
Packet Vaccine: Black-box Exploit Detection
and Signature Generation

XiaoFeng Wang, Zhuowei Li
Indiana University

{xw7,zholi}@indiana.edu

Jun Xu
Google Inc. & NCSU

jxu3@unity.ncsu.edu

Michael K. Reiter
Carnegie Mellon University

reiter@cmu.edu

Chongkyung Kil
North Carolina State University

ckil@ncsu.edu

Jong Youl Choi
Indiana University

jychoi@indiana.edu

ABSTRACT
In biology, a vaccine is a weakened strain of a virus or bac-
terium that is intentionally injected into the body for the
purpose of stimulating antibody production. Inspired by
this idea, we propose a packet vaccine mechanism that ran-
domizes address-like strings in packet payloads to carry out
fast exploit detection, vulnerability diagnosis and signature
generation. An exploit with a randomized jump address be-
haves like a vaccine: it will likely cause an exception in a
vulnerable program’s process when attempting to hijack the
control flow, and thereby expose itself. Taking that exploit
as a template, our signature generator creates a set of new
vaccines to probe the program, in an attempt to uncover
the necessary conditions for the exploit to happen. A signa-
ture is built upon these conditions to shield the underlying
vulnerability from further attacks. In this way, packet vac-
cine detects and filters exploits in a black-box fashion, i.e.,
avoiding the expense of tracking the program’s execution
flow. We present the design of the packet vaccine mecha-
nism and an example of its application. We also describe
our proof-of-concept implementation and the evaluation of
our technique using real exploits.

Categories and Subject Descriptors: K.6.5 [Security
and Protection]: Invasive software, Unauthorized access

General Terms: Security

Keywords: Black-Box Defense, Exploit Detection, Signa-
ture Generation, Worm, Vaccine Injection

1. INTRODUCTION
In biology, a vaccine is a living, weakened strain of a virus

or bacterium that is intentionally injected into the body
for the purpose of stimulating antibody production. That
strain is weakened so as to prevent it from causing infection.
Similarly, a “weakened” exploit packet with important ele-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’06, October 30–November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-518-5/06/0010 ...$5.00.

ments of its payload scrambled would quickly expose itself
through the exception it causes in a vulnerable program.
Forensic analysis of the exception could uncover the related
program vulnerability and enable the generation of an “im-
munity”, a signature for capturing future exploits on the
same vulnerability.

The above intuition can be applied to exploit detection,
vulnerability diagnosis and automatic signature generation.
Design of such mechanisms has been impeded by the con-
straints of commodity software, for which access to source
or binary recompilation is often prohibited. Existing ap-
proaches [23, 7, 5] have suggested tracking the input data as
the program executes until the point at which control-flow
hijacking happens. We call these approaches gray-box analy-
sis, as they do not need source code (as a white-box approach
would) but do have to monitor a program’s execution flow
closely (a black-box approach would not). Gray-box analysis
is accurate and applicable to commodity software. How-
ever, it incurs significant runtime overheads, often slowing
the system by an order of magnitude.

Inspired by the principle of vaccination, we develop a
much faster black-box approach. Rather than using expen-
sive dataflow tracking, it detects and analyzes an exploit
using the outputs of a vulnerable program. Specifically, we
first identify anomalous tokens in packet payloads, e.g., byte
strings resembling injected jump addresses in a control-flow
hijacking attack, and randomize the contents of these tokens
to generate a vaccine. If the packets carrying these tokens
indeed contain an exploit, the vaccine will likely cause an
exception in the vulnerable software. When this happens,
our approach will automatically generate a signature to pro-
tect the software using the forensic data gleaned from the
exception and fault injection techniques [18]. We call this
approach packet vaccine.

Compared to other techniques, packet vaccine offers some
important benefits:

Fast, black-box exploit detection. Packet vaccine de-
tects an exploit attempt by directly injecting vaccine packets
into a program. Therefore, it performs as fast as a nor-
mal run of that program, and up to an order of magnitude
faster than gray-box approaches. In addition, packet vaccine
does not use source code or recompiled binaries and thereby
works well with commodity software.

Effective signature generation. Packet vaccine gener-
ates signatures using host information, so it is immune to in-
terference from Internet noise [28] and poisoning [25], which
can mislead network-based signature generators (e.g., Early
Bird [30], Polygraph [22], Nemean [41]) into generating false
signatures. Moreover, the resulting signature tends to cap-
ture some key properties of a vulnerability such as the size
of a vulnerable buffer, which can be used to detect a range
of exploit mutations employed by polymorphic worms.

Using a confirmed exploit as a template, packet vaccine
can generate a number of vaccines, i.e., variations of that
exploit, to gain a better characterization of a software ap-
plication’s vulnerability. For instance, one type of our signa-
tures uses a packet’s field length as an attribute to identify
a buffer-overflow attack; injection of vaccines with different
field lengths allows us to accurately estimate the size of the
underlying vulnerable buffer and thereby generate a more
accurate signature (Section 2.3). Moreover, our technique
can generate a signature without any information about an
application or its protocol.

Some gray-box approaches perform static analysis [3, 21]
over a vulnerable program’s binary code and could gener-
ate signatures more accurate than our signatures. However,
our black-box approach tends to be faster than those ap-
proaches and even works with obfuscated code [37, 19]. For
many exploits, our black-box technique can produce signa-
tures close to their signatures in quality, as we report in
our experimental study. We argue that a rapidly-generated
and reasonably accurate signature could be more useful in
practice because such a signature is supposed to serve as a
band-aid to a vulnerable application rather than a perma-
nent fix [20], for use before a software manufacturer finishes
developing its patch.

Low overhead and easy deployment. Packet vaccine
is more lightweight and easier to deploy than many existing
techniques. Exploit detection using our approach does not
require installing anything on the host running vulnerable
programs. Vulnerability diagnosis needs only a lightweight
collector to gather forensic data from an exception, and
even this requirement can be waived for operating systems
which already offer error logging and debugging services.
For example, Windows XP’s event logs contain everything
we need, such as corrupted pointer contents.

We present the design of the packet vaccine mechanism
(Section 2) and the implementation of this technique in the
paper. We evaluate it using real exploits and signatures gen-
erated by a gray-box approach (Section 3). Our study shows
that packet vaccine can effectively detect exploits, and effi-
ciently generate signatures of high quality. A problem of a
vaccine is that it could modify a server’s state, and interrupt
its service. To apply this technique to protect an online ser-
vice, we present an architecture which employs test servers
to carry out exploit detection, and empirically evaluate its
performance with a proof-of-concept implementation (Sec-
tion 4). We also discuss the limitations of our approach
(Section 5) and review related work (Section 6).

2. DESIGN
In this section, we present the design of the packet vaccine

mechanism. Figure 1 illustrates the major steps of our ap-

proach: vaccine generation, exploit detection, vulnerability
diagnosis and signature generation.

