Proof. The proof follows the argument in that of Theorem 1 closely, so we will only give a
brief sketch here. At every point y ∈ Γ, take `-th derivative of uJh w.r.t. yn and choosing

Copyright c© by ORNL. Unauthorized reproduction of this article is prohibited.
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vh = ∂`ynu
J
h , it gives

‖
√
ν(y)∇∂`ynu

J
h(y)‖ ≤ CP√

νmin
‖∂`ynf

J(y)‖

+
∑̀
m=1

(
`
m

)∥∥∥∥∂mynν(y)

ν(y)

∥∥∥∥
L∞(D)

‖
√
ν(y)∇∂`−myn uJh(y)‖

+
16

27

C
1/2
P

ν
3/2
min

∑̀
m=1

(
`
m

)∥∥∥√ν(y)∇∂mynu
J−1
h (y)

∥∥∥∥∥∥√ν(y)∇∂`−myn uJh(y)
∥∥∥ , ∀` ≥ 1, J ≥ 1.

For m ≥ 0, J ≥ 0, defining SJm = ‖
√
ν(y)∇∂mynu

J
h(y)‖/m!, using Assumption 3 we get

SJ` ≤
CP√
νmin

γ`n(1 + ‖f‖) +
∑̀
m=1

γmn S
J
`−m

+
16

27

C
1/2
P

ν
3/2
min

∑̀
m=1

SJ−1
m SJ`−m, ∀` ≥ 1, J ≥ 1.

Similar to Theorem 1, we can construct αn > 0 depending on γn and system parameters
such that SJ` ≤ α`Jn for all ` ≥ 1, J ≥ 1.

Applying Poincaré inequality, there holds

‖∂`ynu
J
h‖ ≤

CP√
νmin

(`!)α`Jn , ∀` ≥ 1, J ≥ 1.

The function uJh thus admits an analytical extension in the region Σ(Γn, τn,J) with τn,J <
1/αJn.

Theorem 3 leads to an estimation for interpolation error uh − uh,r, which is essentially
identical to Theorem 2, and we do not restate here. It guarantees the exponential con-
vergence of SCMs for the fixed point method for steady NSE approximations. The upper
bound certainly grows with the number of iteration steps; however, in many applications,
this is just a small number, making this bound realistic. Still, the fact that more iteration
steps could lead to less accurate approximations in probability space seems to be coun-
terintuitive. Whether a sharper estimation exists is an open question and worths further
study.

5. Numerical examples. To illustrate the decrease of accuracy of SCMs in long time,
in this section, we present a computational experiment of the two-dimensional flow around a
circular cylinder, based on the well-known benchmark problem from Shäfer and Turek [31].
There is plenty of computations of stochastic flows in the literature, demonstrating both
the fast convergence as well as the long-term growth of interpolation error of SCMs and
polynomial chaos, see, e.g., [6, 10, 20, 21, 29, 37]. The problem we consider here was studied
in [7,35] with noisy boundary conditions. We revisit this problem with uncertain viscosity.
Our test is programmed using the software package FreeFem++ [12].

Let D be the channel with the cylinder presented in Figure 1. We consider the time-
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Figure 1: Domain D of the numerical test, [16].

dependent incompressible Navier-Stokes equation (2.1) subject to the following random
viscosity

ν = ν0(1 + Y/10),

where ν0 = 0.8× 10−3 and Y is a uniform random variable of zero mean and unit variance.
The cylinder, top and bottom of the channel are prescribed no-slip boundary conditions,
and the inflow and outflow profiles are

u1(0, y) = u1(2.2, y) =
6

0.412
y(0.41− y),

u2(0, y) = u2(2.2, y) = 0.

