
Tamper-Evident Digital Signatures:
Protecting Certification Authorities Against Malware

Jong Youl Choi
Dept. of Computer Science

Indiana Univ. at Bloomington
Bloomington, IN 47405

Philippe Golle
Palo Alto Research Center

3333 Coyote Hill Rd
Palo Alto, CA 94304

Markus Jakobsson
School of Informatics

Indiana Univ. at Bloomington
Bloomington, IN 47408

Abstract

We introduce the notion of tamper-evidence for digi-
tal signature generation in order to defend against attacks
aimed at covertly leaking secret information held by cor-
rupted signing nodes. This is achieved by letting observers
(which need not be trusted) verify the absence of covert
channels by means of techniques we introduce herein. We
call our signature schemes tamper-evident since any de-
viation from the protocol is immediately detectable. We
demonstrate our technique for the RSA-PSS (known as
RSA’s Probabilistic Signature Scheme) and DSA signature
schemes and show how the same technique can be ap-
plied to the Schnorr and Feige-Fiat-Shamir (FFS) signature
schemes. Our technique does not modify the distribution of
the generated signature transcripts, and has only a mini-
mal overhead in terms of computation, communication, and
storage.

1 Introduction

Malware and insider attacks pose an increasing threat to
our cyber infrastructure. Current protection mechanisms
against malware rely on the collection of malicious code
found in the wild. For this protection to be effective, mali-
cious code must be detected as quickly as possible after an
attack is mounted. Unfortunately detecting malicious code
quickly is difficult, particularly in the case of carefully tar-
geted attacks, such as for example an attack narrowly fo-
cussed on critical nodes in the infrastructure.

A perfect example of such a target is a certification au-
thority. The consequences would be severe if an attacker
succeeded in corrupting a certification authority and man-
aged to cause it to leak its secret key material. The mere
possibility of such an attack (as opposed to its actual occur-
rence) may in fact weaken the trustworthiness of our public
key infrastructure. This threat is all the more severe as the
leak may be performed using a covert channel.

The threat of covert channels (also called subliminal
channels) was first studied by Simmons [18, 19] and later
by, among others, Young and Yung [23, 24]. These authors
show how an attacker may leak bits of the private signing
key in covert channels present in the randomized key gen-
eration or signing algorithm. For the sake of concreteness,
let us consider the RSA-PSS signature scheme (known as
RSA’s Probabilistic Signature Scheme [7]) as an example.
The message encoding scheme of RSA-PSS specifies that
the hash of the message to be signed be concatenated with
a random octet string known as a “salt”. A malicious im-
plementation of RSA-PSS may choose bits of the private
key for the salt, instead of a value produced by the pseudo-
random number generator. One may argue that this simple
type of leakage is detectable: a third party could test (for
each signature) whether the salt is a substring of the secret
key corresponding to the known public key of the signer (the
third party would need to be trusted with the secret key).
Upon the detection of such an event, the signer would be
isolated and decommissioned. However, an attacker could
just as easily leak an encryption of some of the bits of the
secret signing key, under a symmetric or public-key encryp-
tion scheme for which the attacker knows the decryption
key. For a semantically secure encryption scheme, and ap-
propriate parameter choices, such a leakage could be made
in a truly covert manner.

RSA-PSS is not the only signature scheme that is vulner-
able to covert channel attacks. To some extent, all signature
schemes are vulnerable to these attacks, since they all make
use of randomness for key generation. Still, covert channel
attacks pose the greatest threat to signature schemes that use
randomness not just once in the initial key generation step,
but for the generation of every signature. Thus discrete-log
based signatures schemes, such as Schnorr signatures [17]
and DSA [20], are particularly vulnerable to covert chan-
nels given their ongoing use of randomness in the genera-
tion of each and every signature. Our techniques focus on
eliminating covert channels from the signature algorithm of
discrete-log based signature schemes, but they can be com-

bined with previously proposed techniques [9] that consider
only covert channels in the key generation phase.

In this paper, we consider the problem of detecting (po-
tentially covert) malicious behavior by corrupt certification
authorities and other generators of digital signatures. We
propose to solve this problem with tamper-evident digital
signatures. Tamper-evident signatures do not prevent cor-
ruption, but they ensure the immediate detection of any cor-
ruption that causes a signer to output signatures that are in
any way different from those of an honest signer. Tamper-
evident signatures are useful to defend not only against mal-
ware, but also against insider attacks. A typical insider
attack [16] is performed by the implementor of a crypto-
graphic application, who designs code that operates cor-
rectly while under test, but switches to a corrupt mode of
operation after deployment. Insider attacks are notoriously
hard to prevent, given the difficulty of auditing even small
pieces of software or hardware. Tamper-evident signatures
do not prevent insider attacks, but ensure that such attacks
are immediately detected if they cause a signer to output
signatures that differ in any way from the signatures of an
honest signer.

