
Auditable Privacy:

On Tamper-evident Mix Networks

Jong Youl Choi1, Philippe Golle2, and Markus Jakobsson3

1 Dept. of Computer Science, Indiana University at Bloomington, IN 47405, USA
jychoi@cs.indiana.edu

2 Palo Alto Research Center, 3333 Coyote Hill Rd, Palo Alto, CA 94304, USA
Philippe.Golle@parc.com

3 School of Informatics, Indiana University at Bloomington, IN 47406, USA
markus@indiana.edu

Abstract. We introduce the notion of tamper-evidence for mix net-
works in order to defend against attacks aimed at covertly leaking secret
information held by corrupted mix servers. This is achieved by letting
observers (which need not be trusted) verify the absence of covert chan-
nels by means of techniques we introduce herein. Our tamper-evident
mix network is a type of re-encryption mixnet in which a server proves
that the permutation and re-encryption factors that it uses are correctly
derived from a random seed to which the server is committed.

Keywords. Mix network, covert channel, malware, observer, subliminal
channel, tamper-evident.

1 Introduction

In several countries, experiments with electronic voting are taking place. While
the primary political goal is to increase voter turnout by allowing for streamlined
casting of votes, electronic voting also offers substantial benefits in terms of pre-
cision, speed of tallying and privacy guarantees. The flip-side is the difficulty to
guarantee these properties, and maintain security when under attack. Electronic
voting, not surprisingly, has been at the heart of intense debate.

In electronic voting, just as in manual voting, security properties related
to concrete phenomena are easier to guarantee than those related to abstract
phenomena. In particular, the desirable property of correctness (the accurate
counting of votes) is easier to guarantee than privacy (retaining secrecy of who
voted for whom). Tallying – while time consuming and subjective in its current
incarnation – is by nature easily auditable. One can duplicate functionality, and
count votes in multiple ways in order to ascertain that each vote was counted
exactly once. However, no similar auditing process has been proposed to verify
that privacy was maintained – neither for manual nor for electronic voting. The
reason, informally stated, is that a leak is a leak is a leak.

Failure to guarantee privacy is particularly severe in the social context of vote
buying, and the technical context of malicious code, and makes any transition

to electronic elections fraught with the risk of large-scale abuse. In particular,
it was shown [24, 25] how covert channels can be employed to intentionally (and
unnoticeably) leak secret information to collaborators. Covert channels allow
tallying machines to leak either their secret keys, the state of their pseudo-
random generators, or information about the votes they process. There is also
real-life evidence [21] that malicious code (written to specification) has been used
to spy on voters. While public code audits may address such concerns to some
extent, they are hardly a panacea, especially given the difficulty of ascertaining
that the audited code is in fact the code that gets loaded and deployed.

We study how to ensure public verifiability of privacy for synchronous mix
networks, with direct applications to electronic elections (see, e.g., [2]). We con-
sider an adversary that fully controls all servers in a mix network at all time,
except during an initial setup phase. In the setup phase, the servers are free
from adversarial control and can establish and exchange keys. The adversary
only gains control over the servers after the completion of the setup phase. This
models both typical malware attacks, and attacks in which the software devel-
oper writes software that “switches behavior” [28] to a malicious mode after
some initial testing has established that the software is correct. We note that
corruption during the setup phase can be detected using zero-knowledge proof
techniques such as, for example, Juels and Guajardo’s scheme [9].

Following [3], we assume the existence of observers, whose sole purpose is
to monitor the input-output behavior of servers being observed, and determine
if any of the generated transcripts could contain information that should not
have been included. Observers are not provided with any secret information.
Consequently, we do not have to trust observers – apart from having to trust
that at least one of them is honest. There is no limit on the number of possible
observers, and there is no way for the adversary to determine how many there
are. Moreover, given that we employ undercover observers, i.e., observers that do
not need to interact with any mix server in order to perform their duties (except
for when they raise alerts), there is also no clear way to locate them.

