
Simulation of the TeraGrid Using SSFNet1

James A. Rome
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6016

jar@ornl.gov

1 The submitted manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-AC05-00OR22725. Accordingly,
the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others
to do so, for U.S. Government purposes. This work was supported by the Office of Science, U.S. Department of Energy.

Abstract

TeraGrid is the NSF-sponsored high-speed 40 Gbps
backbone that is an essential part of Grid computing.
The 40 (and 30) Gbps links are made of bonded paral-
lel 10 Gbps pipes. A hash is used to select the pipe for
each connection. This simulation addresses the issue of
how effectively the traffic gets split among the parallel
pipes. In the simulation TeraGrid is connected to 33
servers and 66 clients. 1-GB ftp sessions are launched
until packets are dropped. This drop occurs in the
nodes with the most non-uniform hash to select the
session pipes. Losses begin to occur when TeraGrid is
at just over 50% of its rated capacity because the ef-
fective bit rate and current pipe utilization change as
packets go from node to node.

1. Introduction

Simulation of computer networks is much
cheaper, faster, and easier than actually building and
testing the hardware itself. For example, TeraGrid [1]
achieves its speed by bonding three or four 10 Gbps
pipes to achieve greater throughput. We wanted to see
whether this was an effective means of increasing the
over-all throughput by performing a simulation. We
used SSFNet 21], an open-source network simulation
environment that can run under either Java or C++.
The ORNL supercomputers consist of multiple nodes
with multiple processors on each node, a configuration
that is reminiscent of the network we were trying to
simulate. Accordingly, with the help of Srdjan Petrovic
(Dartmouth University), the Java version of SSFNet
was ported to the IBM Eagle and Cheetah supercom-
puters at ORNL.

There is more to the simulation than just running
the code. SSFNet uses Domain Modeling Language
(DML) as its input to describe the network configura-
tion. For a large network, with hundreds or thou-sands
of elements, an automated way to read in network to-
pology, plot, and manipulate it is required. Accord-

ingly, a Java program NetViewer was developed to do
these tasks. NetViewer is available at
http://www.ornl.gov/~jar/NetViewer/Manual.htm.

The topology of a large network (e.g., ORNL’s net-
work) would be extremely tedious and error-prone to
enter by hand. Even for the 700+ nodes of our Tera-
Grid simulation, it advantageous to use NetViewer to
configure the individual nodes and to place traffic on
the network. The topology of TeraGrid is shown in
Fig. 1. The subnets at each site have been expanded to
show the router, servers, and clients.

The unique feature of TeraGrid is the parallel
bonded pipes that link the major routers. Four pipes
are used between the Chicago and Los Angeles
routers, and three pipes are used between these routers
and the TeraGrid nodes at the San Diego Supercom-
puter Center (SDSC), Cal Tech, Argonne National
Laboratory (ANL), and The National Center for Su-
percomputing Applications (NCSA) and the Pittsburgh
Supercomputer Center (PSC).

2. SSFNet modifications and issues

SSFNet required several extensions in order to be
able to simulate the TeraGrid. The built-in modules are
limited to relatively low bandwidths because of a 64
kB buffer size. The buffers were all extended to be at
least twice the delay-bandwidth product—hundreds of
megabytes. Fortunately Java integers are long enough
that the 1-GB transfer sessions did not cause integer
overflows.

Major rewrites of the IP code were required in order
to simulate the link-bonded parallel pipes that connect
the major grid nodes. The BGP routing protocol selects
one and only one path between a source and destina-
tion, so we had to change the code to allow parallel
pipes to share the same ip addresses at their ends. Sev-
eral different approaches were tried.

West

Midwest
Site Network

Site Router

4 cross-country
parallel 10 Gbps pipes

3 local 10 Gbps
parallel pipes

5 = ANL

6 = PSC

3 = Cal Tech
4 = SDSC

7 = NCSA

1 = Los Angeles 2 = Chicago

Fig. 1. The topology of TeraGrid. Routers are shown in green, site subnets in pink, and clients and
servers in blue. The site subnets have been expanded to show the 33 servers and 67 clients attached
to each site router.

The first method was to select a pipe randomly for
each packet. It was soon discovered that out-of-order
packets occurred and cause tcp retransmissions. To
eliminate out-of-order packets, we decided to query the
queue for each parallel pipe and place the packet on
the shortest queue. Picking the lowest queue guaran-
tees that the packet will arrive before the next packet
and also enforce equal utilization of the multiple pipes.
However, when the simulation was modified to select
the lowest queue, the packets still eventually arrived
out of order. After considerable effort, we discovered
that the multithreaded nature of the simulation pre-
vented success. In between the time the length of the
queue was checked and the packet was placed onto the
shortest queue, other threads had already put packets
onto the queue so that it was no longer the shortest.
The architecture of SSFNet prevented locking the nec-
essary classes for exclusive use during this process.