While current security models for digital signatures con-
sider the signer as an oracle, we take a large step towards
a more realistic threat model by allowing – in addition –
attackers to corrupt signers and attempt to make them leak
their secret information to the attacker. When an attacker
corrupts a node, it replaces the code run by that node with
code chosen by the attacker. We assume however that the
attacker cannot create any new communication channels for
the nodes under its control. The goal of our attacker, as in
the standard definition of security for signature schemes, is
to generate a valid signature on a new message.

We assume the existence of one or several observers. An
observer is an external node whose task is to inspect all sig-
nature transcripts produced by a signer and detect any devi-
ation from honest signature generation. This task would be
trivial if we gave the observer knowledge of all the secrets
known to the signer. However, we do not wish to place any
trust with observers. Instead, the observers need to detect
the presence of a covert channel given only publicly avail-
able information. Once a covert channel is detected, the ob-
server alerts the public of this fact, and proves the existence
of the covert channel to avoid false alarms. This allows cor-
rupted nodes to be manually disconnected and reconfigured,
and minimizes the effects of the attack.

Example. To illustrate our techniques, we return to the
example of RSA-PSS. A small change to the signing al-
gorithm makes RSA-PSS tamper-evident. Let us replace
the sequence of random salt used in the message encoding
scheme with successive pre-images of a fixed value by a
one-way hash function. More precisely, let (s0, s1, . . . , sn)

be the values of a hash chain such that si = h(si+1)
(0 ≤ i ≤ n − 1), for some secret seed sn which is known
only to the signer. The value s0 is made public by the signer
during a setup phase. Afterward, the signer uses the value
si as a salt for signature i = 1, . . . , n. An observer can
check the correctness of the salt used in the ith signature
with the equation si−1 = h(si). If this verification fails, the
observer raises an alarm.

Properties. We describe next two important properties of
the tamper-evident signature schemes proposed in this pa-
per.

1. Undercover observers. In our RSA-PSS example, the
observer can verify the absence of covert channels
without interacting with the signer. We say that our
observer is undercover. Undercover observers quietly
“eavesdrop” on available network traffic to detect ir-
regularities and need not expose their existence until
they raise an alarm. Undercover observers, by virtue of
being hidden, cannot be targets of coercion attacks (un-
like the signer whose existence is of necessity public).
Onwards, we only consider undercover observers, but
note that interactive observers may be useful in other
contexts to design tamper-evident protocols.

2. Distribution of signatures. In the simple example
given above, the distribution of the transcripts gener-
ated by tamper-evident RSA-PSS is easily distinguish-
able from that of standard RSA-PSS, given the relation
of salts. This is undesirable and can easily be avoided.
The tamper-evident signature schemes that we propose
in this paper produce a distribution of signature tran-
scripts that is polynomial-time indistinguishable from
regular transcripts (after removing the proofs consti-
tuting evidence of tamper-freeness).

Assumptions. The tamper-evident signature schemes
proposed in this paper make the following assumptions:

1. Unencrypted traffic. We assume that traffic to and
from the signer is not encrypted. The adaptation of our
methods to a model in which traffic is sent over an en-
crypted communication channel to which the observer
does not have decryption abilities is theoretically pos-
sible – given well-known results relating to general
multi-party computation. However, an efficient solu-
tion that remains compatible with existing VPN tech-
niques is a challenging open problem.

2. Timing attacks. Tamper-evident signatures do not pro-
tect against timing attacks. However, by imposing
strict requirements on synchronization, one can pro-
tect against these as well, at the cost of a reduced (but
predictable) throughput.

Organization of the paper. We describe related work in
section 2. Our definition of tamper-evident signatures fol-
lows in section 3. In section 4 we present a tamper-evident
version of the DSA signature scheme, followed in section 5
by tamper-evident variants of the Schnorr and Feige-Fiat-
Shamir (FFS) signature scheme.