Vaccine generation is based upon detection of anomalous
packet payloads, e.g., a byte sequence resembling a jump
address, and randomization of selected contents. A vac-
cine generated in this way can detect an exploit attempt,
since it should now trigger an exception in a vulnerable pro-
gram. Vulnerability diagnosis correlates the exception with
the vaccine to acquire information regarding the exploit, in
particular the corrupted pointer content and its location in
the exploit packet. Using this information, the signature
generation engine creates variations of the original exploit
to probe the vulnerable program, in an effort to identify
necessary exploit conditions for generation of a signature.

2.1 Vaccine Generation
To generate a vaccine, we need to preserve the exploit

semantics—i.e., its behavior that leads to an attempt to
hijack control flow—while weakening it enough to prevent a
control-flow hijacking from succeeding. Here, we describe a
simple way to do that.

A key step in most exploits is to inject a jump address
to redirect the control flow of a vulnerable program. Such
an address points to somewhere in the stack or heap in
a code-injection attack, or to a global library entry in an
existing-code attack. Our approach is to check every 4-byte
sequence (32-bit system) or 8-byte sequence (64-bit system)
in a packet’s application payload, and then randomize those
which fall in the address range of the potential jump tar-
gets in a protected program. The vaccine generated in this
way should cause an exception, segmentation fault (SEGV)
or illegal instruction fault (ILL), to a vulnerable program’s
process if an exploit is indeed present in the original packet.
A question here is how to determine the address range.

Address Range. A process’s virtual memory layout is
usually easy to obtain. On Linux and UNIX, the proc vir-
tual filesystem maintains a file called maps under the direc-
tory /proc/pid/ that offers the runtime memory layout for
the process pid. From that file, we can obtain the base ad-
dresses for the stack (usually from 0xc00000000 downwards)
and the entry for function libraries (in segment 0x40000000).
The base address for heap is the end of the BSS segment,
which can be determined by analyzing the binary executable
using tools such as objdump or readelf. To find out the ad-
dress range, we also need to know an application’s stack
and heap sizes. These can be estimated by monitoring stack
and heap usage recorded in the status file of the applica-
tion’s process for a period of time. Using these data, we
determine the address ranges as follows. Let bs and us be
the stack’s base address and typical maximum usage, respec-
tively. Stack addresses are estimated to range from bs − αus

to bs, where α ≥ 1 is a ratio for keeping a safe margin. Sim-
ilarly, the heap range is approximated as bh to bh + αuh,
where bh and uh are the heap’s base and typical maximum
usage, respectively.1 Address ranges can also be customized
by the user. For example, one could restrict monitoring to
the heap on an operating system with a nonexecutable stack.

1A process may have multiple heap regions, which can be
observed from its memory maps. In this case, we can use the
base addresses of these regions plus αuh to estimate multiple
heap address ranges.

Exploit Detection
Vaccine

Generation
Vulnerability

Diagnosis
Signature

Generation
an end host Exceptions Forensic Info

Vaccine Packets After installing
immunities

Immunities

Suspicious Jump
Addresses

Control-flow Hijacking
(e.g., worms)

Correlations

Figure 1: The design of packet vaccine.

We can pinpoint the address range of the global libraries
intensively used by exploits, e.g., msvcrt.dll or libc.so,
and even the entry addresses of some “dangerous” func-
tions, such as system() and execve(). These addresses
can be easily acquired on Linux or UNIX using the maps

file and the command nm. A Windows application’s mem-
ory information can be collected using memory monitoring
tools like Memview [16] or debugging tools such as CDB or
NTSD [34]. The address range could also cover the global
offset table (GOT), though this might not be necessary: an
exploit usually changes a function pointer in the GOT to
an address in the stack or heap, where the attack code lies.
Again, it is at the user’s discretion to decide the coverage of
the address range. The larger the range becomes, the more
packets must be checked and randomized.

Address ranges can also be approximated through an em-
pirical study of known exploits, which could reveal ‘hotspots’
to which most exploits jump. In our research, we collected
around 1000 jump addresses from known exploits and dis-
covered that on Linux, most code-injection attacks use the
jump addresses either in the range 0xbfff0000 to 0xbfffffff

for the stack or 0x08040000 to 0x08ffffff for the heap.
This treatment also works for existing-code attacks, as most
of these exploits use a small set of libc (Linux or UNIX) or
dll (Windows) functions as stepping stones.

Vaccine Generation Algorithm. Now we are ready to
present the vaccine generation algorithm, which is formally
described as follows.

• Gather data from the application being protected and
build a target address set T = [bs −αus, bs]∪ [bh, bh +
αuh]∪S, where S is a set containing the address ranges
of objects other than the stack and heap, such as the
entries for global library functions.

• Aggregate the application payloads of the packets in
one session into a dataflow, carry out a proper decod-
ing (e.g., Unicode decoding, URL decoding, etc.) if
necessary and scan that dataflow to find all byte se-
quences τ ∈ T .

• For every τ , replace its most significant byte with a
byte randomly drawn from a scrambler set R to output
a new dataflow.

• Construct vaccine packets using the new dataflow as
application payloads.

In the above algorithm, the scrambler set R could be set to
avoid introducing undesired symbols (such as syntax tokens)
which could interrupt a protocol, and ensure a randomized
byte sequence falls outside a process’s memory map. An
example of R is {A to Z, a to z, 0 to 9, ‘+’ and ‘-’}.

For example, the payload of the Code Red II worm is
presented in Figure 2. Our vaccine generator identifies mul-
tiple occurrences of the byte sequence 0x7801cbd3 from the
payload after Unicode decoding. This sequence falls in the
address range of msvcrt.dll, which is being monitored.
Therefore, a vaccine is generated as illustrated in Figure 2,

GET /default.ida?NNN
NN
NN
NN
NNNNNNNNNNNNNNNNNNNNNNNNNNN%u9090%u6858%ucbd3%u7801%u909
0%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190
%u00c3%u0003%u8b00%u531b%u53ff%u0078%u0000%u00=a HTTP/1.0\r\n

The Orignal Packet of Code Red:

GET /default.ida?NNN
NN
NN
NN
NNNNNNNNNNNNNNNNNNNNNNNNNNN%u9090%u6858%ucbd3%ua001%u9090
%u6858%ucbd3%u0401%u9090%u6858%ucbd3%u8c01%u9090%u9090%u8190%
u00c3%u0003%u8b00%u531b%u53ff%u0078%u0000%u00=a HTTP/1.0\r\n

A Vaccine Packet for Code Red:

Figure 2: A vaccine generated from Code Red II worm.

in which the most significant bytes of the sequence have been
scrambled.

Discussion. A central question here is whether the vac-
cine generated above is effective in detecting an exploit if
it is indeed present. Exploits tend to be fragile—a random
perturbation could cause them to vanish. For example, ran-
domization of protocol syntax tokens, such as the keyword
‘GET’ in the above example, renders the vaccine impossible
to parse; modification of other exploit tokens can modify the
exploit semantics, i.e., interfere with the exploit’s attempt
to hijack control flow. We address these concerns as follows.

