An Integrated Development Environment for Adiabatic Quantum Programming

T S Humble, A J McCaskey†, R S Bennink, J J Billings, E F D’Azevedo, B D Sullivan‡, C F Klymko§, H Seddiqi∥
Quantum Computing Institute, Oak Ridge National Laboratory, Oak Ridge, TN USA
E-mail: humblets@ornl.gov

Abstract. Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an integrated development environment for adiabatic quantum programming called JADE that provides control over all the steps taken during program synthesis. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its potential use for benchmarking adiabatic quantum programs by the quantum computer science community.

† Present address: Department of Physics, Virginia Tech, Blacksburg, VA USA
‡ Present address: Department of Computer Science, North Carolina State University, Raleigh, NC USA
§ Present address: Department of Mathematics and Computer Science, Emory University, Atlanta, GA USA
∥ Present address: Department of Physics, Georgia Southern University, Statesboro, GA USA
1. Introduction

The discovery of quantum algorithms with significant speed-ups over their classical counterparts has spurred interest in the research and development of quantum computing systems. Several different but computationally equivalent models for quantum computing have emerged including the model of adiabatic quantum computing (AQC) [1]. Notionally, the AQC model for universal quantum computation corresponds to adiabatic (i.e., slow) changes in the state of a quantum physical system. While computationally equivalent to other models, AQC promises some intrinsic benefits for ensuring fault-tolerant computation and reducing system complexity [2].

Additional attention to the AQC model has been stimulated by the recent commercial realization of a special purpose processor that implements the adiabatic quantum optimization (AQO) algorithm [3]. The processor, manufactured by the Canadian firm D-Wave Systems, Inc., realizes a programmable Ising spin-glass model in a transverse field [4]. Although the available hardware is not capable of universal quantum computation, it does provide the first complete realization of a quantum information processing system. Moreover, because the AQO algorithm is broadly applicable to combinatorial optimization problems, it has garnered attention for use in a number of application domains. Examples include problems in classification [5] [6], machine learning [7], graph theory [8] [9] [10], artificial neural networks [11], and protein folding [12] among others [13].

The availability of quantum hardware allows for benchmarking performance relative to both quantum and classical metrics of computational power. Understanding
benchmarks requires a detailed consideration of how the program and hardware interact as well as how the benchmark metrics represent performance. For example, it is known that performance of the AQO algorithm depends strongly on the specific programming and hardware operation schedules as well as the problem input \[14\] \[15\]. Indeed, whereas some studies of the AQO algorithm have reported runtimes that scale polynomially in problem size, others have suggested worst-case exponential behavior or trapping in local minima \[16\]. An essential step in understanding these analyses is to capture the influence that different programming choices have on these observed behaviors \[3\] \[16\] \[17\] \[18\] \[19\] \[20\].

A significant source of the complexity in analyzing implementations of the AQO algorithm arises from the multiple steps undertaken to synthesize the adiabatic quantum program. The adiabatic quantum programming process illustrated in Fig. 1 begins with the reduction of a classical combinatorial optimization problem to a quadratic unconstrained binary optimization (QUBO) problem that can be mapped into the parameters of an equivalent Ising Hamiltonian. The Ising Hamiltonian must then be mapped onto the processor. This transformation of the reduced problem into a physically realizable program depends on both the hardware layout and the available hardware controls. Ultimately, the computed solution will depend on all previous decisions as well as the actual physics underlying the processor.

It is currently poorly understood how modifications at the various stages in Fig. 1 impact the correctness and efficacy of the computed solutions. Reconciling the seemingly contradictory results from previous studies as well as understanding more recent experimental benchmarks requires investigating how these programming choices impact performance. Motivated by this, we have developed a programming environment that captures each step and synthesizes them together in an integrated workflow. This workflow includes the development of adiabatic quantum programs as well as the collection of diagnostic information for addressing questions about performance. In the absence of actual hardware, we use numerical simulation to evaluate the variety of programming and operational choices that can effect program behavior. With the publication of recent benchmarks from available hardware \[19\].
we are able to make comparisons between simulated and experimental results.

In this paper we describe the Jade Adiabatic Development Environment (JADE). JADE follows the programming steps highlighted in Fig. 1 and captures both the high-level problem input as well as the low-level quantum physical programming. In addition, we have integrated JADE with a quantum simulation engine that supports user-defined methodologies for running diagnostic analyses. In the current context, we specialize the description of JADE to the case of the AEO algorithm, however, the overall software framework extends to other adiabatic algorithms as well.

This paper is organized as follows. In Sec. 2, we summarize the theoretical background leading to Fig. 1 including the quantum physical basis for AEO. In Sec. 3, we present the model-based design of JADE including the system context, implementations of each component, and our test-driven framework for program verification and validation. We present usage results for the case of a recent benchmark problem in Sec. 4 and we offer conclusions in Sec. 5.

2. Adiabatic Quantum Programming

In this section, we provide a summary of the physical theory and computer science underlying adiabatic quantum programming. This includes the quantum physical description of AEO as well as the steps taken to map the AEO to a hardware control schedule.

2.1. Quantum Computational Model

The physical basis for the AEO model was first established in terms of quantum annealing by Kadowaki and Nishimori [21]. Farhi et al. later formalized these ideas as a means of solving a discrete optimization problem [1]. Several efforts have since shown the equivalence between the AEO model and other quantum computing models [22, 23]. In a generalized AEO algorithm [3], a quantum physical system of \(n \) qubits is evolved under the Schrödinger equation

\[
i \hbar \frac{\partial |\psi(t)\rangle}{\partial t} = H(t) |\psi(t)\rangle
\]

according to a time-dependent Hamiltonian

\[
H(t) = A(t)H_I + B(t)H_P
\]

that interpolates between the initial and final (problem) Hamiltonians, \(H_I \) and \(H_P \), respectively, from an initial time \(t = t_0 \) to a final time \(t = T \). We shall assume \(t_0 = 0 \).