We discussed the issue with engineers from Juniper
Networks and learned that they use a hash to pick the
pipe. The key for the hash is composed of the
• Source and destination IP addresses
• Source and destination ports
• Protocol (TCP only for now)

• Input interface number
The FCS hash from RFC 1662 Appendix C [3] is

used. The resulting hash is divided modulo the number
of pipes to select each pipe for the connection. But, the
high bitrate data stream and low bitrate ACK stream
are treated as equals. Because the source and destina-
tion are reversed, in general the two streams for a
given connection will not use the same pipes.

In SSFNet, queues are simulated by determining the
current queue delay, adding it to the link transit time,
and calculating the time at which the packet will be
delivered to the network interface card (NIC) at the
other end of the link. Thus, the input and output
queues are essentially one and the same. Initially the
queue always fills up rapidly so that the server’s round
trip time (RTT) always includes the time to empty the
queue buffer. As a result, if a server gets a second re-
quest from a client, it is difficult for the second stream
to get started because the first stream has already filled
up the buffer.

On a distributed supercomputer, the diagnostics
must be confined to the code that runs on a given node
of the supercomputer because files are local to each
node until the job is completed. Accordingly, all the
built-in SSFNet diagnostics were replaced in order to

determine the performance of the simulation and of
TeraGrid. This locality of data makes it awkward to do
things such as follow a single packet through the sys-
tem. At the high bitrate in TeraGrid, gigabytes of data
are collected for each router in just a few tenths of sec-
onds of simulation time.

3. The simulation

75 simulated FTP sessions were used to create traf-
fic on TeraGrid. Sessions were started randomly in the
first 0.04 s of the simulation. Traffic was always di-
rected from one site to another site, but not all sessions
went across the main Los Angeles-Chicago link. One
issue of performance is how well the hash works that
determines pipe usage. The network architecture as-
sumes that the law of large numbers will apply (i.e.,
many uncorrelated streams at once). However remem-
bering that the TeraGrid is to be a computer backplane,
the highly correlated 1 GB file transfers that we simu-
lated are typical of the use it will see.

Figure 2 shows the pipe usage in the simulation.
Because there are two streams for each connection, the
sum of the bar heights are twice the number of connec-
tions, although not all connections go through each
link. The hashes for the cross-country link have 4 bars,
and the links from the LA and Chicago nodes have 3
bars. Note that the link from router 6 to router 2 (Chi-
cago) has the most non-uniform hash.

When simulating on a distributed supercomputer,
one easy thing to diagnose is the packet flow at indi-
vidual network nodes. Figure 3 shows the packets
leaving router 2 (Chicago) with the symbol style vary-
ing according to the destination ip address. The dis-
connected points represent retransmissions. These kill
the TeraGrid tcp throughput even though TeraGrid is
well below its supposed capacity.

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

choice

0

6

12

0

6

12

0

6

12

C
ou

nt

Host.toHost: 1:2 Host.toHost: 1:3:3 Host.toHost: 1:4:4 Host.toHost: 2:1

Host.toHost: 2:5:5 Host.toHost: 2:6:6 Host.toHost: 2:7:7 Host.toHost: 3:1

Host.toHost: 4:1 Host.toHost: 5:2 Host.toHost: 6:2 Host.toHost: 7:2

Hash performance

Fig. 2. The hash performance of the different
parallel pipe links. The links with 4 bars repre-
sent the Los Angeles-Chicago link (both
ways).

20.0 20.1 20.2 20.3
time (s)

1000000

3000000

5000000

7000000

Se
qu

en
ce

 N
um

be
r

Traffic at Chicago Router (ACKs Suppressed)

Fig. 4. Traffic leaving router 2 (Chicago). The
detached points represent retransmitted pack-
ets.

4. Finding a needle in a haystack

Given the packet retransmissions of Fig. 4, the chal-
lenge is to explain why they occur. In other words,
where did the packet get dropped? Following packets
is very difficult in a distributed computer because the
network nodes write to different files. Accordingly, we
used a single computational node. With just one node,
the code can write information for a given transmission
to a separate file.

Fig. 5. Following packets from server 3:384
(Cal Tech) to client 6:616 (PSC). A packet gets
dropped at the Chicago router (2) and re-
transmitted. The retransmitted packet also
gets dropped.

The results for one such transmission are shown in

Fig. 5. The transmission delay is the width between the
plots at any height. Initially, the output queue of the
server fills up, and almost all of the delay is due to the
time required to empty the buffer. However, as time
increases, the delays occur at the router buffers until
they get full and drop packets. The loss occurs between
routers 2 and 6 (Chicago and PSC). The missing
packet is shown at the client in Fig. 6.