Our approach is very unlikely to modify a protocol’s syn-
tax tokens, which usually look quite different from a suspi-
cious jump address. We checked the most frequently used
syntax tokens in HTTP, FTP and SMTP, and found none of
them coincide with a typical Linux stack segment (0xbfff)
and heap segment (0x08). To make the break of protocol
syntax even less likely to happen, we can use a whitelist to
guide vaccine generation. The whitelist contains all syn-
tax tokens of a protocol, which can be either collected from
the protocol’s RFC or extracted from users’ normal traf-
fic. In our research, we were able to extract all important
HTTP syntax tokens from one million HTTP traces. When
generating vaccines, the generator checks a byte sequence τ
against that whitelist. If it contains a syntax token, or it is
a substring of such a token, the generator will refrain from
scrambling it.

Our approach can also preserve exploit semantics in most
cases. Exploits typically provide certain protocol parame-
ters in the payload, in order to drive the target program’s
state to a “breakpoint” where exploit payload can be in-
jected [3, 7]. Theoretically, it is possible for these parame-
ters to coincide with addresses in T . However, this seems
to be rare in practice, especially for protocols with an un-
even distribution of byte values (e.g., text-based protocols
such as HTTP). The appearance of an address-like string
is uncommon for these protocols, as discovered in previous
research [24, 39]. Furthermore, although binary protocols
such as DNS could have an even distribution of byte values,
the set T is usually small, occupying less than 0.1% of the
virtual memory address space, and an exploit’s parameters

(except the injected code) are usually short, less than tens
of bytes as we observed in our experiments. Therefore, it
seems that the chance a byte sequence in T coincides with
a necessary exploit parameter is small. In our research, we
carefully studied 26 exploits, including attacks through bi-
nary protocols, and found none of their parameters were
tampered with by our approach. In addition, those param-
eters are mostly dependent on the underlying vulnerability,
which could leave an attacker little room to vary them.

Our randomization strategy also helps preserve exploit
semantics: instead of scrambling the whole byte sequence,
we only modify one byte—the most significant byte. We
could extend the idea, for example, by generating three vac-
cines, each of which scrambles one of the three most signif-
icant bytes of the sequence. These vaccines can then used
to probe an application in parallel. As a result, even if an
exploit does use an address-like two-byte parameter (such as
0xbfff), we can still detect the exploit. Another approach
involves a simple network anomaly detector (NAD) which
narrows the search for address-like substrings to only part of
an anomalous packet’s payload. For example, a NAD mon-
itoring the length of packets’ application fields may identify
an overlong CGI parameter; this allows a vaccine generator
to scan only that field, avoiding randomizing other param-
eters even if they look like addresses. We can also whitelist
well-known exploit tokens such as %n, and tokens present in
normal traffic such as .ida?. All of these will then be kept
intact during vaccine generation.

2.2 Exploit Detection and Vulnerability
Diagnosis

Exploit attempts from vaccine packets are detected from
the exceptions they cause in a vulnerable program, such as
SEGV and ILL. Such exceptions happen with high proba-
bility if exploits’ jump addresses have been scrambled.

The objective of vulnerability diagnosis is to reliably cor-
relate an exception with one of the byte sequences being
randomized, which identifies the location of the jump ad-
dress on an exploit packet. This correlation is established
by matching these byte sequences to the forensic data gath-
ered from an exception, in which the corrupted pointer is
of particular importance. On x86 systems, the corrupted
pointer which causes a SEGV exception can be found in
register CR2. It may also appear in EIP. Our approach logs
the contents of these registers once an exception happens.

Formally, vulnerability diagnosis works as follows. Let
τ1, τ2, . . . , τn be the byte sequences (tokens) of a vaccine
packet that have been scrambled (i.e., the high-order byte
randomized) by the vaccine generator. Let p be the foren-
sic string—the corrupted pointer collected from registers. If
p = τi for 1 ≤ i ≤ n, we correlate τi with the exception.
This correlation can be validated using the following test:
we randomize all bytes of τi to produce a new token τ and
use it to generate a new vaccine; sending this vaccine to the
vulnerable program, we check whether the exception hap-
pens again and the corrupted pointer also changes to τ . The
validation test can be repeated to increase the confidence in
the correlation.

2.3 Signature Generation
After vulnerability diagnosis, we have identified the jump

address and its location in an exploit packet. The address
alone, however, could be too general to be a signature, espe-

cially for binary protocols such as DNS. More information is
required to form a high-quality signature. Here, we describe
a signature generation engine that uses a known exploit as
a template to generate vaccines and injects them into a vul-
nerable program to acquire key attributes of the underly-
ing vulnerability. We call this technique vaccine-injection
(VI). Our approach can generate signatures with or without
application-specific information, as we elaborate below.

Application-independent Signature Generation. We
can generate a signature without any knowledge about an
application’s protocol. Such a signature is in the form of
a token sequence, which consists of an ordered sequence of
byte strings (tokens) [22]. These tokens’ locations in the
exploit packet’s payload could also be included as a part of
the signature for a binary application protocol such as DNS.
Our idea is to determine the roles played by individual bytes
in an exploit by scrambling them to create vaccines and
testing them in the vulnerable application, in an effort to
identify the inputs necessary for the exploit to occur.

Let L be the byte length of an application-level exploit
dataflow, and B[i] be the ith byte on that dataflow, where
1 ≤ i ≤ L. Suppose the scrambled jump address τ with
a byte length l starts from the rth byte. The signature
generation engine generates L−l vaccines, {v1, v2, . . . , vr−1,
vr+l, . . . , vL}, such that vi (1 ≤ i ≤ L) randomizes the ith
byte of the exploit payload and also keeps the token τ . Then,
it injects all these vaccines into a vulnerable program. If vi

does not cause any exception, we record B[i] (and also i
for a binary protocol) as a signature token. A signature is
formed using these tokens and the target address set T . A
dataflow is deemed to match such a signature if it contains
all these tokens and at least one byte sequence in T . We
refer to this approach as byte-based vaccine injection (BVI).

Some servers process requests using multiple processes,
such that crashing one does not affect the others. This prop-
erty allows us to test many vaccines in parallel. Many ex-
ploits have exploit payload of a modest size, usually below
1kB. Therefore, we believe BVI can offer good performance.
We also adopted a ‘block-searching’ technique to reduce the
number of vaccines for generating a signature. We first test
a vaccine which randomizes a block of contiguous bytes on
an exploit packet. If the vaccine still causes the exception,
we move on to randomize another byte block; otherwise, we
test every byte inside that block to identify signature tokens.
However, BVI could still be slow if the payload is large.

An attacker might duplicate an exploit token to several
places. For example, the Code Red II worm (Figure 2) has
multiple %u tokens, any of which is sufficient for the exploit
to occur. This prevents the BVI algorithm from detecting
that token, as randomization of one of its replicas does not
make the exception disappear. We can solve this problem
using an improved BVI algorithm described as follows. A
vaccine v′i scrambles the first i bytes on the exploit dataflow
except all the signature tokens identified so far. If the vac-
cine does not cause any exception to the vulnerable program,
the signature engine records the ith byte as a new signature
token. Otherwise, our approach scrambles that byte before
generating the next vaccine v′i+1. This approach can capture
one of the duplicated tokens. However, it is not paralleliz-
able. Fortunately, such a duplication trick cannot be played
on most tokens (e.g., .ida and GET) and thus the original
BVI algorithm works in many cases.