In Eq. (2), the schedules \(A(t) \) and \(B(t) \) satisfy the boundary conditions \(A(0) \gg B(0) \) and \(A(T) \ll B(T) \), while the quantum system is initially prepared in the lowest-energy eigenstate of \(H_I \). Given the instantaneous eigenvalue equations

\[
H(t) |\tilde{\phi}_j(t)\rangle = E_j(t) |\tilde{\phi}_j(t)\rangle,
\]

with \(j = 0, 1, \ldots, 2^n - 1 \) labeling states of monotonically increasing energy, the initial state condition implies \(|\psi(0)\rangle = |\tilde{\phi}_0(0)\rangle \).

If the energy gap between the ground and excited states

\[
\Delta(t) = \min_{j \neq 0} E_j(t) - E_0(t)
\]
is always strictly greater than zero, i.e., \(\forall t : \Delta(t) > 0 \), then the state \(|\psi(t)\rangle \) may remain in the instantaneous ground state with high probability provided certain bounds on the rate of change of the Hamiltonian are satisfied \([1]\). Consequently, evolution under Eq. (1) to the time \(T \) prepares the final state \(|\psi(T)\rangle \) in the lowest energy eigenstate of \(H_P \). By making a judicious choice of the final Hamiltonian \(H_P \), the prepared final state may encode the solution to a computation. In order to ensure the computation is correct, the adiabatic condition must be satisfied. This implies that the final time \(T \) is chosen to be much larger than the inverse of the minimum spectral gap of \(H(t) \) \([1]\). Failure to ensure this condition risks the possibility that the final state will not belong to the ground state manifold of \(H_P \) but rather to an excited state. It is notable that the spectral gap depends not only on the problem to be solved, but also on how the problem is implemented as a quantum program. Understanding input influence on a program run time and error rates is an open question in quantum computer science.

2.2. Adiabatic Quantum Optimization

In specializing to the AQO algorithm, we require a quantum logical system of \(n \) qubits with an initial Hamiltonian

\[
H_I = - \sum_{i \in V_P} X_i
\]

and final Ising Hamiltonian

\[
H_P = - \sum_{i \in V_P} \alpha_i Z_i - \sum_{(i,j) \in E_P} \beta_{i,j} Z_i Z_j,
\]

where \(X_i \) and \(Z_i \) are the Pauli operators for the \(i \)-th qubit, \(\alpha_i \) is the bias on the \(i \)-th qubit, and \(\beta_{i,j} \) is the coupling between qubits \(i \) and \(j \). The graph \(G_P = (V_P, E_P) \) with vertex set \(V_P \) and edge set \(E_P \) defines the input problem as described below. The final Hamiltonian is diagonal in the basis defined by the tensor products of the \(\pm 1 \) eigenstates of the \(Z_i \) operators. This basis will also serve as the computational basis. For comparison, the ground state of the initial Hamiltonian (and initial state of the AQO algorithm) is the symmetric superposition of these computational basis states and has an eigenvalue \(-n\).

2.3. Quadratic Unconstrained Binary Optimization

Any binary optimization problem (BOP) can be mapped into the form of the final Hamiltonian in Eq. (6). In doing so, we define the classical input to the AQO algorithm as a quadratic unconstrained binary optimization (QUBO) problem. This is because non-binary as well as constrained optimization problems can be reduced to QUBO \([24]\), and because QUBO has a natural correspondence with the Ising model. The QUBO problem is to find

\[
\arg \min_{x \in \mathbb{B}^m} x^T P x,
\]

where \(x \) is a vector of \(m \) binary variables with \(x_i \in \{0, 1\} \) and \(P \) is an \(m \)-by-\(m \) symmetric real-valued cost matrix. We interpret \(P \) as a weighted version of the adjacency matrix for the input (problem) graph \(G_P \), introduced in Eq. (6), with \(m \equiv |V_P| \) and \((i, j) \in E_P \) iff \(P_{i,j} \neq 0 \). From this point of view, programming the AQO algorithm requires mapping the matrix \(P \) to the biases and couplings of the Ising Hamiltonian. It has been shown previously by Choi that parameterization of the
logical Ising Hamiltonian in Eq. (6) may be given in terms of the QUBO problem as

\[\alpha_i = \frac{1}{2} P_{i,i} + \frac{1}{4} \sum_{j=1}^{m} P_{i,j} \quad \text{for } i = 1 \text{ to } m, \] (8)

and

\[\beta_{i,j} = \frac{1}{4} P_{i,j} \quad \text{for } i < j = 1 \text{ to } m. \] (9)

We may also add an energy shift to the Ising Hamiltonian in Eq. (6) of the form

\[\gamma = \frac{1}{4} \sum_{i,j=1}^{m} P_{i,j} + \frac{1}{2} \sum_{i=1}^{m} P_{i,i} \] (10)

in order to match the energies of the solution state. Although this shift does not affect the solution obtained using AQC, it must be accounted for in reporting the minimal value in Eq. (7).

2.4. Hardware Embedding

Whether or not the logical Hamiltonian in Eq. (6) is supported directly on a given hardware depends on the available connectivity of that hardware. We express the connectivity of a targeted processor in terms of its hardware graph \(G_H = (V_H, E_H) \).

When any vertex can be coupled to any other vertex and \(|V_H| \geq |V_P|\), then it is possible to support all possible input problems using a one-to-one mapping between the logical and physical qubits and the biases and couplings of the physical Hamiltonian.

However, when \(G_H \) is less than fully connected, then there are certain input problems that will not map directly into hardware. In such circumstances, it may be possible to embed the problem graph \(G_P \) into the hardware graph \(G_H \) via graph minor embedding \[[25, 15]\].

We formally define the minor embedding of a graph \(G_P \) into a graph \(G_H \) as a mapping \(\phi : V_P \rightarrow V_H \) such that:

(i) each vertex \(i \) in \(V_P \) is mapped to the vertex set of a connected subtree \(T_i \) of \(G_H \).
(ii) if \((i, j) \in E_P\), then there exist \(\tau_i, \tau_j \in V_H \) such that \(\tau_i \in T_i, \tau_j \in T_j \), and \((\tau_i, \tau_j) \in E_H\).