While [3] is concerned with the potential leak of private key information from
corrupted servers of a certification authority, we focus instead on any type of
leak from mix servers. (In particular, we consider both leaks of the secret key
and leaks that somehow reveal parts of the permutation applied by the mix
network.) Although the main principles are closely related on a conceptual level,
the technical approaches differ in more ways than they coincide.

The crux of our investigation is how to eliminate all covert channels [24] from
communication channels in a mix network. For concreteness, imagine malware
that leaks the permutation applied by a corrupted mix server by encoding this
permutation in the publicly available random strings associated with mixing
(whether in the ciphertexts or the proof of robustness.) Or, conversely, consider
malware that applies to a set of inputs a permutation that looks random, but is
known to and chosen by the attacker.

To prevent such attacks, we need to both ensure that no covert channels can
be established4, as well as ascertain that no “exterior randomness” is used in
place of the intended “interior randomness”. Technically, these two requirements
translate to exactly the same issue: the ability to audit that all the randomness
used by a server was correctly generated by the server’s on-board pseudo-random
generator. This must be done without exposing the actual state of the pseudo-
random generator, since we do not wish to have to place any trust in observers
– other than the assumption that at least one of them would truthfully alert the
community if any irregularity is detected.

To protect the observers from attacks aimed at suppressing their activity,
we use the notion of undercover observers (as introduced in [3]). Undercover
observers are network participants that verify non-interactive proofs (or wit-
nesses) of consistent generation and use of randomness, and which do not need
to advertise their existence until they detect cheating and raise an alert.

The construction of witnesses of correct randomness is made difficult by
the fact that these must not reveal what randomness is used, but must still
eliminate covert channels with all but an exponentially small probability, and
must not introduce covert channels themselves. In particular, this makes most of
the recently developed techniques for efficient mixing unsuitable, since there is
no apparent way to prove a disjunction in a way that (a) uses only pre-committed
random strings, and (b) does not reveal what component of the proof the prover
knows a witness to. (However, we will show that our proposed technique in fact
can be used to implement such a proof, by ways of first implementing a mix
network that has the property.)

Also, it is interesting to note that the traditional use of cut-and-choose tech-
niques is not suitable either. It is clear that commitments that are not opened can
trivially be made to leak a logarithmic amount of information (in the length of
the commitment). In a situation with binary challenges, this allows an attacker
to select one commitment in a (2 × k) matrix of commitments, and use the se-
lected commitment to leak the information in question. Since this commitment
will only be audited with a 50% probability, this corresponds to a success rate
of an attacker of 50%. While it is easy to reduce this success rate, we note that
a success rate that is polynomial in the length of the transcripts is not desir-
able. However, defying the intuition associated with this example, we show how
to use vectors of homomorphic commitments to generate witnesses that defend
against attacks with all but an exponential probability. This is applied both to
re-encryption exponents and to permutations (as either could potentially be used
to implement a covert channel.) More precisely, we introduce a method by which
commitments are tied together in a pairwise manner, and where it is impossible
to modify either of the two committed values without this being detected when
only one of them is opened up.

While we base our design on a mix network construction that is not highly
efficient [18], we note that the overhead caused by the addition of our security

4 For practical reasons, we do not consider timing channels; we will discuss this later
on.

measures is minimal. In spite of the difficulties to design protocols that imple-
ment tamper-evidence, we see no reason why more efficient designs could not be
feasible. Thus, tamper-evidence is not a theoretical curiosity, but a practically
achievable goal. It is our hope that tamper-evidence will become a mainstream
design feature of any protocol that is potentially vulnerable to coercive attacks,
particularly in the context of electronic elections.

Organization of the paper. We begin by outlining related work (section 2),
followed by a description of our model and requirements (section 3), and a brief
overview of re-encryption mix networks (section 4). In section 5, we present
collapsed Merkle hash trees that will serve as a building block for our proto-
col. Finally, we present our tamper-evident mix network protocol in section 6,
together with relevant proofs.

2 Related Work

The concept of covert channels in cryptographic protocols was introduced in 1983
in the seminal work of Simmons [24, 25]. Simmons specifically demonstrated the
use of the Digital Signature Standard (DSS) signature scheme for covert commu-
nication. This showed that a secrete message could be hidden inside the authen-
ticator. Young and Yung [29, 30] later showed the existence of covert channels
in the key establishment algorithms of signature schemes.