Using Protocol Information. If an application’s proto-
col specifications are available, in some cases we can generate
a very accurate signature, close to a vulnerability-based sig-
nature. Such a signature makes use of the characteristics
of buffer-overflow exploits and format-string exploits to de-
scribe a vulnerability. The algorithm for generating these
signatures is also built upon the VI technique, and so we
call the approach application-based vaccine injection (AVI).

Buffer-overflow exploits usually employ anomalously long
fields [14]. Thus, a signature of the form (application, com-
mand, field.name, max.field.size) offers a good description
of the vulnerability being exploited. Our signature genera-
tion engine first identifies the application field that includes
the jump address, and then makes a quick estimate of that
field’s length using the number of the bytes prior to the
address. This gives a coarse signature. To refine that signa-
ture, our approach iteratively alters the field size to generate
new vaccines, and injects them into the vulnerable program.
If a vaccine makes the exception disappear, we infer that the
field is too short and then increase it. Otherwise, we shrink
that field. Using a binary search, we can quickly determine
the minimal length for the exploit to happen. The signa-
ture generated in this way can be pretty close to the size of
a vulnerable buffer: for example, our experiment over ATP
httpd (see Section 3.3) produced a signature only 23 bytes
longer than the real size of the program’s vulnerable buffer.

Format-string exploits usually contain the special symbol
%n. In addition, the address token usually appears prior to
this symbol. Therefore, a simple representation of the signa-
ture could be as follows: (application, command, field.name,
%n). The accuracy of this signature can be verified by remov-
ing the %n from a vaccine to test the vulnerable program.

3. EVALUATION
We evaluated packet vaccine using a proof-of-concept im-

plementation. In this section, we first describe this imple-
mentation and then present our experimental results and
analysis on vaccine effectiveness and signature quality.

Our experiments were carried out on two Linux worksta-
tions: one with Redhat 7.3 operating system, Intel Pentium
4 1.5GHz CPU and 256MB memory, and the other with
Redhat 6.2, Pentium 3 1GHz CPU and 256MB memory. We
used the Redhat 7.3 system for all experiments except those
involving the Bind TSIG exploit, which requires Redhat 6.2.

We also used several network traces to evaluate the quality
of the signatures generated by our approach. Our dataset
includes a trace of one million HTTP flows and one million
DNS flows in and out of Indiana university.

3.1 Prototype Implementation
We implemented packet vaccine on Linux. The target

address set T is extracted from an application’s process
proc files, including maps and status, and sent to a vac-
cine generation module. This module scans the dataflow of
a recorded session for the byte sequences inside T , scrambles
their most significant bytes, creates a socket to convert the
new dataflow into vaccine packets and transports them to
the application. On the systems running the application, we
installed a process monitor developed using ptrace, which
serves as a collector to gather the contents of important
registers should an exception happen to the process being
monitored. Registers important to vulnerability diagnosis
are CR2 and EIP. However, CR2 can be accessed only in

kernel mode. In our research, we developed a kernel patch
for Linux 2.4.18 to read its content.

The signature generation engine has two components, a
prober and a verifier. The prober tests an application us-
ing vaccines to identify signature tokens. It can work re-
motely. The verifier monitors processes for exception sig-
nals, and restarts the application if necessary. In our imple-
mentation, the verifier was embedded in the ptrace-based
monitor. On starting signature generation, the prober first
makes a persistent connection with the verifier, and then
sends a vaccine packet to the application. If the applica-
tion’s process crashes, the verifier intercepts the exception
signal and notifies the prober through the connection. Oth-
erwise, the verifier waits for a period of time (longer than
the maximum crash time) before signaling that no excep-
tion has occurred. Our implementation supports both the
BVI and AVI algorithms and can generate token-sequence
and application-level signatures. We implemented only se-
quential vaccine injection in our prototype system, which
unfortunately introduced performance penalties. In our ex-
periments, we found that some applications could take tens
of milliseconds to crash. The delay caused by awaiting the
crashes of multiple processes could be greatly reduced by a
parallel approach.

3.2 Vaccine Effectiveness
A paramount question for packet vaccine is a vaccine’s

ability to detect an exploit. We address this question through
an empirical evaluation reported in this section. We carried
out experiments on real exploits of seven vulnerable appli-
cations obtained from SecurityFocus.2 They have also been
widely used for evaluating other techniques. In our research,
we made sure that all these exploits were successful in the
vulnerable applications by spawning a remote shell before
testing them with our technique.

Packet vaccine successfully detected these exploits, and
additionally diagnosed the related vulnerabilities to gener-
ate precise signatures. The details of exploits and detection
results are listed in Table 1. While we implemented our
proof-of-concept system only on Linux, we also analyzed an-
other 19 exploits which include Windows-based exploits such
as Code Red II. We found none of their semantics would be
damaged by our approach. This implies that packet vaccine
should also detect them.

Detecting a heap-based overflow turned out to be a lit-
tle trickier. In the experiment on openssl, the value of the
byte sequence we got from CR2 was larger than that of the
randomized token by 12. We explain this as follows. The
exploit took advantage of the free() function to overwrite
a function’s return address. The location of that address
was faked as the content of a linking pointer in a bogus idle
memory segment’s heap management data structure. On
the exploit’s payload, the address of that segment’s header
was provided. That address was supposed to be lower than
the linking pointer’s address by 12. The exception hap-
pened when the heap management system attempted to ac-
cess that linking pointer using the header’s address which
was randomized by our approach.

3.3 Signature Quality and Performance

2Technical details of these exploits can be found by searching
their Bugtraq ID from http://www.securityfocus.com.

Exploits Bugtraq ID Vulnerability Type Exploit Packet Length Detected Number of Address-like Tokens
BIND tsig 2402 stack-based buffer overflow 510 Yes 3
Light httpd 6162 stack -based buffer overflow 231 Yes 13
ATP httpd 8709 stack-based buffer overflow 820 Yes 90
Samba 7294 stack-based buffer overflow 3097 Yes 26
OpenSSL v2 5363 heap-based buffer overflow 474 Yes 4
wu-ftpd 1378 format string attack 435 Yes 1
rpc.statd 1480 format string attack 1076 Yes 8

Table 1: Exploit Detection.