If such a mapping \(\phi \) exists, then \(G_P \) is minor-embeddable in \(G_H \), or \(G_P \) is a minor of \(G_H \). In subsequent discussions, we simply use the term embedding as a reference to minor embedding.

In adiabatic quantum programming, the vertices of the input graph \(G_P \) represent the bits of a candidate solution to the QUBO problem, while the edges represent the presence of nonzero coupling coefficients, as defined in Eqs. (7) and (6) respectively. The vertices of the hardware graph \(G_H \) represent the physical qubits and the edges represent the couplings between qubits that are available in the hardware. An embedding maps each vertex in \(V_P \) to a subset of \(V_H \) and each edge in \(E_P \) to edges between these subsets. When an embedding exists, then the resulting subgraph \(G^* = (V^*, E^*) \) of the hardware graph defines the physical Ising model

\[H_{G^*} = - \sum_{k \in V^*} \alpha_k Z_k - \sum_{(k, \ell) \in E^*} \beta_{k, \ell}^* Z_k Z_\ell \] (11)
The bias and coupling coefficients α_k^* and $\beta_{k,\ell}^*$ depend on the selected embedding ϕ per the requirements (i) and (ii) listed above. The physical Ising coefficients are defined as

$$\alpha_k^* = \alpha_i / |T_i|$$

for each $k \in V_T$, (12)

and for $k \neq \ell$

$$\beta_{k,\ell}^* = \begin{cases}
\frac{\beta_{i,j}}{\text{edges}(T_i, T_j)} & \text{for } k \in T_i \text{ and } \ell \in T_j \text{ and } i \neq j \\
J & \text{for } k \in T_i \text{ and } \ell \in T_j \text{ and } i = j \\
0 & \text{otherwise}
\end{cases}$$

where $\text{edges}(T_i, T_j)$ is the number of edges between trees T_i and T_j and the constant J is chosen sufficiently large to force the qubits in each tree to be strongly correlated.

Setting these coefficients requires knowledge of the matrix P and the selected embedding implied by G^* [25, 15]. The embedding need not be unique and, consequently, different instances of the Hamiltonian in Eq. (11) may correspond to the same logical problem of Eq. (7).

A key dependency in finding an embedding is the target hardware graph G_H. The hardware graph defines the vertices and connectivity that are available to express the Ising model. An example hardware graph is shown in Fig. 2. Finding those graphs that can be embedded into a fixed hardware graph is an example of subgraph isomorphism, which is known to be NP-Complete in difficulty. For small hardware graphs, it is tractable to calculate the maximal minors of the graph, i.e., the minors of G_H whose subgraphs represent all other graphs contained in G_H [15]. However, this is a brute force approach and therefore does not scale favorably with hardware size. Alternatives include heuristic algorithms that incorporate knowledge of G_H or that limit the types of input problems.

Figure 2. A hardware graph for the Rainier processor produced by D-Wave Systems, Inc. The design is a 4×4 lattice of interconnected unit cells, with each unit cell expressed as a K_4 graph. The geometry of the hardware plays an important role in determining which graphs can be embedded.
2.5. Hardware Schedules and Program Execution

We restrict our discussion to AQC programs that use a time-dependent Hamiltonian fitting the form of Eq. (2), which interpolates between an initial Hamiltonian H_I and the problem Hamiltonian H_P according to the time-dependent annealing schedules $A(t)$ and $B(t)$. More generally, individual biases and couplings can be time-dependent, e.g., $\alpha_i = \alpha_i(t)$. In either case, the time-dependent schedules specify the rate at which the total Hamiltonian $H(t)$ changes and, consequently, they play an important role in the computational error rates. In particular, the final time T needs to be sufficiently large to ensure the validity of the adiabatic condition, namely,

$$T \gg \frac{E}{\Delta^*}$$

where $\Delta^* = \min_t \Delta(t)$ is the global minimum of the spectral gap defined in Eq. (4) and $E = \max_t \langle \frac{dH(t)}{dt} \rangle$ is the maximal rate of change during evolution [1]. In the absence of information about $\Delta(t)$, it is difficult to ensure the adiabatic condition is satisfied. This uncertainty is one source of the difficulty in benchmarking adiabatic quantum programs. Recent results on amplifying spectral gaps [26] and developing fault tolerant programs [27] suggest new methods for mitigating this uncertainty.

Although the annealing schedules are sufficient for coarsely specifying program execution, it is ultimately necessary to provide the physical implementation of those schedules in terms of hardware controls. The hardware controls that are available for tuning the biases and coupling of a processor must be capable of expressing programmed schedules. However, available controls are highly dependent on the physics underlying a processor and ensuring the exact implementation of an arbitrary annealing schedule may not be possible. Limitations on annealing schedules arising from constraints and dependencies of control values creates additional uncertainty in the benchmarking effort. Accounting for control constraints and quantification noise is necessary to provide a clear picture of how processor differences impact program behavior. For example, in the case of the family of processors from D-Wave Systems, Inc., biases and couplings can be mapped directly to models for the underlying superconductor Josephson-junction. However, the precision of this mapping is limited by the resolution of the on-board digital to analog converters (DAC’s) [4, 28].

In addition to the constraints expected from hardware design, it is also necessary to anticipate the influence of noise on program behavior. Two types of noise affecting quantum dynamics are classical noise in the controls and quantum noise in the system dynamics. Quantum noise may be modeled as an undesired interaction between computational qubits and non-control elements of the hardware. A specific example is the case of thermal influences on the quantum dynamics, which invalidate the pure state description in Sec. 2 and undermine the adiabatic conditions [29]. Similarly, classical noise in the hardware controls yields a mixed-state description of the quantum dynamics and may bias program execution away from the solution of interest.