2 Related Work

The study of covert channels is rooted in military his-
tory. In the 1970’s, the problem of “message authentication
without secrecy” arose in the context of the comprehensive
nuclear test ban treaty. The goal was to allow the US and
Russia to monitor each other’s compliance with the treaty,
while ensuring that the monitoring equipment was not also
used for spying. In 1983, Simmons [18, 19] introduced the
concept of covert channels in cryptographic protocols and
specifically demonstrated the use of the Digital Signature
Standard (DSS) signature scheme for covert communica-
tion. This showed that a secret message could be hidden
inside the authenticator.

A few years later, Desmedt [3] presented a practical
subliminal-free authentication scheme, in which an ob-
server (named “active warden”) handles all messages sent
between two prisoners, and verifies that these are free from
covert information before passing them on. The observer in
this scheme is not undercover. Undercover observers are
more desirable since they operate stealthily and are thus
less vulnerable to attacks aimed at suppressing their activ-
ity. Consider that an interactive observer (whose interaction
with the signer is evident to all), could well be the first target
of an attacker, a virus or a Trojan horse. Once the observer
is eliminated or compromised, the adversary can take over
the signer without triggering an alarm. In contrast, the activ-
ity of undercover observers is undetectable to the adversary,
at least until the point when an undercover observer raises
an alarm. It is also possible to set up several undercover ob-
servers, further complicating the task of an adversary intent
on finding and compromising them.

Young and Yung [23, 24] showed the existence of covert
channels in the key establishment algorithms of signature
schemes (an attack not considered in the previous work
by Desmedt). Juels and Guajardo [9] proposed a zero-
knowledge key validation scheme to avoid such attacks. In
this paper, we focus our attention on corruption that occurs
after the key generation phase has concluded, and thus, like
Desmedt, only consider how to detect covert channels dur-
ing the signature generation phase.

In the context of our paper, we consider covert channels
harmful. For example, as shown in [12], covert channels
in electronic voting system will undermine voters’ privacy.
However, there is work in which covert channels are used
to achieve a desirable security goal. For example, so-called

funkspiel schemes [6] use a covert channel to signal alerts
by devices that have been corrupted by an attacker. Namely,
when such a scheme detects an intrusion attempt, it changes
its state, causing future transcripts to signal an alarm to an
authority via a covert channel, but preventing the attacker
from detecting that this is taking place. In contrast, we de-
velop methods to eradicate covert channels.

Lepinksi, Micali, and Shelat [10] recently proposed a
generic collusion-free protocol that detects any collusion
between malicious participants and thus prevents the exis-
tence of covert channels. However, this generic protocol
does not give an efficient construction of a tamper-free sign-
ing protocol for a certification authority. The problem of
designing efficient tamper-free protocols for important real-
world applications remains a promising area of research.
For example, recent work [1] shows how to design an effi-
cient tamper-evident mix network. Here, we propose an ef-
ficient tamper-evident signing protocol for certification au-
thorities.

We use the word tamper-evidence to describe a property
of an algorithm. Traditionally, it has been used to describe a
property of hardware. Smart cards, SIM cards, and satellite
decoders all implement varying degrees of physical tamper-
evidence. While we use the same term – tamper-evidence –
to describe the defense mechanism we introduce, we em-
phasize that any comparison beyond the truly superficial
makes it clear that these two types of tamper-evidence are
not closely related in any technical sense.

3 Definition of Tamper-Evident Signature
Schemes

Recall that a signature scheme is a triplet of algorithms
(Gen, Sign,Verify), where:

• The key generation algorithm Gen, on input 1k outputs
a public/private key pair Kpub, Kpriv.

• The signing algorithm, on input M and Kpriv , outputs
a signature σ = Sign(M, Kpriv).

• The verification algorithm outputs
Verify(M, σ, Kpub) ∈ {valid, invalid}.

Intuitively, a signature scheme is tamper-evident if a
signer cannot leak Kpriv without generating at least one
“bad” signature that triggers an alarm. We call such “bad”
signatures covert-invalid (denoted invalid∗) and their com-
plement covert-valid (valid∗). Note that covert-validity is
different from validity as defined by the verification al-
gorithm Verify. Indeed, randomized signature algorithms
(such as Schnorr or DSA) permit leakage of the private key
via valid signatures.