Exploits Application Signature Time(s) Byte Sequence Signature Time(s)
BIND tsig — — 4-12 (00, 01, 00, 00, 00, 00, 00, 01, 3c), 73 (3c), 134 (0c), 147 (31), 197

(0c), 210 (3e), 273 (3e), 336 (1e), 367 (10), 384 (3e), 447 (34), 500 (00),
505-507 (00, 00, fa)

4.881

Light httpd (., ‘GET’, filename, 178) 0.345 0-3 (47, 45, 54, 20), 229-230 (0a, 0a) 1.360
ATP httpd (., ‘GET’, filename, 703) 0.274 0-4 (47, 45, 54, 20, 2f), 818 (0a) 2.708
Samba (., ‘TRANS2 OPEN2’,

filename, 2000)
0.622 0-2 (00, 04, 08), 4-8 (ff, 53, 4d, 42, 32), 28-29 (01, 00), 32-33 (64, 00),

37-40 (d0, 07, 0c, 00), 55-56 (d0, 07), 58-60 (00, 0c, 00), 63-66 (01, 00,
00, 00)

7.636

OpenSSL v2 (., ‘Master Key’,
arguments, 298)

0.358 0-11 (81, d8, 02, 01, 00, 80, 00, 00, 00, 80, 01, 4e) 5.012

wu-ftpd (., ‘SITE’, ‘EXEC’, %n) 0.130 0-9 (53, 49, 54, 45, 20, 45, 58, 45, 43, 20), 431-432 (25, 6e) 4.228
rpc.statd (., ‘STAT’, name, %n) 0.116 4-31 (00, 00, 00, 00, 00, 00, 00, 02, 00, 01, 86, b8, 00, 00, 00, 01, 00, 00,

00, 01, 00, 00, 00, 01, 00, 00, 00, 20), 36-39 (00, 00, 00, 00, 09), 60-63
(00, 00, 00, 00), 68-74(00, 00, 00, 00, 00, 00, 03), 164-165 (25, 6e)

5.780

Table 2: Signatures Generated. A token in a byte sequence signature is represented as i− j(Bi, . . . , Bj) (i ≤ j), where

i and j are the positions of the individual bytes on the token and Bi is a byte’s hexadecimal value. For example,

229-230(0a,0a) indicates that the token 0x0a0a lies between the 229th and the 230th bytes in the payload. The position

information is optional and not useful for text-based protocols such as HTTP.

A summary of results of our experiments on signature gen-
eration can be found in Table 2. To evaluate the quality of
our signatures, we compared them with signatures reported
in recent literature [3]. A vulnerability-based signature can
prevent all possible exploits on a vulnerability [7]. Recently,
Brumley et al. have proposed a gray-box approach to gen-
erate such a signature on the basis of static analysis of a
vulnerable program’s binary code [3]. Their technique in-
tensively utilizes application information.

Brumley et al. describe in their paper two monomorphic-
execution-path (MEP) signatures, one for Bind TSIG and
the other for ATP httpd. MEP signatures computed from
a single exploit are usually not vulnerability-based. Never-
theless, with the information extracted from the vulnerable
application, they are still very accurate. Here, we analyze
our signatures using these signatures.

Quality of the Token-Sequence Signature: Bind-TSIG.
Bind is a very popular DNS server. It supports a secret-key
transaction authentication in which messages bear transac-
tion signatures (TSIG). There is a buffer-overflow vulnera-
bility in Bind 8.2.x which allows an attacker to gain con-
trol of a system running Bind. This vulnerability can be
exploited through both UDP and TCP queries. Our exper-
iments were on UDP-based exploits and Bind 8.2.2. Fig-
ure 3 presents the MEP signature (the first row) and our
token-sequence signature (the second row) computed using
the BVI algorithm.3

Both signatures include bytes 6 to 10 which are zero and
bytes 505 to 507 which are 0x0000fa (a zero-length Qname
followed by the field type TSIG). From Bind’s source code,
we found that these bytes are the most important tokens for

3Our signature may also include the target address set T ,
which we believe does not make the signature too specific
for a control-flow hijacking attack. This is because that set
includes all possible jump targets, not a specific address.

a successful exploit. Besides these tokens, our signature also
contains some other bytes. Bytes 4 to 5 are the number of
queries inside the packet. Byte 4 must be zero for the UDP-
base exploit due to the size limit of a UDP-based packet.
However, byte 5’s content is unnecessarily specific because
an exploit using more than one query could also succeed.
On the other hand, byte 5 must be nonzero, which has not
been pointed out by the MEP signature. Bytes 10-11 are
the ‘ARcount’ field, which indicates the number of resource
records in the additional records part. It must be nonzero
to accommodate the TSIG field, but our signature is un-
necessarily specific in fixing its value. Byte 12 appears in
both signatures, but ours specifies its content. Ten bytes in
the interval 73 to 447 in our signature are also unnecessarily
specific. These ten bytes serve as the length octets in the
‘Qname’ field of a query, which are important for the suc-
cessful parsing of a DNS query. However, an attacker may
change the structure of the exploit packet to avoid these
bytes. This problem is hard to avoid with only a single in-
stance of the exploit and no application information at all.

The MEP signature also has some problems. It misses
bytes 4 and 11, and also contains unnecessarily specific to-
kens, such as bytes 268 and 500. Byte 500 is also present
in our signature. Both bytes signal the end of a query in a
particular exploit. However, the attacker can avoid them by
changing an exploit packet’s structure, such as the number
of questions and their sizes. For example, byte 268 has a
nonzero value in the exploit used in our research.

A more accurate signature could be generated by our tech-
nique given more than one exploit instance. In our research,
we compared another exploit of the Bind-TSIG vulnerabil-
ity with the above one. These two exploit packets share 19
bytes at the same locations of their application payloads.
Based on these 19 bytes, the BVI algorithm generated an-
other signature (the third row in Figure 3) with 10 bytes.
Only one of them, byte 11, is unnecessarily specific. This

6
0x00

7
0x00

8
0x00

9
0x00

10
0x00

12> > > > 0000 268
0x00

500
0x00

505
0x00

506
0x00

507
0xfa

6
0x00

7
0x00

8
0x00

9
0x00

10
0x00

11
0x01

12
0x3c

73
0x3c

134
0x0c

500
0x00

505
0x00

506
0x00

507
0xfa

4
0x00

5
0x01

6
0x00

7
0x00

8
0x00

9
0x00

10
0x00

11
0x01

505
0x00

506
0x00

507
0xfa

4
0x00

DNS total
questions

DNS total
answer RRs

DNS total
authority RRs

DNS total
additional RRs Qname length, index+content+1 is the index of next record, e.g. 273+0x3e+1=336 Field type TSIG

197
0x0c

147
0x31

210
0x3e

273
0x3e

336
0x1e

367
0x10

384
0x3e

447
0x34

MEP Signature

Token-sequence Signature
based on a single exploit

Token-sequence Signature
based on two exploits

Figure 3: Signatures for Bind TSIG.

signature is comparable to the MEP signature in quality and
capable of fending off many attacks on the vulnerability.

Using the block-searching technique, a sequential BVI al-
gorithm took 4.881 seconds to generate the first token-sequence
signature for Bind. We believe an optimized implementation
and introduction of parallelization could improve that per-
formance. The second signature was generated within 0.2
seconds.

Quality of the Application-level Signature: ATP-
httpd. We also compared our application-level signature
for ATP-httpd with the MEP signature in [3]. ATP-httpd
contains a vulnerable buffer which will be overrun by a re-
quested filename longer than 680 bytes. Built upon the anal-
ysis of the program’s binary code, the MEP signature con-
tains richer information than ours. It points out the HTTP
command which leads to the vulnerability could be either
‘GET’ or ‘HEAD’, while our signature only identifies ‘GET’
from a single exploit instance. However, the MEP signature
contains two specific tokens, ‘//’ and ‘/’, which actually are
parts of the shell code. In addition, the total field length re-
quired by their signature is 812 bytes, which is not necessary
for an exploit. Our signature offers a better estimate of the
vulnerable buffer size. The AVI algorithm determined the
maximal length of the field ‘filename’ as 703, 23 bytes longer
than the vulnerable buffer. These 23 bytes turned out to be
the local variables between the buffer and the pointer over-
written by the exploit. Our approach took 0.274 seconds
to generate the signature. By comparison, the algorithm
in [3] spent more than a second to complete a single step of
signature generation which converts the results from static
analysis into a signature.