Once the time-dependent behavior of the Hamiltonian $H(t)$ has been fully specified, it remains to execute the program. As noted before, the typical sequence begins by initializing the quantum computational register in the ground state of the initial Hamiltonian H_I. How initialization is implemented varies with processor and, more important, it may not be implemented perfectly. This additional source of noise must also be accounted for in evaluating program behavior as it is likely to influence the computational result. The remaining step in execution is to carry out the hardware control schedule and, therefore, the programmed computation.
2.6. Computational Readout and Problem Solution

After evolving to the final time T, the state of the computational register is determined using a suitable measurement or readout method. For the case of the AQO algorithm, the ground states at time T are computational eigenstates and, therefore, readout implies a direct measurement in the computational (Z) basis. As with program execution, it is more realistic to describe the readout process in terms of the hardware controls. This description includes capturing any noise or uncertainty in the measurement process.

The bit string generated from computational readout is the result of the quantum annealing process. However, mapping this result back to a solution for the original QUBO problem requires decoding measurements according to the inverse of the embedding map. For those cases where a tree of physical qubits represents a single logical qubit, it is necessary to check the value of all such qubits. In cases where measurement results within a tree disagree, then various strategies can resolve the uncertainty. One simple example is to use a majority vote. After decoding the computational readout, a solution to the original QUBO problem is produced and the program is complete. It may be necessary to repeat the execution of the program, for example, to gather statistics on the readout or solution states, however, the steps performed are similar to those described above.

3. Jade Adiabatic Development Environment

As presented in Sec. 2, programming the AQO algorithm for an arbitrary QUBO is a highly tunable process. In this section, we describe a software-based implementation of the process that provides control over each of the programming steps shown in Fig. 1. We also describe the integration of this environment with a computational engine that uses numerical simulation for profiling these programs. The simulator is intended for providing insights into how program choices impact program performance.

The Jade Adiabatic Development Environment (JADE) is motivated by the need to provide theoretical benchmarks for current and future adiabatic quantum computing devices. In particular, it was designed to capture insights into the behavior of processor architectures. This is accomplished by using a numerical simulator backend to calculate the time-dependent processor state with respect to programmed algorithm. JADE provides both an engine for simulating the programs that run on adiabatic quantum computing devices and a development environment for specifying program input. In addition, JADE provides methods for constructing adiabatic quantum processor configurations, i.e., the quantum hardware, and for debugging the implementation.

JADE is built using model-driven development, a software development methodology with a strong focus on system use cases as well as architectural extensibility and stability [30]. This methodology allows developers to manage system complexity and rigorously verify and validate the final product implementation. Our model-based approach uses the Unified Modeling Language (UML) to capture design decisions and trace requirements [31]. We also rely heavily on an object-oriented programming paradigm and software design best practices, such as test driven development [32].
3.1. Use Cases

JADE is designed to provide infrastructure for developing AQC programs and a computational engine for simulating them. This includes functionality for parsing input optimization problems, configuring new quantum hardware, and performing program profiling. Given this broad scope in functionality, JADE was designed for two distinct actors: the Analyst and the Engineer.

![Jade Use Case Model](image)

Figure 3. The Analyst and Engineer actors are distinguished by how they use JADE. The Analyst is exposed to only a high-level input problem and its computed solution. The Engineer has the ability to tune the low-level programming steps and to analyze the computational readout.

An Analyst represents a JADE user whose primary goal is to solve a discrete optimization problem. The Analyst requires a development environment that automates programming choices and execution sequences. In contrast, an Engineer expects to perform additional programming tasks such as customizing low-level Hamiltonian parameters, constructing specialized processor configurations, and defining embedding maps or annealing schedules. As seen in Fig. 3, this desired JADE functionality is encapsulated by the following use case model:

- **Create a Problem** - the Analyst constructs a discrete optimization problem as either a BOP or QUBO problem. In the case of the former, JADE converts the BOP to its corresponding QUBO representation. This use case creates a Problem entity.

- **Solve a Problem** - the Analyst selects a previously created Problem to solve using AQO. This use case returns a Solution entity, which is the computed solution to the input problem.

- **Create a Processor** - the Engineer creates a processor configuration by specifying the number and connectivity of physical qubits. The Engineer may also customize the processor by specifying classical and quantum noise models as well as hardware control constraints. This use case creates a Processor entity.

- **Create a Program** - the Engineer creates a quantum program that is either a logical program or a physical program. A logical program is synthesized from selected Problem, Processor, and Embedding entities, while a physical program is synthesized only from a Processor. For the physical program, the Engineer
sets the parameters of the final Ising Hamiltonian including biases, coupling, and annealing schedules. Both instances of this use case create a Program entity.

- **Execute a Program** - the Engineer executes a Program. With JADE, the Engineer submits the Program for simulation along with any profiling and simulations options. This use case creates a Result entity that corresponds to the computational readout following program execution.

3.2. System Context

Alongside the use case model, we also present the system context model in Fig. 4. The system context describes the communication between JADE and its environment as driven by the use case model. The system context details how the Analyst and Engineer interact with the various input-output (I/O) data. As shown in Fig. 4, the six types of I/O data are: Problem, Processor, Embedding, Program, Result and Solution. These I/O entities are further specified in Sec. 3.3.

An Analyst only has access to Problem and Solution entities. However, we anticipate that JADE must synthesize other entities internally, for example, a Program is required to generate a Solution. Consequently, JADE will need private non-interactive methods for internal synthesis of the remaining entities. Although Processor, Embedding, and Program are generated by the system during the Analyst workflow, we do not explicitly model that dependency in Fig. 4.

3.3. Component Architecture

JADE comprises three distinct components: JadeD, Sapphire, and NiCE. The JadeD component is responsible for data creation, management, synthesis, and verification, i.e., domain logic. The Sapphire component is responsible for the simulation of
quantum programs according to user-defined plug-ins. The NiCE component, a pre-existing open source project, is used to integrate the JadeD and Sapphire components and to manage the computational work flow. Each component provides an independent API.