10.0 10.5 11.0 11.5
Time (s)

0.0

4.0*107

8.0*107

1.2*108

Sequence Number
Next Expected

Data received by Client 6:616

Packet 130,308,600
dropped at t = 11.529513

Fig. 6. The view of Fig. 5 at the Client showing
the missing packet.

5. Discussion
The reason for the packet losses can be uncovered

by plotting the performance of the Chicago router.
Figure 7 shows the throughput (Mbps) as a function of
the next hop destination. The traffic to router 6 (PSC)
is just over 50% of its 30 Gbps capacity, while the
traffic to router 1 (Los Angeles) is about 65% of its
rated capacity.

10
Time (s)

0

5000

10000

15000

20000

25000

M
bp

s

1
5:5
6:6
7:7

Traffic at Chicago Router by Destination
ACKs suppressed

Fig. 6. The greatest traffic rate is between Chi-
cago and Los Angeles (1), but still is only
about 60% of the rated 40 Gbps throughput.

However, the links to the next hop are actually
composed of bonded 10-Gbps pipes that are selected
by the hashing algorithm. Figure 7 breaks up the flows
of Fig. 6 by pipe. Corresponding to the hash perform-
ance of Fig. 2, we see that one pipe between routers 2
and 6 takes most of the traffic, exceeding the 10 Gbps
capacity of the pipe, and leading to the ultimate packet
drops.

10.0 10.5 11.0 11.5 12.0

10.0 10.5 11.0 11.5 12.0

Time (s)

0

2000

4000

6000

8000

10000

0

2000

4000

6000

8000

10000

M
bp

s

ToHost: 1 ToHost: 5:5

ToHost: 6:6 ToHost: 7:7

Data Leaving Chicago Router by Pipe
ACKs are suppressed

Time = 10.90
Mbps = 10491.04
Pipe = 1

Fig. 7. Flows leaving the Chicago router by
destination and pipe.

Compounding the problem is the large buffer size
needed to accommodate the delay-bandwidth product.

The Server and Client have no knowledge of the bot-
tleneck on their pipe between 2 and 6, which can sud-
denly be exacerbated by the presence of other connec-
tions that use this pipe. A large number of packets
have already filled the output buffer of the Server, and
are in the queue, so even if there was knowledge of the
bottleneck, the Server rate could not be throttled back
in time to prevent packet loss.

10.0 10.5 11.0 11.5 12.0
Time (s)

0

400

800

1200

M
bp

s

2
602
606
609
610
612
613
614
616
619
620
621
623
640
650
651
654
660
661

Data Traffic leaving PSC Router
3198
Time = 11.76
Mbps = 1374.60
ToHost = 661

337
Time = 11.74
Mbps = 1374.60
ToHost = 602

Fig. 8. Traffic leaving the PSC router in Mbps.

Fig. 9. Traffic leaving the PSC router by se-
quence number and flow. Retransmitted pack-
ets are shown.

Another problem arises due to the funneling of mul-
tiple pipes into a fewer number of pipes, or pipes with
lower bandwidth. Although the server places packets
onto TeraGrid at 1 Gbps, they can accumulate in the
buffers of the network routers and be forwarded at a
higher speed, ultimately arriving at the final router at a
rate greater than the client can handle, at which point
they will be dropped. This situation is shown in Fig. 8
where the packets are eventually sent to clients at a
rate that exceeds the output NIC bit rate. The packets
can be buffered for a time, but will be dropped when
the buffer becomes full.

The same flows are plotted in Fig. 9 by sequence

number, clearly showing the flows that have problems
maintaining their bit rates, and flows that have prob-
lems getting started at all.

Conclusions
TeraGrid’s bonded pipe architecture relies upon the

law of large numbers to distribute the flows among the
parallel pipes using a hash. Unfortunately, TeraGrid is
supposed to carry large bulk data transfers rather than
numerous small sessions. If the hash is non-uniform,
individual pipes can exceed their capacity. In this
simulation, problems arose at just over half of the rated
bandwidth capacity. Changes in the available band-
width going from node-to-node can cause packets to
exceed the capacity of the next link. Accordingly, it is
best if the clients and servers also have 10-Gbps net-
work interfaces.

Acknowledgments

The author would like to thank his ORNL col-
leagues William R. Wing and Thomas H. Dunigan for
their helpful advice. Srdjan Petrovic of Dartmouth
University ported SSFNet to our supercomputers.

References

[1] http://www.teragrid.org/
[2] http://www.ssfnet.org/
[3] http://www.ietf.org/rfc/rfc1662.txt

http:/www.teragrid.org/
http://www.ssfnet.org/
http:/www.ietf.org/rfc/rfc1662.txt

	1. Introduction
	2. SSFNet modifications and issues
	3. The simulation
	4. Finding a needle in a haystack
	5. Discussion
	Conclusions
	Acknowledgments
	References