In summary, it comes as little surprise that the MEP sig-
natures are more accurate than our signatures in general.
However, their quality advantages diminish somewhat with
the availability of multiple exploit instances and application
information. Furthermore, our black-box approach can per-
form significantly faster in some cases, and even works with
obfuscated binaries which static analysis might not manage
well.

Exploits False + (Applica-
tion Signature)

False + (Byte-Sequence Sig-
nature)

BIND tsig — w/ T , 0%, w/o T , 0%
Light httpd 0.602% w/ T , 0%, w/o T , 0.0006%
ATP httpd 0.0077% w/ T , 0%, w/o T , 0.142%

Table 3: False Positives. T refers to the target address

set of the vulnerable application.

False Positives. We tested our signatures for Bind-TSIG,
ATP-httpd and light-httpd using the aforementioned DNS
and HTTP traces (Table 3). Surprisingly, most false posi-
tives come from application-level signatures, which are sup-

posed to be very accurate! Further analysis offers the ex-
planation: these signatures are application-dependent, only
working for specific httpd servers, and supposed to be in-
stalled on the firewalls connecting to these servers. How-
ever, the HTTP traces were collected from edge routers,
containing the traffic of other HTTP software that could
accommodate a longer field.

4. EXAMPLE APPLICATION: PROTECTING
INTERNET SERVERS

In the section, we present an architecture which applies
packet vaccine to protect Internet servers from remote control-
flow hijacking attacks. This architecture serves as an ex-
ample to demonstrate the potential application of our tech-
nique. We also prototyped the architecture under Linux and
empirically evaluated its performance.

4.1 Architecture
Figure 4 illustrates the architecture we propose. A service

request is first intercepted and cached by a service proxy and
parsed by a parser. The parser is optional here and only use-
ful when we use application-level signatures. Then, the re-
quest is screened by a filter which identifies and drops known
exploits using exploit signatures. Behind the filter, a detec-
tor examines the request and labels it as either normal or
suspicious. The detector could simply be part of our packet
vaccine mechanism, which classifies packets with regard to
the appearance of address-like tokens in their payloads. Al-
ternatively, we could employ other simple detection tech-
niques, such as one which identifies packets with overlong
fields. After classification, a normal request is forwarded
to a server farm directly, while a suspicious request trig-
gers the packet vaccine mechanism which acts as discussed
in Section 2. If that request is determined to contain an
exploit, packet vaccine generates a new signature and adds
it to the filter. Otherwise, the proxy forwards the original
request to the server farm.

The packet vaccine mechanism makes use of a small set of
test servers in the server farm to test vaccine packets. A test
server has a collector on it, which serves to glean informa-
tion from registers’ contents should an exception happen. In
the case that the service being provided is stateful, the test
server also needs a checkpoint/rollback (CR) mechanism to
recover the state before each test. Such a rollback mecha-
nism could be extremely lightweight (e.g., [8, 31]). Signature
generation can also happen on a test server.

4.2 Performance Study
To implement a prototype system for HTTP service, we

developed a service proxy and a filter (including an HTTP
parser), and combined them with our implementation of
packet vaccine (Section 3.1) which contains a detector. Since

Packet Vaccine

Signatures

BVI/AVI

Vaccines

Suspicious

Server Farm

Packet
Filter

Protocol
Parser

Service
Proxy E

xploits

Dropped

Detector

Normal

Service
Requests

Test Servers

Figure 4: An architecture to protect Internet servers using packet vaccine.

HTTP is a stateless service, we did not implement the process-
level CR in this prototype.

Over the prototype system, we carried out a performance
test. Two hosts were used in our experiment, one for both
the proxy and the test server and the other for the web
server. Both were equipped with 2.53GHz Intel Pentium
4 Processor and 1 GB RAM, and running Redhat Enter-
prise 2.6.9-22.0.1.EL. They were interconnected through a
100MB switch. We utilized an Apache 2.0.55 to provide web
service. In our experiment, we evaluated the performance
of our implementation from the following perspectives: (1)
Server overheads, where we compared the workload capacity
of our implementation with that of an unprotected Apache
server; (2)Client-side delay, where we studied the average
delay a client experiences under different test rates.

Server overheads. We tested the workload capacity using
ApacheBench (ab) 2.0.41-dev, which comes bundled with
the Apache source distribution. ApacheBench is a tool for
benchmarking the Apache web server. In our experiment,
we measured the workload capability in terms of requests
processed per second (requests/second) under the following
five server configurations: (0) ‘Apache only’, (D0) ‘Apache
and the proxy on different hosts’, (S0) ‘Apache and the
proxy on the same host’, (D1) ‘Apache on one host, and
the proxy and packet vaccine on another’, (S1) ‘Apache,
proxy and packet-vaccine all on the same host’.

Workload Capacity of Apache Server

1435.56

1016.071043.09812.97 804.63

0

500

1000

1500

D0 D1 S0 S1 0

R
e

q
u

e
s

ts
/s

Figure 5: The workload capacities in five different server

settings.

Figure 5 illustrates the experiment results. At a first
glance, it seems that our implementation brought down the
Apache’s performance by about 44% in the setting (D1) and
about 29% in the setting (S1), which is quite unpleasant.
A close look at the results, however, reveals that the ma-
jor performance penalty came from the service proxy. The
homegrown proxy used in our proof-of-concept implementa-
tion could not keep up with the high-performance of Apache
and therefore dragged down the performance of the whole
system. Simply adding the proxy into the system introduced
about 43% performance penalty in (D0) and 27% in (S0).
On the other hand, the packet vaccine components worked
pretty fast. They only affected the performance by 1% to

2%. Therefore, we tend to believe that a high-performance
HTTP proxy could greatly improve the workload capability.

Client-side delay. Once the detector identifies a suspi-
cious request, a round of exploit detection will be triggered
to test that request. This introduces delay to a legitimate
client if the request turns out to be innocent. Here, we call
the ratio of service requests being tested (i.e., the fraction
deemed suspicious) the test rate. If the test rate increases,
the average delay experienced by a legitimate client will also
increase. In our experiment, we studied the change of the
client-side delay against different test rates. We carried out
both a local experiment within IU’s campus network and a
cross-campus experiment between IU and NCSU. The ex-
perimental results are presented in Figure 6.

The average delay of local clients

0.00

0.50

1.00

1.50

2.00

0 10 20 30 40 50 60 70 80 90 100

Test Rate (%)

D
el

ay
 (m

s) Apache with Packet Vaccine
Apache only

The average delay of remote clients

0

20

40

60

80

0 10 20 30 40 50 60 70 80 90 100

Test Rate(%)

D
el

ay
 (m

s)

Apache only
Apache with Packet Vaccine

Figure 6: The average delay experienced by a local or

remote client.