Figure 5. JADE comprises three components: JadeD, NiCE, and Sapphire. The interfaces presented for each component are used to manage component interactions and maintain the separation of concerns between domain logic (JadeD), workflow management (NiCE), and numerical simulation (Sapphire).

Figure 5 highlights the interactions between the three components and the associated interfaces. Both JadeD and Sapphire couple to NiCE, which provides a user-driven coupling between program development and program execution. There is a dependency between JadeD and Sapphire due the latter’s need to parse Program data structures. This dependency is restricted to a very narrow subset of the JadeD functionality and we expect future versions will isolate it in a separate shared library.

3.4. JadeD

The JadeD component handles creation and manipulation of quantum programming by exposing a basic create, retrieve, update, and delete interface. This interface enables generation, manipulation, and persistence of Entity data objects, which represent high-level abstractions of the various types of I/O data. The functional scope of JadeD includes parsing user-provided input into verified formats, validating that input, and generating subclasses of Entity tailored to specific input types. We define an IJadeD interface to specify how the JadeD component interacts with clients. By defining a formal interface, we are able to offer the option of supporting multiple JadeD variants.

As shown in Fig. 6 the IJadeD interface includes a number of methods for creating and storing entity instances. The JadeD class is a realization of this interface that provides a concrete implementation of the defined functionality. The JadeD
implementation presented here uses a variety of object-oriented design patterns with the factory design pattern being the most significant. The factory pattern is used to create and modify entities in an abstract manner, which pushes the underlying details of construction to the varying entity subclasses. A registry enhances this factory pattern by permitting the sharing of objects across domain boundaries. The use of factories and a data registry allows future developers to add new entity specializations in an easy and efficient manner. In Fig. 6, the factory pattern and the corresponding data registry are implemented as `EntityFactory` and `EntityRegistry`, respectively.

3.4.1. **Graph**
The graph data structure represents a set of vertices together with a set of edges coupling those vertices. Graph structures are common to the `Problem`, `Processor`, `Embedding`, and `Program` entities. The `JadeD Graph` model shown in Fig. 7 provides an abstraction of this structure in a way that promotes customization and extensibility with respect to a given entity type.

In supporting this versatility, the `Graph` class utilizes two factory design patterns for generating vertices and edges [30]. This ensures object polymorphism by allowing custom subclasses to inject specialized edges and vertices. For example, this mechanism allows the production of static graphs for `Problem`, graphs that evolve in time for `Program`, and graphs that alter their state according to predefined conditions or controls for `Processor`.

3.4.2. **Problem**
The `Problem` class is a subclass of `Entity` that encapsulates the input data describing a discrete optimization problem. It is created by either an `Analyst` or `Engineer` in order to define the logical problem that the system will solve.

The current implementation of `JadeD` permits users to construct two distinct types of `Problem`. The first is a weighted or pseudo-Boolean optimization problem. The user inputs an arbitrary number of Boolean clauses in terms of the literals b_i, e.g., $(b_1 \text{ AND } b_2) \text{ OR NOT } b_3$, and each clause also has an associated real-valued weight w_i. The pseudo-Boolean function is then cast into an equivalent BOP by...
converting each Boolean literal to a corresponding binary variable, e.g., \(b_i \mapsto x_i \), \(\text{TRUE} \mapsto 1 \) and \(\text{FALSE} \mapsto 0 \). The Boolean clauses are then recast into equivalent binary arithmetic expressions. Denoting the \(i \)-th binary arithmetic clause as \(f_i \) and the corresponding weight as \(w_i \), the equivalent BOP over \(n \) bits is

\[
\arg\min_x \sum_i w_i f_i(x),
\]

where \(x \in \{0,1\}^n \) is an \(n \)-bit vector \[24\]. In JADE, the BOP class stores both the original Boolean clauses and the reductions to algebraic expressions with corresponding weights.

The second type of Problem supported by JadeD is the QUBO problem defined in Eq. (7). For this type, the input corresponds to the elements of the matrix \(P \). The matrix \(P \) is then interpreted as a weighted adjacency matrix and parsed by JadeD into a Graph. Accordingly, the QUBO class is a subclass of Graph. The dependencies between the various Problem subclasses are illustrated in Fig. 8.

As discussed in Sec. 2, a BOP of the form in Eq. (15) can be reduced to a corresponding QUBO problem of the form in Eq. (7). The reduction, however, requires introduction of penalty terms to replace multilinear terms with quadratic or linear terms \[24\]. Expressing these penalties ultimately requires additional ancilla bits which enlarge the binary state space. When JadeD instantiates a BOP, the corresponding QUBO is immediately generated as part of the Problem. The relevant BOP information is maintained as part of the Problem in order to facilitate developing the Solution entity returned to the Analyst.

3.4.3. Processor

The Processor entity encapsulates the structure and behavior of a quantum hardware configuration. It generalizes Graph by using an adjacency matrix with unit diagonal entries to indicate vertex availability and unit off-diagonal entities for available connections between qubits. Processor wraps a subclass of Graph referred to as Hardware and provides methods to query and manipulate its structure. The Hardware subclass can also implement the embedding of an input Problem into the
An Integrated Development Environment for Adiabatic Quantum Programming

Figure 8. The dependencies of Problem on BOP and QUBO entities. Problem generates QUBO from an input BOP. Alternatively, the QUBO may be supplied directly.

hardware. This produces an Embedding entity, which subclasses Graph to express the graph G^* that defines the embedded H_{G^*} from Eq. (11).

Processor also allows users to specify a functional time dependence for the bias and coupling parameters of vertices. The Control class encapsulates a set of functions that give users the ability to manipulate physical quantities that directly influence the physics of the quantum hardware. Custom noise models can also be added to Processor through the Noise class, which can express both classical and quantum noise functions.