Desmedt [4] presented a practical authentication scheme free of covert-channels,
in which an observer (named “active warden”) intercepts all the messages ex-
changed between two parties and verifies that they are free from covert infor-
mation before passing them on. The observer defined by Desmedt is “active”
in the sense that it interacts with the communicating parties. In contrast, [3]
defines signature schemes which can be verified free of covert channels by un-

dercover observers. Undercover observers verify signatures non-interactively, so
that their stealthy existence can remain a secret at least up until the point when
they detect an incorrect signature and raise an alarm. Undercover observers are
preferable to active observers, because they are far less vulnerable to attacks
aimed at suppressing their activity. This paper adopts the model of undercover
observers of [3], but considers the far more complicated problem of ensuring the
covert-free (or “tamper-evident”) operation of a mix network.

To motivate our tamper-evident mixnet construction, we review briefly other
mix networks in the literature and highlight the difficulties in making them
tamper-evident. As a first example, consider the mix network recently proposed
by Jakobsson, Juels and Rivest [10], and later used in the election scheme put
forward by Chaum [2]. Therein, each mix server re-encrypts and permutes a
list of n input ciphertexts two times, and commits to the ciphertext values in-
between the two rounds. Then, a set of verifiers selects some n challenges5 ; if
the ith challenge is a zero (resp. one) then the computation resulting in (resp.

5 As usual, this step can be replaced by a random oracle if the Fiat Shamir heuristic
is employed for challenge selection.

starting from) the ith ciphertext value in-between the two rounds is revealed.
Whereas this method does not result in the maximum anonymity set (namely
n), it still provides reasonable anonymity for many applications, and at a very
low cost. There is no straightforward way to design a tamper-evident variant of
this scheme, since pairs of commitments (to the left and to the right) do not
have the property that the modification of one of the values invalidates both

commitments. This results in a success probability of 50% for an adversary. This
can trivially be limited to 1/k if one were to employ k successive rounds of
re-encryption and permutation. The cost of this, though, would be linear in k.

Turning now to a second (and rather common) class of mix network con-
structions, let us take a brief look at a scheme suggested by Abe [1]. Therein,
the inputs are broken up in pairs, each one of which is mixed; the resulting list
of ciphertexts are then (deterministically) shifted around and paired up, and
the resulting pairs are mixed. This is repeated a logarithmic number of times in
the number of input ciphertexts. In each mix-of-two, it is proven that either the
identity permutation is used, or the “cross-over” permutation – along with cor-
responding proofs of correct re-encryption. This type of construction therefore
employs disjunctive proofs. While we can construct tamper-evident disjunctive
proofs using our proposed mix network scheme, we have not been able to find any
simple (and inexpensive) construction for disjunctive proofs. Naturally, the same
holds for disjunctive proofs involving larger number of inputs. Thus, this class
of mix network schemes are not easily adopted to implement tamper-evidence.

Given that electronic elections is one of our motivating applications, it is
meaningful to consider the impact of our approach in such settings. An interest-
ing example of a situation in which our construction has an immediate impact
is the coercive attack proposed by Michels and Horster [16] in which an attacker
succeeds in verifying the value of a cast vote by corrupting both a voter and
some random subset of mix servers. If an approach like ours is deployed (and
the model changed correspondingly) then such an attack will be detected, and
thus, will fail.

Some approaches, such as [17, 22], allow servers to verify each other’s actions
to avoid leaks of secret information (such as random permutations.) Our ap-
proach, in contrast, prevents the replacement of the state of the pseudo-random
generator. Moreover, and in comparison to these efforts, our scheme reduces the
threats associated with potential covert channels caused by use of interaction.

The strongest relation to previous work is found in the collusion-free pro-
tocols defined by Lepinksi, Micali, and Shelat [14], which allow for the detec-
tion of collusion by malicious participants during the execution of the protocol.
Our proposed scheme can be considered as the first practical implementation
of collusion-free protocol for mix-networks. While [14] presents a well-defined
abstract structure for collusion-free protocols, its application to mix networks
is not obvious, in particular given the need to retain privacy. From that point
of view, our contribution is to present a practical implementation eliminating
collusions, i.e., possibilities to build covert-channels while maintaining privacy
guarantees.