To define a tamper-evident signature scheme, we aug-
ment a regular signature scheme (Gen, Sign, Verify) with a

new key-generation algorithm (denoted Gen∗), a new sign-
ing algorithm (denoted Sign∗) and a new algorithm to verify
the covert-validity of signatures (denoted Verify∗). In prac-
tice, the tamper-evident signature schemes we propose re-
quire only a minuscule augmentation, and incur very small
overhead. Only observers would have to take note of the
augmentation, and other nodes would simply truncate the
transcript to obtain the expected signature.

In what follows, we let T denote a transcript that consists
of the ordered list of all the signatures that have ever been
output by the signer. The transcript T is one of the inputs
to the algorithms Sign∗ and Verify∗. (This is for reasons of
generality alone, and only a tiny fraction of this informa-
tion needs to be carried as state.) The augmented signature
scheme is defined as follows:

• Gen∗, on input 1k computes Gen(1k) = (Kpub, Kpriv)
then outputs (K∗

pub, K
∗

priv), where K∗

pub = (Kpub, β)
and K∗

priv = (Kpriv, α). As we shall see, the strings
α and β are used to ensure tamper-evidence.

• Sign∗, on input a message M , the private key K∗

priv =
(Kpriv, β) and the transcript T , computes σ =
Sign(M, Kpriv) then outputs Sign∗(M, K∗

priv, T) =
(σ, τ). As we shall see, the additional string τ allows
an observer to verify that the signature is covert-valid.

• Verify∗, on input a message M , the public key K∗

pub,
a signature (σ, τ) and the transcript T , outputs
Verify∗(M, K∗

pub, (σ, τ), T) ∈ {valid∗, invalid∗}1.

We can now give a formal definition of a tamper-
evident signature scheme. Let (Gen∗, Sign∗, Verify∗) be
an augmented signature scheme based on a regular signa-
ture scheme (Gen, Sign, Verify). We consider the following
game between a challenger C and an adversary A.

Game TE:

1. C computes Gen∗(1k) = (K∗

pub, K
∗

priv) and outputs
K∗

pub.

2. A requests tamper-evident signatures on adaptively
chosen messages. When A requests a signa-
ture on a message mi, C outputs (σi, τi) =
Sign∗(mi, K

∗

priv, Ti−1) and defines Ti = Ti−1 ∪
{(i, σi, τi)}.

3. A outputs a transcript T , a message M and
a tamper-evident signature (σ, τ), and wins if
Verify∗(M, K∗

pub, (σ, τ), T) = valid∗ and (σ, τ) 6=
Sign∗(M, K∗

priv , T).

1As described here, Verify∗ is a non-interactive protocol, as we focus
our attention on undercover observers. A more general definition that al-
lows for interaction can easily be formulated.

w0 h h · · · h

k1

r1

k2

r2 rn

kn

w2w1 wn

s

· · ·

f ff

R

Figure 1. A model of a consistent system. Let
the value ki be the ith output string generated
by a pseudo-random generator R that is given
a seed s, and let ri = f(ki) for some one-way
function f , where 1 ≤ i ≤ n for some system
parameter n. Two witnesses wi−1 and wi im-
ply that the value ri is consistent if and only if
wi−1 = h(wi, ri), where h is a publicly available
hash function and wn is a κ-bit random value se-
lected uniformly at random.

Definition 1 (Tamper-evidence) A signature scheme is
tamper-evident if no polynomial-time algorithm A wins
Game TE with non-negligible advantage.

Intuitively, a signature scheme is tamper-evident if there
is only a single valid signature for any given message and
any given transcript. Note that in practice a verifier (whom
we call observer) must check the validity and covert-validity
of all the signatures output by the signer. If the signer re-
fuses to engage in the Verify∗ protocol with the observer,
or (in the non-interactive case which we focus on), if it does
not output a proof of covert-validity, the observer announces
that the signer failed the test of covert-validity and is thus
untrustworthy.

Designing tamper-evident signature schemes In what
follows, we give an overview of our technique for design-
ing tamper-evident signature schemes. We start by defining
consistency with respect to a pair of deterministic functions.

Definition 2 (Consistent system) We consider a pseudo-
random generator R that given a seed s produces a se-
quence of outputs, each of some uniform size κ correspond-
ing to an external security parameter. Let the value ki be
the ith output string generated by R, and let ri = f(ki) for
some one-way function f , where 1 ≤ i ≤ n for some sys-
tem parameter n (Figure. 1). Finally, consider a sequence
of witnesses, wi for 0 ≤ i ≤ n, where the (committed)
witness w0 is made public at setup time. We say that two

witnesses wi−1 and wi imply that the value ri is consistent
if and only if wi−1 = h(wi, ri), where h is a publicly avail-
able hash function, and where wn is a κ-bit random value
selected uniformly at random. A value ri is consistent with
the seed s if and only if there is a set of witnesses that imply
that all values rj , 1 ≤ j ≤ i, are consistent.