Figure 9. The dependencies of the Processor class, which includes Hardware, Noise, and Control entities. The Embedding entity is instantiated after a QUBO is embedded into the Processor.
3.4.4. Program The Program class is a subclass of Entity that is used to synthesize specific instances of Problem and Processor into an implementation of the adiabatic quantum optimization algorithm. A Program is the primary input to the Sapphire simulation component and two different types can be constructed, physical or logical. The main difference between these two types for Program is the presence or absence of a high-level logical Problem definition.

As shown in Fig. 10, type-switching is accomplished by composing Program with two classes: Logical Part and Physical Part. The physical part of a Program encapsulates the physical representation of the time-dependent Hamiltonian defined in Eq. (2). This includes a reference to a Processor and the parameters defining the final Ising Hamiltonian as well as the annealing schedule for each qubit. The logical part of a Program encapsulates a physical program as well as a reference to the specified Problem entity that is being solved. While the physical part of a Program entity is always required, the logical part it is not. For Analyst use cases, the Program always has a logical part. In the absence of a logical input, the Program corresponds to an Engineer defined instance of an Ising Hamiltonian.

The mapping of the Logical Part into the Physical Part generates an Embedding of the Problem into the Processor. As described in Sec. 2, embedding generates a map between each logical vertex and a subgraph in the Processor. Within JadeD, this is accomplished using a subclass of Graph called Embedding. The Embedding class finds an embedding of the Logical Part into the provided Processor and Hardware. The current Embedding class supports the maximal minors methods described by Klymko et al. [15]. Its use is limited to a $K_{4,4}$, but the extensibility of Embedding means that the additional, greedy methods described by Klymko et al. can also be incorporated.

3.5. NiCE

The NiCE component is responsible for accepting user input, returning JADE output, and managing the computational workflow. It also provides a graphical frontend for JADE. NiCE is an existing open-source project that was leveraged for reducing development time and ensuring extensibility. In addition to I/O management, the
NiCE component orchestrates the interactions between the JadeD and Sapphire components. It enables users to create input files, launch simulations and examine program metrics.

NiCE is based on a client-server model, where the server handles primary data management and the client acts as the user frontend. It is also possible for the server to manage remote workloads including, for example, simulations launched on remote hosts. We use the NiCE server as the primary means for launching and monitoring numerical simulations on both local and remote machines.

We have developed several plug-ins for NiCE that allow direct interaction with the JadeD component for the creation and revision of the Problem, Processor, and Program entities. A screenshot of one such NiCE form is provided in Fig. 11. NiCE is based on the Open Source Gateway Initiative (OSGI) framework that, among other things, permits dynamic registration of services. We use NiCE’s implementation of dynamic registration to recognize and load user-defined plug-ins into JADE. This feature permits, for example, user-defined methods for simulation that are developed independently from JADE to be added during runtime. Additional information about NiCE is available from its website [33].

![Image](image.png)

Figure 11. A cropped screenshot from the NiCE client for JADE showing the synthesis of a Program from a logical Problem and a selected Processor.

3.6. Sapphire

Sapphire is the JADE component responsible for profiling Program entities. This includes carrying out numerical simulations of the quantum dynamics as well as other characterizations such as computing the time-dependent energy eigenspectra and computational error rates. While its primary use is to compute the Result of a Program, Sapphire permits a robust set of possible use cases. This is a result of our use of a plug-in architecture to support user-defined extensions to Sapphire.
For example, numerical simulation techniques can be tailored to specific questions or physical assumptions. This promotes analysis at any desired fidelity and gives the user the ability to compare different simulation techniques against experimental benchmarks.

![Diagram showing the ISapphire interface and the Sapphire and SapphireMPI classes. Sapphire makes use of the factory design pattern for generating Simulations that are labeled by the type argument to execute. SapphireMPI has an identical structure.]

The extensibility of Sapphire is achieved through the interplay of a number of abstractions and design patterns, as shown in Fig. 12. Sapphire only exposes a few methods to external clients through the ISapphire interface. This decoupling between behavioral definition and actual implementation allows Sapphire to take on a number of varied forms. For example, JADE currently provides a Sapphire implementation for multi-threaded, shared memory architecture. We have also implemented SapphireMPI, which uses the MPI (Message Passing Interface) library to execute simulations on distributed architectures. The most significant difference between the two implementations is the MPI dependency and the need to perform unique initialization steps for SapphireMPI prior to beginning the numerical simulation.

All implementations of Sapphire must define the method execute. When execute is invoked, Sapphire utilizes the JadeD file-parsing capabilities to construct the Program object defining the parameters of the numerical simulation. Sapphire next parses the simulations options provided by the user to create a Simulation object using the SimulationFactory. The Simulation class is the basis for the extensibility of Sapphire using plug-in libraries. A plug-in is essentially a subclass of Simulation that provides a specialized numerical or algorithmic approach to simulation.

3.7. Simulation Plug-ins

The Simulation class is the primary unit of functionality within Sapphire and it is used to encapsulate a specific mathematical evolution of a quantum state. The factory design pattern allows Sapphire to remain completely agnostic to simulation details.
However, there is a specific sequence of execution statements that are part of Sapphire. Program execution always begins with an initialization statement followed by a loop over a time-dependent solver. Once the exit condition is met, i.e., when $t = T$, the computational state undergoes readout before the program issues finalization commands. All plug-ins for Sapphire must adhere to the Simulation class functionality defined below.

- **initialize**: This method is used primarily to initialize quantum state of the simulation. Additional task include setting up any pre-simulation conditions or parameters.
- **anneal**: This method is called every time step by Sapphire to advance the system’s quantum state. Developers should implement this method to update the state vector with the mathematics inherent to their specific technique for solving the time-dependent Schrödinger equation.
- **queryState**: This method is used to query the state of the simulation, including the computational state of the simulated program. The output generated by this method is highly variable and it can include the internal representation of the quantum computational state or the complete eigenenergy spectrum can be written to an output file. These output files can then be used as checkpoints for restarting the simulation.
- **measure**: This method is called after anneal completes and it represents measurement of the final computational state.
- **finalize**: This method is used for any final calculations or clean up routines. Developers of simulation plug-ins must subclass Simulation and implement the purely virtual anneal method. All other methods have default implementations that can be overwritten for specialized functionality. JADE also provides a specialized HamiltonianGenerator abstraction that permits decoupling of numerical dynamics from the actual form of the Hamiltonian describing the system.