3 Model

Participants. We consider the following entities: users, servers, and observers.
In addition, we assume the existence of an authority and an attacker.

– The users generate ciphertexts and post these to a public bulletin board BB.

– Sequentially, the servers read the contents of BB and process portions of its
contents in batches, writing the results of the operation back to BB. These
results consist of a set of ciphertexts (that constitute the inputs to the next
server in the sequence) and a witness of tamper-freeness. The witness of
tamper-freeness constitutes evidence that the (pseudo) random source of the
server was not tampered with, and that the operation of the server correctly
proceeded according to that random source. As we shall see, the witness of
tamper-freeness implies the correctness of the mixing operation, and thus
our servers do not need to provide an additional proof of correct mixing.

– The attacker is allowed to corrupt all but two of the users all of the time;
this is corruption in the standard cryptographic sense, involving full read
and write access to the compromised machines. The servers are also able
to corrupt all of the servers all the time except during the key generation
phase; this corruption allows full write access to compromised machines, but
requires any information to be read from the machine to be transmitted us-
ing the standard communication media (as opposed to a secret side-channel).
Thus, it is assumed that an attacker can send messages to corrupted servers
out of band, but that all communication in the opposite direction (from a
corrupted server to the attacker) must utilize the BB, to which all servers
have constant read and (appendive) write access. The latter is not a stan-
dard cryptographic assumption, but corresponds to realistic attacks in which
software is corrupted by a “remote” attacker able to inject or replace code,
e.g., by means of malware. Finally, the attacker is assumed able to corrupt
(in the standard sense) all but one observer all of the time.

– The observers access BB and verify the correctness of witnesses posted
thereon; if any witness is invalid (or missing) then any uncorrupted observer
will initiate an alert.

– When an alert occurs, the authority will verify the validity of the alert (that it
was done in accordance with the protocol specifications) and then physically
disconnect any server whose witness was found to be invalid or missing6.

Note that our techniques do not protect against timing covert-channels. How-
ever, by imposing strict requirements on synchronization or introducing random
delays, one can protect against timing attacks as well, at the cost of a somewhat
reduced (but predictable) throughput.

6 We are mainly concerned with detection. After such detection, one can act on that
information using standard methods, such as emulation or replacement of the faulty
servers.

Goals.

– Correctness/robustness. The goal of the honest servers is to generate an
output that consists of a set of ciphertexts, with a one-to-one correspondence
to the batch of input ciphertexts given as input to the sequence of servers.
Two ciphertexts must both decrypt to the same plaintext in order for us to
say that they correspond to each other.

– Privacy. The goal of the attacker is to determine the mapping between
input and output ciphertexts (for input ciphertexts not generated by users
he has corrupted) with a probability of success that is significantly better
than what could be achieved by a guess made uniformly at random from
the possible mappings; or to extract information from a server that allows it
to be impersonated with a probability of success that is significantly better
that the probability of success that can be achieved without corruption of
any servers7.

– Tamper-evidence. The goal of the observers is to detect the use of any
randomness inconsistent with the initial state of the corresponding server.
This effectively corresponds to preventing covert communication and avoid-
ing that the output of a corrupted server is a non-trivial function of infor-
mation communicated to it by the attacker.

Trust. For the correctness property to hold, it is normally required that a
majority of mix servers are honest. In our setting, though, it suffices that one
observer and the authority are uncorrupted8.

Similarly, for the privacy property to hold in our proposed scheme, no trust
assumptions need to be made of either users or servers, but we have to assume
that at least one observer and the authority are uncorrupted. If we recall that the
main role of the observer is to detect inconsistent use of the randomness used
for privacy, we can provide correctness against privacy abuse to build covert
channel.

We do not need to trust any server with keeping any secret information of
any other server. We assume that the authority will promptly disconnect any
server failing to generate and output a valid witness for each transcript it writes
to the bulletin board.