Due to the randomness of the viscosity, the Reynolds number considered in this test is
random. Based on the inflow velocity and the diameter of the cylinder L = 0.1, it satisfies
112.5 ≤ Re ≤ 137.5. For this range of Reynolds number, the flow is in the laminar regime
with a Kármán vortex street developing behind the cylinder. This results in a periodic
response of the lift and drag coefficients. In what follows, we investigate the mean and error

evolution of these two quantities simulated by SCM. By C
l|d
h,r, we denote the mean lift/drag

coefficients corresponding to the fully discrete solutions in physical and probability spaces.
The collocation points are Clenshaw-Curtis quadrature. In order to estimate the error, we
compute a very high resolution approximate solution using SCM of 20th-order and suppose
it to be the “true” solution in probability space, the lift/drag coefficients corresponding to

which are denoted by C
l|d
h .

The experiment is carried out up to T = 50, with zero forcing term and initial condition.
The solutions are computed with Taylor-Hood elements on a triangular mesh providing
69174 total DOFs, refined near the cylinder, and time step ∆t = 0.005. Since (BECE)
cannot produce reliable space-time solutions for this flow, at each collocation point of Y ,
we employ the Crank-Nicolson time stepping scheme to solve the Navier-Stokes equations.
The scheme reads:
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Algorithm 3. Given 0 ≤ j ≤ N − 1 and ujh ∈ Hh, p
j
h ∈ Lh, find uj+1

h ∈ Hh, p
j+1
h ∈ Lh

satisfying(
uj+1
h − ujh

∆t
, vh

)
+

1

2
(a(uj+1

h , vh) + a(ujh, vh))+ b(vh, p
j+1
h )

+
1

2
(c(uj+1

h ;uj+1
h , vh) + c(ujh;ujh, vh)) = (f j+1/2, vh), for all vh ∈ Hh,

b(uj+1
h , qh) = 0, for all qh ∈ Lh.

Fixed point iterations are applied to solve the nonlinear system with a ‖u(i+1)−u(i)‖H1(D) <
10−10 as a stopping criterion. The numerical methods and space-time resolution we use
herein were verified in deterministic problem to give an accurate approximation of lift and
drag coefficients, [16].

Figure 2 show the instantaneous mean of lift and drag coefficients given by SCM. It can
be seen that both the mean C lh,r and Cdh,r oscillate periodically around a constant value.
After a short time agreeing with the reference solution, SCM starts to lose accuracy. The
higher order the method is, the later the divergence occurs. The evolution of errors of SCM
at various polynomial orders r are shown in Figure 3. We observe that for all r plotted, the
interpolation errors eventually increase to O(1) with time. This confirms that the efficiency
of SCM diminishes in long time flow simulations.

0 5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

1

1.5

t

C
l h
,r

 

 

r = 3

r = 4

r = 5

r = 20

0 5 10 15 20 25 30 35 40 45 50

3.08

3.1

3.12

3.14

3.16

3.18

3.2

3.22

t

C
d h
,r

 

 

r = 3

r = 4

r = 5

r = 6

r = 20

Figure 2: Evolution of mean of lift (upper) and drag (lower) coefficient.
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Figure 3: Evolution of error of lift (left) and drag (right) coefficient.

6. Conclusions. In this paper, error analysis of stochastic collocation methods for fully
discrete Navier-Stokes approximations with random input data was carried out. Partic-
ularly, we considered the backward Euler with constant extrapolation scheme for time-
dependent NSEs and fixed point iteration for steady NSEs. We proved the exponential
convergence of the methods in the probability space. On the other side, at a fixed poly-
nomial order, our analysis indicated that the interpolation error may grow to O(1) in long
term. A numerical example of 2D flow around a cylinder is given to illustrate our results.

The prospect of applying and improving SCMs to flow simulations essentially relies on
understanding where SCMs produce reliable results and where they do not. On one hand,
further analytical studies are desired to enhance this understanding. They include possi-
ble sharper estimations on the interpolation errors and the growth of the upper bounds,
as well as convergence analysis for higher order semi-implicit and fully implicit discretiza-
tion schemes. Simultaneously, as existing experiments are limited on flows at laminar or
transitional regimes, it is unclear how fast the probability errors grow in turbulent flow
simulations in practice. A computational demonstration of the performance of SCMs in
such cases is an interesting question and extremely helpful.
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