3.7.1. Plug-in Examples

The Sapphire plug-in architecture maintains extensibility to new simulation methodologies. A plug-in represents a user-created library that implements the Simulation class defined above. JADE users are therefore able to tailor quantum computing simulation techniques to specific problems or metrics of interest. We provide examples of plug-ins that implement Simulation below.

- **SimulationZero**: This plug-in provides a zero-th order approximation about the state of the computational register. Specifically, this simulation calculates the time-dependent eigenspectrum and instantaneous eigenstates of the time-dependent Hamiltonian defined by a Program. SimulationZero does not provide information about the quantum dynamics but essentially diagonalizes the Hamiltonian at each time step. This analysis provides information about the time-dependent energy gap. Our implementation makes use of the Eigen library, which is an open-source C++ template library for linear algebra [34].

- **RK4Simulation**: This plug-in provides a fourth-order Runge-Kutta solver for the time-dependent Schrödinger equation as in Eq. (1). RK4Simulation uses two time steps, one for the outer anneal method which updates the Hamiltonian and a second for the inner evolve loop that numerically solves a finite-difference equation. For each evolve time step, the plug-in updates the quantum state
An Integrated Development Environment for Adiabatic Quantum Programming

Figure 13. Examples of the plug-ins that implement the Simulation class. SimulationZero and RK4Simulation both implement subclass Simulation and also make use of IsingHamiltonianGenerator, a subclass of the HamiltonianGenerator.

and for each anneal it computes the instantaneous eigenspectrum. The plug-in also implements the queryState method to provide a Snapshot output that contains details about the computational state and eigenspectrum. Simulation options include the time steps, number of Snapshot files created, and number of eigenstates reported by queryState. This plug-in also makes use of the linear algebra functionality provided by the Eigen library.

• FOPSimulation: The FOPSimulation plug-in is based on a first-order perturbative solution to the time-dependent Schrödinger equation. It evolves a pure state according to a first-order Magnus expansion for the time-dependent propagation operator. Numerically, the propagation operator is diagonalized by the anneal method and applied successively to the state during the evolve method. This method has an error of $O(\Delta t^3)$. Similar to the other simulation methods, Eigen is used to perform the matrix exponential and matrix-vector multiplications.

3.8. Testing Framework

The design and implementation of JADE relies heavily on test-driven development. A formal and rigorous testing model was defined before any actual product code was developed. This has ensured that (1) the functionality of each test unit was defined prior to its implementation and (2) the implementation of each source unit was fully compliant with the predetermined functionality. We employed test-driven development by modeling and designing surrogate classes whose sole purpose was for
unit testing critical behavior in actual JADE classes. An example is shown in Fig. 14 where we test the Simulation class using surrogates for most objects in the Sapphire component. There is a corresponding SimulationTester class. Every class in JADE has a corresponding test class in order to provide the greatest assurance that the code adheres to design requirements.

![Simulation class diagram](image)

Figure 14. SimulationTester is external to Simulation but capable of accessing its methods.

4. Benchmark Demonstrations

As an example of how JADE can be used for benchmarking quantum programs, we present results based on the recent experimental benchmarks reported by Boixo et al. [19]. Their work was performed on the Rainier processor from D-Wave Systems, Inc. and used the 8-qubit Ising model represented in Fig. 15.

![Ising model diagram](image)

Figure 15. The graphical representation of the 8-qubit Ising model investigated by Boixo et al.[19]. Vertices 1-4 (green) represent biases of +1 and vertices 5-8 represent biases of −1. All the edges represent +1 couplings between connected vertices.
Boixo et al. showed both theoretically and experimentally that the 8-qubit model in Fig. 15 exhibits a unique behavior. This particular 8-qubit problem exhibited a distinctive behavior that differentiates between the quantum and classical annealing dynamics. The Ising Hamiltonian has a 17-fold degenerate ground state. They used multiple runs of the developed program on the Rainier processor to recover all 17 ground states from computational readout.

We have used the benchmark developed by Boixo et al. to demonstrate the functionality of JADE. Specifically, we defined an 8-qubit Processor supporting the $K_{4,4}$ (bipartite) connectivity familiar from the unit cell in the Rainier processor as shown in Fig. 2. We used an Embedding entity based on the maximal minor method discussed by Klymko et al. [15] and we matched the mapping taken by Boixo et al. We programmed linear annealing schedules, i.e., $A(t) = t/T$ and $B(t) = 1 - t/T$, and a final time of $T = 30$. We neglected constraints on the controls, as the Ising parameters were very simple, and we neglected all forms of noise in the hardware.

The developed Program entity was then simulated using the RKSimulation plug-in described in Sec. 8.7.1. The simulation options given to this fourth-order Runge-Kutta finite-difference solver invoked a quasi-static approximation for the Hamiltonian. That is to say, we used an evolve time step of 0.0001 time units with updates to the Hamiltonian made during every anneal with a time step of 0.05 time units. The computational registers were initialized to the exact ground state of the initial Hamiltonian in Eq. 5. For diagnostics, we computed the complete eigenspectrum every 3 time units and output both the spectrum and the complete quantum state as part of a Snapshot. The measure method returned an ordered listing of the output states with their associated probabilities in the generated Result entity.