7 We note that the second goal does not necessarily subsume the first. Consider, for
example, a re-encryption mix network in which each server authenticates its output
using its secret key. Knowledge of this key will not allow the attacker to determine
the permutation, but knowledge of the state of pseudo-random generator does. In
contrast, if we consider a decryption mix server based on padded RSA ciphertexts,
it is clear that knowledge of the secret key will allow an adversary to infer the
permutation.

8 Alternatively, the correctness property can be seen to hold in a slightly different
model in which there is no authority. Then, the requirement is instead that at least
one observer is uncorrupted, and that all consumers of information pay attention to
alerts.

Remark 1: Note that we make two simultaneous and different trust assump-
tions on servers. As far as tamper-evidence is concerned, we assume that the
servers are honest (i.e., not corrupted) during the key generation phase. How-
ever, in terms of the protocol robustness, we do not make this assumption. This
means that our protocol remains robust even if servers are corrupted during the
key generation phase, whereas the same does not hold for tamper-evidence.

Remark 2: We note that in the following, we only address how to make re-
encryption mixing tamper-evident. In most applications involving re-encryption
mix networks, there is a phase involving decryption of output ciphertexts. We
may assume that this functionality (which can be made tamper-evident follow-
ing the techniques presented in [3]) can be blocked by the authority in the case
of an alert. Practically speaking, this will be possible if a sufficient number of
decryption servers can be disconnected immediately upon detection of an irreg-
ularity in the mix phase. In the following, we focus solely on the re-encryption
mix process, and do not address the decryption process any further.

4 Preliminaries

We give a brief overview of re-encryption mix networks [18] based on the ElGamal
cryptosystem (a more detailed description can be found, e.g., in [6]):

– Key generation : let p and q be primes such that q | (p− 1) and let g ∈ Z
∗

p

be an element of order q, such that the ElGamal cryptosystem defined by g
in Z

∗

p is semantically secure against plaintext attacks [32] and also adaptive
chosen plaintext attacks. Consider a (t, l)-threshold encryption scheme [7]
where the secret key is shared among l mix-servers. For i = 1, · · · , l, mix-
server Si has secret key xi ∈ Z

∗

q and publicizes the corresponding public key

yi = gxi mod p. Let y =
∏l

i=1 yi mod p.

– Batch generation : Let mj denote the plaintext input of user Uj for j =
1, · · · , n. The ElGamal encryption of mj is

Enc(mj , rj) , (grj , yrj mj),

where rj ∈ Z
∗

q is chosen uniformly at random. Let the ciphertext be (aj , bj) =
Enc(mj , rj). Each user Uj submits the ciphertext (aj , bj) as well as a proof
of knowledge for the corresponding plaintext mj (See [8]).

– Mixing phase : Each mix-server Si performs two operations: re-encryption
and permutation. More precisely, server Si takes as input a list of n cipher-
texts ((a1, b1), · · · , (an, bn)) from BB. For j = 1, . . . , n, server Si re-encrypts
input (aj , bj) as follows:

(a′

j , b
′

j) = ReEnc ((aj , bj), αj) , (gαj · aj , yαj · bj) ,

where αj is a re-encryption parameter chosen at random in Z
∗

q . Server Si

then chooses a random permutation π on {1, 2, · · · , l} and outputs to BB

the permuted list
((

a′

π(1), b
′

π(1)

)

, · · · ,
(

a′

π(n), b
′

π(n)

))

.

– Decryption phase : A quorum of mix servers can do a threshold decryp-
tion of the final set of outputs, which yields the set of inputs (m1, · · · , mn)
permuted according to the successive permutations applied by the l mix
servers.

5 Building Block - Merkle Hash Tree Verification

A Merkle tree [15] is a tree consisting of nodes whose values are a one-way hash
function (for example, SHA-1 or MD5) of the values of their children nodes. Due
to their simplicity, Merkle trees are used for a wide range of secure authentication
schemes. A Merkle tree is generally a binary tree where the value at a node N
in the tree is defined with respect to the values Nleft and Nright of its children
by

N , h(Nleft ||Nright)

where h denotes a one-way hash function and “ || ” denotes concatenation.