As we expected, the average delay for a local client in-
creased almost linearly with the test rate. However, this
result could be misleading, as the local client experienced
much smaller round trip delay (RTD) than an average In-
ternet user: the RTD in a campus we measured is around
300µs, while the average RTD on the Internet is much larger.
Therefore, an Internet client’s perception of the presence
of packet vaccine could be completely overshadowed by the
RTD. This was confirmed in the cross-campus experiment:
as presented in Figure 6, the 75ms RTD between the two
campuses dominated the client-side delay, making the 1ms
overhead of our protection mechanism negligible.

In summary, packet vaccine does introduce performance
penalties to the server, but we believe this penalty is accept-
able if weighed against the security enhancements it offers.

On the other hand, the client-side overhead is almost negli-
gible, being dwarfed by the RTD an average Internet client
experiences.

5. LIMITATIONS
Packet vaccine may have false negatives in exploit detec-

tion. For example, there is a possibility that the random-
izations performed by our approach destroy the exploit’s
semantics. This seems more likely to occur for applications
using binary protocols, though so far we have not found an
example “in the wild”. In general, our approach is more re-
liable in protecting applications using text-based protocols.
Several ways to reduce the likelihood of this problem were
discussed in Section 2.3. A simple approach is to generate
multiple vaccines, each randomizing one byte of an address-
like token. In this way, if the exploit semantics survives
any of these randomizations, our approach will detect the
exploit.

Our approach cannot work directly on packets with en-
crypted payload or checksums. In this case, we need an
application-level proxy to decode these packets and con-
struct new packets for vaccine generation.

Both types of signatures we use in our research are lim-
ited in their capabilities to represent necessary exploit con-
ditions. For example, null-httpd contains a vulnerability
that allows one to specify a smaller buffer while supplying a
longer payload. An ideal signature is to check whether the
real payload size matches the specified size. However, none
of our signatures can describe this condition. We leave it to
future work to examine how to use our black-box techniques
to acquire information for more expressive signatures [38, 3].

6. RELATED WORK
Network anomaly detection (NAD) has been widely used

to detect exploit attempts from network traffic [41, 39, 35,
12]. A typical network signature generator extracts com-
mon substrings from attack dataflow as an exploit signa-
ture. Examples include Earlybird [30], Honeycomb [11], Au-
tograph [10], SweetBait [26], Polygraph [22], Hamsa [13] and
PADS [32]. Signature generation solely relying on network
information can be misled into generating an incorrect sig-
nature by carefully crafted attack packets, which helps a
worm to evade detection [25] or causes legitimate packets to
be dropped.

Host-based approaches make use of host information to
detect anomalies and generate signatures. As exploits ac-
tually happen on a host, these approaches can be more
accurate than network-based approaches. TaintCheck [23],
VSEF [21], Minos [6], Vigilante [5] and DACODA [7] track
dataflow through a process from the receipt of a network
packet (or modification thereof [23]) to the point where an
anomaly happens, e.g., jumping to an address offered by
the input data. These approaches can slow the running
process significantly, however, by an order of magnitude or
more. In contrast, our vaccine mechanism tracks suspicious
dataflow in a black-box fashion, which is significantly faster
than these gray-box approaches and still preserves much of
their accuracy in cases we have explored. Some host-based
approaches apply static analysis [3] to identify a program’s
vulnerabilities. Such an approach no longer works over well-
obfuscated binaries.

Liang et al. and Xu et al. proposed two approaches [40,
14] that use memory address-space randomization (ASR) to
foil exploit attempts, and then automatically generate sig-
natures through forensic analysis of the related exceptions.
In particular, COVERS [14] was the first to propose a novel
construction of application-level signature which uses field
length to characterize a buffer overflow vulnerability. Al-
though we also use this signature, our AVI technique aug-
ments their approach by making an accurate estimate of the
field length. Our technique also offers a more reliable way
to correlate exceptions with the exploit packets.

In an attempt to find a balance between performance
and accuracy, several hybrid approaches combining network-
based and host-based techniques have been developed [1, 15,
29]. However, many of them are based on instrumenting
a vulnerable program’s source code, and are therefore less
suitable for protecting commodity software. HACQIT [27]
invokes a test process after an exploit crashes a protected
program, and replays suspicious packets to a sandbox run-
ning the same program to monitor whether the same ex-
ception happens again. However, this approach does not
offer a reliable means to establish a correlation between the
exception and the exploit inputs.

The vaccine technique can trace its root to software ro-
bustness testing, especially software-implemented fault in-
jection (SWIFI) [18]. SWIFI is a software testing and eval-
uation method which involves inserting random faults into a
system to determine its response to these faults. Some im-
portant SWIFI systems include the Crashme program [4],
the Fuzz project [17], the FIAT system [2], the FERRARI
system [9], the FTAPE system [36], and Ballista [33]. Our
proposal differs fundamentally from these approaches in two
respects. First, we rely on anomalous packets to guide vac-
cine generation, making our vaccines more likely to reveal
a program’s vulnerabilities than the random faults used in
a typical SWIFI approach. Second, we aim at exploit pre-
vention and will generate exploit signatures to shield the
software vulnerabilities discovered.

7. CONCLUSIONS
In this paper, we presented packet vaccine, a fast, black-

box technique for exploit detection, vulnerability diagnosis
and signature generation. We described its design and ex-
amples for its application. We also implemented a proof-
of-concept prototype, and evaluated our technique using it.
Our experimental results demonstrate the effectiveness of
our technique, which successfully captures real exploits and
generates effective signatures, and its efficiency, which im-
proves over gray-box approaches in many cases.

8. REFERENCES
[1] K. G. Anagnostakis, S. Siridoglou, P. Akritidis, K. Xinidis,

E. Markatos, and A. Keromytis. Detecting targeted attacks
using shadow honeypots. In Proceedings of USENIX Security
Symposium 2005, August 2005.

[2] J. H. Barton, E. W. Czeck, Z. Z. Segall, and D. P. Siewiorek.
Fault injection experiments using FIAT. IEEE Trans.
Comput., 39(4):575–582, 1990.

[3] David Brumley, James Newsome, Dawn Song, Hao Wang, and
Somesh Jha. Towards automatic generation of
vulnerability-based signatures. In Proceedings of the 2006
IEEE Symposium on Security and Privacy, 2006.

[4] George J. Carrette. CRASHME: Random input testing.
http://people.delphiforums.com/gjc/crashme.html, as of
March, 2006.

[5] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony I. T.
Rowstron, Lidong Zhou, Lintao Zhang, and Paul T. Barham.
Vigilante: end-to-end containment of internet worms. In
SOSP, pages 133–147, 2005.

[6] Jedidiah R. Crandall and Frederic T. Chong. Minos: Control
data attack prevention orthogonal to memory model. In
MICRO, pages 221–232, 2004.

[7] Jedidiah R. Crandall, Zhendong Su, and S. Felix Wu. On
deriving unknown vulnerabilities from zero-day polymorphic
and metamorphic worm exploits. In CCS ’05: Proceedings of
the 12th ACM conference on Computer and communications
security, pages 235–248, 2005.

[8] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A.
Basrai, and Peter M. Chen. Revirt: Enabling intrusion analysis
through virtual-machine logging and replay. In Proceedings of
OSDI, 2002.