The complete time-dependent eigenspectrum computed by JADE is shown in the left panel of Fig. 16. This consists of $2^8 = 256$ lines representing the time-dependent energies of the 256 eigenstates of the Hamiltonian. At the final time T, there are 17 ground states with eigenenergy -8. This matches the eigenenergies and degeneracy derived by Boixo et al. The 17 time-dependent spectra that result in a ground state at the final time are shown in the right panel of Fig. 16. The presence of kinks in the plot indicate that several states undergo avoided crossings with higher energy levels. We also see that the definition of the spectral gap $\Delta(t)$ in Eq. 4 did not distinguish between those instantaneous excited states that terminate in the final ground state manifold from those excited states that remain excited at time T. States terminating
Table 1. Degenerate ground states of the 8-qubit model and their computed probabilities.

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000 0000</td>
<td>0.0582245</td>
</tr>
<tr>
<td>1</td>
<td>0000 0001</td>
<td>0.0598409</td>
</tr>
<tr>
<td>2</td>
<td>0000 0010</td>
<td>0.0598409</td>
</tr>
<tr>
<td>3</td>
<td>0000 0011</td>
<td>0.0620211</td>
</tr>
<tr>
<td>4</td>
<td>0000 0100</td>
<td>0.0598409</td>
</tr>
<tr>
<td>5</td>
<td>0000 0101</td>
<td>0.0627384</td>
</tr>
<tr>
<td>6</td>
<td>0000 0110</td>
<td>0.0620211</td>
</tr>
<tr>
<td>7</td>
<td>0000 0111</td>
<td>0.0651488</td>
</tr>
<tr>
<td>8</td>
<td>0000 1000</td>
<td>0.0598409</td>
</tr>
<tr>
<td>9</td>
<td>0000 1001</td>
<td>0.0620211</td>
</tr>
<tr>
<td>10</td>
<td>0000 1010</td>
<td>0.0627384</td>
</tr>
<tr>
<td>11</td>
<td>0000 1011</td>
<td>0.0651488</td>
</tr>
<tr>
<td>12</td>
<td>0000 1100</td>
<td>0.0620211</td>
</tr>
<tr>
<td>13</td>
<td>0000 1101</td>
<td>0.0651488</td>
</tr>
<tr>
<td>14</td>
<td>0000 1110</td>
<td>0.0651488</td>
</tr>
<tr>
<td>15</td>
<td>0000 1111</td>
<td>0.0677486</td>
</tr>
<tr>
<td>255</td>
<td>1111 1111</td>
<td>4.79745 × 10^{-4}</td>
</tr>
</tbody>
</table>

in the ground state are not computational errors, but transitions from those states to higher lying excited states can contribute to the observed error rate.

The computed populations for the 17 ground states at time T are presented in Table 1 alongside the corresponding computational basis state. It is evident that the first 16 states, i.e., the manifold of states with qubits 1-4 in the 0 (spin down) state, have approximately equal probability while the 17-th state is roughly two orders of magnitude less. However, all the ground states are significantly more likely than the 18-th most probable state, which has a probability much less than 10^{-6}.

The time-dependence of the instantaneous population in the computational basis is shown in Fig. 17. Recall that the system is initialized in the singular computational ground state, as indicated by maximum probability at time $t = 0$. As time progresses, the population remains in the instantaneous ground state until $t \approx 0.9T$ At this point in the program schedule, the energy gap between the ground state and the lowest lying excited states has narrowed sufficiently to permit population transfer, thereby violating the adiabatic condition. Here, the lowest-lying excited states represent instantaneous states that will terminate in the ground state at time $t = T$. There are 16 such states participating in the apparent convergence to approximately 15/16 of the total probability and, as shown in Table 1. The 17-th ground state is not visible in this plot, due to the scale of its contribution, however it undergoes a similar behavior and contains approximately 1/16^2 of the population. The final 15/256 of probability is distributed over the remaining 239 excited states.

Our simulation of the 8-qubit benchmark appears to be in qualitative agreement with the experimental and theoretical results of Boixo et al. However, there are several key differences between their program and ours. First, the annealing schedules used by Boixo et al. are not linear and we expect that impacts our comparison
of observed and computed probabilities. Second, we have not incorporated any sources of noise into our simulation studies, whereas previous experiments on the Rainier processor have suggested the influence of thermal noise may be significant. Nevertheless, our intention of this demonstration has been to provide a verifiable example that JADE is useful for benchmark analyses.

5. Discussion

The present availability and continuing development of adiabatic quantum computing hardware opens up new avenues of research for defining methods of quantum programming and computational benchmarking. Benchmark studies are necessary for measuring actual computational power of processors and for improving programming practices. Test vectors appropriate for benchmark studies must be well-defined and the associated difficulty well-understood in order to reliably measure the influence of programming and processor methodologies. We have developed a software environment that offers an interactive approach to adiabatic quantum programming. Most important, JADE parameterizes the programming process and offers opportunities for tuning each step. JADE also provides a plug-in architecture to enable extension to functionality through user-defined programming, simulation, and diagnostic methodologies.

The adiabatic quantum programming sequence summarized in Fig. 1 is sufficient for our current paradigm. However, we do not claim that it is necessary. The current approach is certainly insufficient for other models of quantum computation, such as gate-based models, where fault-tolerant protocols and quantum error correction (QEC) add significant overhead and management complexity. Nevertheless, JADE exemplifies the type of programming environment currently needed by the quantum computer science community.
Acknowledgments

This work was supported by the Lockheed Martin Open Innovation Program at Oak Ridge National Laboratory. The authors thank Greg Tallant and Peter Stanfill of the Lockheed Martin Aeronautics Division for technical assistance. H. S. thanks the Department of Energy Science Undergraduate Laboratory Internship (SULI) program. T. S. H. thanks Owen S. Humble for technical discussions. This manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

References

[10] Gaitan F and Clark L 2013 Graph isomorphism and adiabatic quantum computing (Preprint 1304.5773[quant-ph])
[29] N G Dickson et al 2013 Nature Communications 4 1903
[31] 1995 *Design Patterns: Elements of Reusable Object-Oriented Software* (Addison-Wesley)
[34] 2013 Eigen Software Project URL http://eigen.tuxfamily.org