We note that the above definition only considers the case
where the observer is undercover; in the more general case
we have to replace witnesses by executions of interactive
proof protocols.

Tamper-evident signatures We base our constructions
of tamper-evident signature schemes on a consistent sys-
tem. Here, we give only the intuition of our general
approach. Precise definitions are found in Sections 4
and 5. Let (ki, ri, wi) be values produced by a consis-
tent system. We define an augmented signature scheme
(Gen∗, Sign∗, Verify∗) for which, using the notation of Def-
inition 2:

1. The generation of the ith signature relies on no random
number other than ki;

2. The values ri, wi are part of the corresponding aug-
mented signature transcript;

3. The seed to the pseudo-random generator R employed
for signature generation is s and the committed witness
is w0.

Proposition 1 The augmented signature scheme
(Gen∗, Sign∗, Verify∗) is tamper-evident according to
Definition 1 if the function h is collision-resistant.

The proof is immediate: in order to win Game TE, the ad-
versary must output a covert-valid signature which is differ-
ent from that produced by Sign∗, thus producing a collision
for the function h.

A Remark on Timing Channels. We have ignored the
threat of timing channels and focussed only on covert chan-
nels in the data that is being transmitted. A party can use
a timing channel to communicate information by encoding
the covert message in the delay before a response to a re-
quest is produced. This type of threat can be addressed by
(a) partitioning the time into intervals of a length sufficient
to always generate the response to one request in one time
interval, and (b) prescribing that the signer would output a
signature on a message at the very end of the time inter-
val after the interval during which the request to sign the
message was received. In a system in which signers are ob-
served and always remain perfectly synchronized, this ap-
proach eliminates the timing channel. Realistically speak-
ing, though, such a measure does not entirely eliminate the

channel, but drastically reduces its bandwidth. Good practi-
cal measures to further reduce the bandwidth2 constitute an
open research problem.

A Remark on Generation Costs. The random values ki

are used for signatures in order of consecutive increments
of the index i, starting at i = 1. They are generated from
the pseudo-random generator R, as they would have been
for regular DSA signatures. In our augmented scheme, the
same sequence of values ki is generated during the setup
phase, in order to allow the correct generation of the se-
quence of witnesses wi, where w0 will be made part of the
public key of the signer. To not require the signer to store all
the witnesses, while avoiding severe computational loads,
one may employ fractal hash traversal methods [2] for the
generation of the sequence of random values ki.

4 Tamper-Evident DSA Signatures

We start with a review of the DSA signature scheme [14].
Let p, q be large primes such that q|(p − 1), and let g ∈ Z

∗

p

be an element of order q. Let h : {0, 1}
∗

→ Zq denote a
hash function.

Gen algorithm. The secret key is an element x ∈ Z
∗

q and
the corresponding public key is y = gx mod p.

Sign algorithm. To sign a message m, the signer chooses
uniformly at random k ∈ Z

∗

q and computes r = (gk

mod p) mod q and s = k−1(h(m) + xr) mod q. The
pair (s, r) ∈ Z

2
q is a DSA signature on m.

Verify algorithm. Given a signature (s, r) on a message
m, compute ω = s−1 mod q, u1 = h(m)ω mod q, and
u2 = rω mod q. Output valid if r = (gu1yu2 mod p)
mod q; otherwise output invalid.

The DSA signature scheme described above contains an
obvious covert channel. Indeed, every DSA signature re-
veals a value r = (gk mod p) mod q, where k ∈ Z

∗

q is a
random value chosen by the signer. At a cost of 2λ−1 mod-
ular exponentiations on average, the signer can find a value
k such that λ bits of r = gk are as chosen by the signer. The
signer can thus leak at least a few bits of information in ev-
ery DSA signature it generates. Furthermore, the existence
of this covert channel is undetectable to an observer.

2For example, one could offset the output time by a small delay
of pseudo-randomly determined length, where the seed to this pseudo-
random generator is known to the observers. Note that while such ob-
servers do know some secret information, they do not have to be trusted
with any secret information necessary to generate the signature. We may
call such an observer semi-trusted.