· · ·

ρ

L1 R1 L2 R2 · · · Ln Rn

· · ·

ρ

L1 R1 R2 · · · Ln Rn

(a) (b)

L2

Fig. 1. A binary Merkle hash (a) and collapsed Merkle hash tree (b)

For better efficiency, our protocol does not use binary Merkle trees, but
instead collapsed Merkle hash trees in which 2n leaves are connected to the root
of the tree directly as shown in Fig. 1(b). In our protocol, the 2n leaves of the
collapsed Merkle hash tree will be the elements of two sets (L1, · · · , Ln) and
(R1, · · · , Rn) each of size n. We define a function MerTree that takes these sets
as inputs and outputs the root ρ of the corresponding collapsed Merkle hash
tree:

MerTree((L1, · · · , Ln), (R1, · · · , Rn)) , h
(

h(L1) ||h(R1) || · · · ||h(Ln) ||h(Rn)
)

The root ρ of the tree functions as a commitment to the sets (L1, · · · , Ln) and
(R1, · · · , Rn). Note that this commitment can be verified given:

– either (L1, · · · , Ln) and (h(R1), · · · , h(Rn))
– or (h(L1), · · · , h(Ln)) and (R1, · · · , Rn).

6 Tamper-evident Mix Network

We propose a tamper-evident mix network in which each mix server pre-generates
a random permutation together with a sequence of random re-encryption param-
eters that will be used to re-encrypt and mix the input batch. As explained in
section 3, we assume that the generation of these parameters occurs in a setup
phase prior to mixing, during which the mix servers are uncorrupted. During the
mixing phase, the mix server outputs a proof that it operates in accordance with
pre-generated parameters. Any deviation from these parameters invalidates the
corresponding proof with all but negligible probability. This mix-network proto-
col thus ensures that the operation of mix-servers is tamper-evident.

Key generation. As explained in section 4, the l mix servers jointly gener-
ate the secret and public parameters for a (t, l)-threshold ElGamal encryption
scheme. The public parameters are two primes p and q such that q|(p − 1) and
an element g ∈ Z

∗

p of order q. For i = 1, . . . , l, we let xi ∈ Z
∗

q denote the secret
key of mix-server Si and yi = gxi mod p the corresponding public key. We let
y =

∏l
i=1 yi mod p.

Let κ be a security parameter, such that 2−κ constitutes an acceptable error
probability (for example κ = 80). To prove tamper-evident mixing, each server Si

generates additional values as follows. For notational clarity, we omit the suffix
i, but it should be clear that each server generates its own set of the following
values:

• a random permutation π on n elements
• n random values αj ∈ Z

∗

q (j = 1, · · · , n) which are used as re-encryption
parameters in the mixing phase

• κ pairs of permutations on n elements
(

σ(1), τ (1)
)

, . . . ,
(

σ(κ), τ (κ)
)

such that

π = τ (k)◦σ(k) for all k = 1, · · · , κ. (As notational simplicity, we will continue
to represent the index k in the superscripted braces.)

• κn pairs of integers
(

β
(k)
j , δ

(k)
j

)

∈ Z
∗

q × Z
∗

q such that αj = β
(k)
j + δ

(k)
j for all

j = 1, . . . , n and k = 1, · · · , κ.

The mix then computes commitments to the values σ(k), τ (k), β
(k)
j , δ

(k)
j using

collapsed Merkle hash trees. More precisely, the mix server constructs κ collapsed
Merkle hash trees T (1), . . . , T (κ). For k = 1, · · · , κ, the leaves of T (k) consist of
the following 2n + 2 values in this order:

σ(k), τ (k),
(

β
(k)
1 , . . . , β(k)

n

)

,
(

δ
(k)
π(1), δ

(k)
π(n)

)

.

We let ρ(k) denote the root of T (k). Each mix-server publicizes the root values
ρ(1), . . . , ρ(κ) of its Merkle trees.

Batch generation Each user Uj (j = 1, · · · , n) encrypts its plaintext message
mj by using group ElGamal encryption as described in Section 3 and posts the
corresponding ciphertext to BB.