[9] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A.
Abraham. FERRARI: A flexible software-based fault and error
injection system. IEEE Trans. Comput., 44(2):248–260, 1995.

[10] Hyang-Ah Kim and Brad Karp. Autograph: Toward
automated, distributed worm signature detection. In
Proceedings of 13th USENIX Security Symposium, pages
271–286, San Diego, CA, USA, August 2004.

[11] Christian Kreibich and Jon Crowcroft. Honeycomb: creating
intrusion detection signatures using honeypots. SIGCOMM
Computer Communication Review, 34(1):51–56, 2004.

[12] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.
Polymorphic worm detection using structural information of
executables. In Proceedings of RAID’05, pages 207–226,
September 2005.

[13] Zhichun Li, Manan Sanghi, Yan Chen, Ming-Yang Kao, and
Brian Chavez. Hamsa: Fast signature generation for zero-day
polymorphicworms with provable attack resilience. In SP ’06:
Proceedings of the 2006 IEEE Symposium on Security and
Privacy (S&P’06), pages 32–47, 2006.

[14] Zhenkai Liang and R. Sekar. Fast and automated generation of
attack signatures: a basis for building self-protecting servers.
In CCS ’05: Proceedings of the 12th ACM conference on
Computer and communications security, pages 213–222, 2005.

[15] Michael E. Locasto, Ke Wang, Angelos D. Keromytis, and
Salvatore J. Stolfo. Flips: Hybrid adaptive intrusion
prevention. In Proceedings of the 8th International
Symposium on Recent Advances in Intrusion Detection
(RAID), September 2005.

[16] MemView. http://www2.biglobe.ne.jp/~sota/memview-e.html,
as of May, 2006.

[17] Barton Miller, David Koski, Cjin Pheow Lee, Vivekananda
Maganty, Ravi Murthy, Ajitkumar Natarajan, and Jeff Steidl.
Fuzz revisited: A re-examination of the reliability of UNIX
utilities and services. Technical report, 1995.

[18] J.D. Musa, G. Fuoco, N. Irving, B. Juhlin, and D. Kropfl.
Handbook of Software Reliability Engineering, chapter The
Operational Profile, pages 167–216. McGraw-Hill, 1996.

[19] Gleb Naumovich and Nasir D. Memon. Preventing piracy,
reverse engineering, and tampering. IEEE Computer,
36(7):64–71, 2003.

[20] Associate Press News. Microsoft warns against outside fixes.
http://biz.yahoo.com/ap/060331/microsoft_s_security_snags.
html?.v=4, March 31, 2006.

[21] James Newsome, David Brumley, and Dawn Song.
Vulnerability-specific execution filtering for exploit prevention
on commodity software. In Proceedings of the 13th Annual
Network and Distributed Systems Security Symposium, 2005.

[22] James Newsome, Brad Karp, and Dawn Song. Polygraph:
Automatically generating signatures for polymorphic worms.
In Proceedings of IEEE Symposium on Security and Privacy,
pages 226– 241, Okaland, CA, USA, May 2005.

[23] James Newsome and Dawn Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. In Proceedings of the 12th
Annual Network and Distributed System Security
Symposium, San Diego, CA, USA, Feburary 2005.

[24] A. Pasupulati, J. Coit, K. Levitt, S.F. Wu, S.H. Li, R.C. Kuo,
and K.P. Fan. Buttercup: On network-based detection of
polymorphic buffer overflow vulnerabilities. In Proceedings of
the9th IEEE/IFIP Network Operation and Management
Symposium (NOMS’2004), May 2004.

[25] Roberto Perdisci, David Dagon, Wenke Lee, Prahlad Fogla,
and Monirul Sharif. Misleading worm signature generators
using deliberate noise injection. In IEEE Symposium on
Security and Privacy, page to appear, May 2006.

[26] Georgios Portokalidis and Herbert Bos. SweetBait: Zero-hour
worm detection and containment using honeypots. Technical
Report IR-CS-015, Vrije Universiteit Amsterdam, May 2005.

[27] James C. Reynolds, James Just, Larry Clough, and Ryan
Maglich. On-line intrusion detection and attack prevention
using diversity, generate-and-test, and generalization. In
HICSS ’03: Proceedings of the 36th Annual Hawaii
International Conference on System Sciences (HICSS’03) -
Track 9, page 335.2, 2003.

[28] David W. Richardson, Steven D. Gribble, and Edward D.
Lazowska. The limits of global scanning worm detectors in the
presence of background noise. In WORM ’05: Proceedings of
the 2005 ACM workshop on Rapid malcode, pages 60–70.
ACM Press, 2005.

[29] Stelios Sidiroglou, Michael E. Locasto, Stephen W. Boyd, and
Angelos D. Keromytis. Building a reactive immune system for
software services. In USENIX Annual Technical Conference,
pages 149 – 161, April, 2005.

[30] Sumeet Singh, Cristian Estan, George Varghese, and Stefan
Savage. Automated worm fingerprinting. In Proceddings of
OSDI, pages 45–60, 2004.

[31] Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R.
Andrews, and Yuanyuan Zhou. Flashback: A lightweight
extension for rollback and deterministic replay for software
debugging. In USENIX Annual Technical Conference,
General Track, pages 29–44, 2004.

[32] Yong Tang and Shigang Chen. Defending against internet
worms: A signature-based approach. In Proceedings of IEEE
INFOCOM05, Miami, Florida, USA, May 2005.

[33] The Ballista@ Project: COTS Software Robustness Testing.
http://www.ece.cmu.edu/~koopman/ballista/, as of January,
2006.

[34] Microsoft Debuging Tools. http:
//www.microsoft.com/whdc/devtools/debugging/default.mspx, as
of May, 2006.

[35] Thomas Toth and Christopher Krügel. Accurate buffer
overflow detection via abstract payload execution. In
Proceedings of RAID, pages 274–291, 2002.

[36] Timothy K. Tsai and Ravishankar K. Iyer. Measuring fault
tolerance with the ftape fault injection tool. In MMB ’95:
Proceedings of the 8th International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation,
pages 26–40. Springer-Verlag, 1995.

[37] Paul C. van Oorschot. Revisiting software protection. In
Proceedings of ISC, pages 1–13, 2003.

[38] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf
Zugenmaier. Shield: vulnerability-driven network filters for
preventing known vulnerability exploits. In SIGCOMM, pages
193–204, 2004.

[39] Ke Wang and Salvatore J. Stolfo. Anomalous payload-based
network intrusion detection. In Proceedings of RAID
Symposium 2004, pages 203–222, 2004.

[40] Jun Xu, Peng Ning, Chongkyung Kil, Yan Zhai, and Chris
Bookholt. Automatic diagnosis and response to memory
corruption vulnerabilities. In CCS ’05: Proceedings of the
12th ACM conference on Computer and communications
security, pages 223–234, 2005.

[41] Vinod Yegneswaran, Jonathon T. Giffin, Paul Barford, and
Somesh Jha. An architecture for generating semantics-aware
signatures. In Proceedings of USENIX Security Symposium
2005, August 2005.