Tamper-evident variant with undercover observer. We
propose a tamper-evident DSA signature scheme in which
the signer pre-generates the sequence of random numbers
later to be used, and computes witnesses to the elements of
this sequence. If any member of the sequence is modified,
then the corresponding witness is invalidated. Witnesses
are generated in a manner that ensures that it is infeasible to
modify these without invalidating the same. Note that the
use of pre-generated random numbers will not decrease the
level of security of our variant DSA signature scheme. The
proof is given below in Proposition. 3.

A formal description of our tamper-evident DSA signature
scheme follows:

Gen∗ algorithm. Let (x, y = gx) be a private/public key
pair for DSA output by Gen. After executing Gen, the al-
gorithm Gen∗ pre-generates the sequence of random values
{ki} (1 ≤ i ≤ n) that are later to be used in the genera-
tion of signatures. This is possible given access to the seed
to the pseudo-random generator employed. Then, the wit-
nesses {wi} (0 ≤ i ≤ n) are generated as follows: First, wn

is chosen uniformly at random from {0, 1}κ, for some secu-
rity parameter κ associated with the choice of hash function
h used for witness generation. Consecutive witnesses are
generated as follows:

wi−1 = h(ri ||wi) (1 ≤ i ≤ n) (1)

where ri = (gki mod p) mod q.
Finally, the algorithm outputs K∗

priv = (x, {ki} , {wi})
and K∗

pub = (y, w0).

Sign∗ algorithm. To sign the ith message mi for i ≥ 1,
the signer computes

si = ki
−1(h(mi) + xri) mod q (2)

The signer outputs the standard DSA signature (mi, ri, si)
along with the previously computed witness wi. 3 4

Verify algorithm. Let (mi, ri, si, wi) be the ith transcript
output by the signer. Any verifier can check that (mi, ri, si)
is a valid DSA signature with respect to the signer’s public
key y. This is done exactly as for regular DSA signatures

3For simplicity, we may assume that all witnesses are stored by the
signer after being generated; however, and as previously noted, one can
employ fractal traversal techniques in order to reduce the required amount
of storage, while maintaining low computational requirements on the
scheme.

4The lack of integrity protection in the delivery of witness values may
be exploited by an attacker to launch an attack to mislead the verification
process using Verify∗ algorithm by simply tampering with the witness val-
ues. To defend against such attacks, the signer can append the witness
value wi to the message mi before proceeding with equation (2).

by computing ωi = s−1

i mod q, u1 = h(mi)ωi mod q,
and u2 = riωi mod q. The output is valid if ri = (gu1yu2

mod p) mod q; otherwise the output is invalid.

Verify∗ algorithm. To verify the covert-validity for the ith

transcript (mi, ri, si, wi), and given the previous witness
wi−1, the observer performs the following computation:

1. The observer runs Verify(mi, ri, si); if this output is
invalid then output invalid∗ and halt.

2. The observer checks whether the following equation
holds:

wi−1 = h(ri ||wi) (3)

for the publicly known hash function h. If the equiva-
lence holds, then Verify∗ outputs valid∗ and halts; oth-
erwise, it outputs invalid∗ and halts.

Note that the observer does not need to communicate
with the signer in order to verify the consistency of the ran-
dom numbers employed. Thus, it can avoid revealing its
whereabouts until it detects an inconsistency, at which time
it draws attention to the corruption by outputting invalid∗.

Soundness. An honest signer always succeeds in generat-
ing a valid witness as specified by relation (3). Given the
assumption of collision-resistance, we see that an adversary
cannot have the signer generate and output a pair ri, wi sat-
isfying wi−1 = h(ri ||wi) = h(ri ||wi). Thus, it is not
feasible to modify any signature transcript without invali-
dating at least one witness.

Proposition 2 If the hash function h is collision-free then
our variant DSA scheme is tamper-evident.

This proposition is an immediate corollary of Proposition 1.

Proposition 3 If the DSA signature scheme is secure
against an adaptive chosen message attack, then our vari-
ant DSA scheme is also secure against an adaptive chosen
message attack in the random oracle model.

Proof Let A be an adversary who mounts an existential
forgery attack against our tamper-evident variant of DSA.
We define an algorithm B that uses A to mount an ex-
istential forgery attack against the regular DSA signature
scheme. We model the hash function h as a random oracle
and let algorithm B answer A’s queries to the hash function
h.

The algorithm B receives a public key for DSA and
passes it on to A. When A requests a tamper-evident DSA
signature on a message mi, B requests a normal DSA sig-
nature on mi and obtains (mi, ri, si) = Sign(mi, Kpriv).

B then chooses a random witness wi and outputs the
tamper-evident signature (mi, ri, si, wi) for A. When A
queries the hash function h on ri ||wi, A answers with
wi−1 = h(ri ||wi). On all other values, A answers B’s
queries with consistent random values, as is standard. �

5 Making Other Schemes Tamper-Evident

Schnorr signatures. The techniques we have used to de-
sign a tamper-evident variant of the DSA signature scheme
can also be used to design a tamper-evident variant of the
Schnorr signature scheme [17]. The Schnorr and DSA
signatures schemes are both based on the discrete loga-
rithm problem and share a lot of common features. Let
(Gen, Sign, Verify) denote the Schnorr signature scheme:
• As in DSA, the algorithm Gen outputs a private/public

key pair (x, y = gx), where the secret key is an el-
ement x ∈ Z

∗

q and the corresponding public key is
y = gx mod p.

• To sign a message m, the signer chooses uniformly at
random k ∈ Z

∗

q and computes r = gk mod p. Let
c = h(m||r) and s = xc+k mod q. The pair (s, c) ∈
Z

2
q is the Schnorr signature on m.

• Given a Schnorr signature (s, c) on a message m,
Verify computes v = gsy−c and outputs valid if c =
h(m||v); otherwise outputs invalid.

We design a tamper-evident variant
(Gen∗, Sign∗, Verify∗) of Schnorr signatures as follows.
After executing Gen, the algorithm Gen∗ pre-generates
the sequence of random values {ki} (1 ≤ i ≤ n) and the
corresponding witnesses {wi} (0 ≤ i ≤ n) almost as in
tamper-evident DSA:

ri = gki mod p (4)
wi−1 = h(ri ||wi) (5)

As in tamper-evident DSA, we define K∗

priv =
(x, {ki} , {wi}) and K∗

pub = (y, w0). The ith tamper-
evident Schnorr signature on message mi is a triplet
(si, ci, wi) where ci = h(mi||ri) and si = xci+ki mod q.
The tamper-evident verification algorithm Verify∗ is defined
in exactly the same way as for DSA in section 4.

Feige-Fiat-Shamir signatures. Another application of
our techniques it to build a tamper-evident variant of the
Feige-Fiat-Shamir (FFS) signature scheme – described in,
e.g., [11] – which is based on the earlier signature scheme
of Fiat and Shamir [4]. The algorithm Gen in FFS is de-
fined as follows. For two large prime p,q and some sys-
tem parameter l, the private/public key pair is ({uj} , {yj}),
1 ≤ j ≤ l, for uj ∈ Z

∗

pq and yi = uj
−2.

In the tamper-evident variant, the algorithm Gen∗ gen-
erates a set of random numbers ri (1 ≤ i ≤ n) and then
computes the corresponding public values {zi} and a hash
chain of witnesses {wi} as follows:

zi = ri
2 mod pq (6)

wi−1 = h(zi ||wi) (1 ≤ i ≤ n) (7)

by choosing hash chain root wn randomly in Z
∗

pq .
The ith signature on a message mi is (ei, si), where ei

denotes the bits of h(mi || zi), si = ri

∏l

j=1
uj

ej and ej is
the j th bit of ei. The Verify∗ algorithm combined with the
verification algorithm of [11] is the same as in the tamper-
evident variants of DSA and Schnorr.

6 Conclusion

We have presented attacks on Certificate Authorities
based on covert channels that exploit the randomness used
to generate signatures in the RSA-PSS, DSA, Schnorr and
FFS signature schemes. To detect such attacks, we de-
fined tamper-evident variants of these signature schemes, in
which every signature is accompanied by a proof of valid-
ity. These proofs are verified by non-interactive observers,
whom we call undercover observers. Undercover observers
can operate stealthily and are thus less vulnerable to attacks
aimed at suppressing their activity.

References

[1] J. Choi, P. Golle, and M. Jakobsson. Auditable Privacy: On
Tamper-evident Mix Networks. In Financial Cryptography
’02, 2006.

[2] D. Coppersmith and M. Jakobsson. Almost Optimal Hash
Sequence Traversal. In Financial Cryptography ’02, 2002.

[3] Y. Desmedt. Subliminal-free authentication and signature.
In Advances in Cryptology – Eurocrypt ’88, LNCS 330.
Springer-verlag, 1988. pp. 23–33.

[4] A. Fiat and A. Shamir. How to prove yourself: Practical
Solution to Identification and Signature Problems. In Ad-
vances in Cryptology – Crypto’86, LNCS 26. Springer-
Verlag, 1987. pp. 186–194

[5] S. Goldwasser, S. Micali and R. Rivest. A digital signa-
ture scheme secure against adaptive chosen-message at-
tacks. SIAM Journal of Computing, Vol. 17, No. 2, 1988.
pp. 281–308.

[6] J. Håstad, J. Jonsson, A. Juels, and M. Yung. Funkspiel
Schemes: An Alternative to Conventional Tamper Re-
sistance. In S. Jajodia, ed., Seventh ACM Conference
on Computer and Communications Security, ACM Press,
2000. pp 125–133.

[7] J. Jonsson and B. Kaliski. Public-Key Cryptography Stan-
dards (PKCS) #1: RSA Cryptography Specifications Ver-
sion 2.1. Internet RFC 3447. pp. 26–42, February 2003.

[8] M. Jakobsson and M. Yung. Distributed ”Magic Ink” Sig-
natures. In Advances in Cryptology – Eurocrypt ’97, LNCS
1233, Springer-Verlag, 1997. pp. 450–464.

[9] A. Juels and J. Guajardo. RSA Key Generation with Ver-
ifiable Randomness. In Public Key Cryptography 2002,
LNCS 2274, Springer-Verlag, 2002. pp. 357–374.

[10] M. Lepinksi, S. Micali, and A. Shelat. Collusion-Free Pro-
tocols. In STOC ’05, ACM Press, 2005.

[11] A. J. Menezes, P. C. van Oorschot, and S. A. Van-
stone, Handbook Applied Cryptography. CRC Press, 1997.
pp. 447–449

[12] C. Karlof, N. Sastry, and D. Wagner, Cryptographic Vot-
ing Protocols: A Systems Perspective. In USENIX Security
’05, August 2005. pp. 33–50.

[13] R. Merkle. Secrecy, authentication, and public key systems.
Ph.D. dissertation, Dept. of Electrical Engineering, Stan-
ford Univ., 1979.

[14] National Institute of Standards and Technology (NIST).
FIPS Publication 186-2: Digital Signature Standard (DSS).
2000.

[15] D. Pointcheval and J. Stern. Security proofs for signa-
ture schemes. In Advances in Cryptology – Eurocrypt ’96,
LNCS 1070, Springer-Verlag, 1996. pp. 387–398.

[16] Pedro A.D. Rezende. Electronic Voting Systems – Is Brazil
Ahead of its Time? RSA CryptoBytes, Volume 7, No. 2,
2004.

[17] C. P. Schnorr. Efficient Signature Generation for Smart
Cards. In Proc. of Crypto ’89, 1989. pp. 239–252.

[18] G. J. Simmons. The prisoners’ problem and the subliminal
channel. In Proc. of Crypto ’83, 1983. pp. 51–67.

[19] G. J. Simmons. The subliminal channel and digital sig-
nature. In Proc. of Eurocrypt ’84, LNCS 209, Springer-
Verlag, 1996. pp. 364–378.

[20] M. E. Smid and D. K. Branstad. Response to comments on
the NIST proposed Digital Signature Standard. In Proc. of
Crypto ’92, LNCS 740, Springer-verlag, 1992. pp. 76–87.

[21] M. Stadler. Publicly Verifiable Secret Sharing. In Advances
in Cryptology – Eurocrypt ’96, LNCS 1070, Springer-
Verlag, 1996. pp. 190–199.

[22] A. Young. Mitigating insider threats to RSA key genera-
tion. In Cryptobytes, Vol. 7, No 1, Spring 2004.

[23] A. Young and M. Yung. The prevalence of Kleptographic
attacks on discrete-log based cryptosystems. In Proc. of
Crypto ’97, 1997. pp. 264–276.

[24] A. Young and M. Yung. Kleptography: using cryptogra-
phy against cryptography. In Proc. of Eurocrypt ’97, 1997.
pp. 62–74.

[25] A. Young, M. Yung. Auto-Recoverable and Auto-
Certifiable Cryptosystems. In Advances in Cryptology
– Eurocrypt ’98, LNCS 1403, Springer-Verlag, 1998.
pp. 119–133.