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

������
������
������
������
������
���

������
������
������
������
������
���

�

�

�

�

�

�

�

�

�

�

�

������
������
������
������
������
���

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

���

���α1

αnM
ix

in
g

P
ro

o
f
g
e
n
e
ra

ti
o
n

(κ
p
ro

o
fs

)
(a1, b1)

(an, bn)

.

.

.

(a′

π(1), b′

π(1))

(a′

π(n), b′

π(n))

β
(1)
1

β
(1)
n

β
(κ)
1

(a′

π(n), b′

π(n))

(a′

π(1), b′

π(1)).
.
.

δ
(1)

σ(1)(1)

δ
(1)

σ(1)(n)

δ
(κ)

σ(κ)(1)

δ
(κ)

σ(κ)(n)

.

.

.

(a1, b1)

(an, bn)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

β
(κ)
n

Si

„

a
(1)

σ(1)(n)
, b

(1)

σ(1)(n)

«

„

a
(κ)

σ(κ)(1)
, b

(κ)

σ(κ)(1)

«

„

a
(κ)

σ(κ)(n)
, b

(κ)

σ(κ)(n)

«

„

a
(1)

σ(1)(1)
, b

(1)

σ(1)(1)

«

ReEnc function π permutation

σ(κ)

σ(1) τ(1)

τ(κ)
ReEnc

ReEncReEnc

ReEnc

Fig. 2. Overview - A mix-server Si re-encrypts the input (aj , bj) by ReEnc((aj , bj), αj)
for j = 1, · · · , n and outputs (a′

π(j), b
′

π(j)) which is permuted according
to the permutation π. In the meanwhile, the mix-server computes as proof
κ sets of values; for k = 1, . . . , κ, the prover P computes (for j =

1, . . . , n) the values
“

a
(k)
j , b

(k)
j

”

= ReEnc

“

(aj , bj), β
(k)
j

”

and outputs W
(k) =

“

a
(k)

σ(k)(1)
, b

(k)

σ(k)(1)

”

, . . . ,
“

a
(k)

σ(k)(n)
, b

(k)

σ(k)(n)

”

.

Mixing phase For i = 1, · · · , l, mix-server Si reads from BB the list of n
ciphertexts output by Si−1 (the first server S1 gets from BB the list of n inputs
ciphertexts submitted by the n users). We denote this list of ciphertexts by
((a1, b1), . . . , (an, bn)). For j = 1, . . . , n, server Si re-encrypts the input (aj , bj)
as follows:

(

a′

j , b
′

j

)

= ReEnc ((aj , bj) , αj) ,

where the αj are the values generated by Si in the key generation phase (again,
we omit the index i for notational clarity). The mix server Si then outputs these
values permuted according to the permutation π, i.e.

(

a′

π(1), b
′

π(1)

)

, · · · ,
(

a′

π(n), b
′

π(n)

)

.

Proof of tamper-evidence. The mixnet outputs a witness of tamper-freeness.
This witness is computed non-interactively. However, the construction of the wit-
ness is easier to understand if we describe it in terms of an interaction between a
prover P (the mix-server) and a verifier V (the observers). It will be immediately
clear that this interactive protocol can be turned into a non-interactive witness
using the Fiat-Shamir heuristic.

1. (Commitments) For k = 1, . . . , κ, the prover P computes (for j = 1, . . . , n)
the values

(

a
(k)
j , b

(k)
j

)

= ReEnc

(

(aj , bj), β
(k)
j

)

(1)

and outputs

W(k) =
(

a
(k)

σ(k)(1)
, b

(k)

σ(k)(1)

)

, . . . ,
(

a
(k)

σ(k)(n)
, b

(k)

σ(k)(n)

)

(2)

2. (Challenges) The verifier V outputs κ random challenges c(1), . . . , c(κ) ∈
{0, 1}.

3. (Response to challenges) For k = 1, · · · , κ:
– If c(k) = 0: P outputs σ(k), h

(

τ (k)
)

, β
(k)
1 , . . . , β

(k)
n and

h
(

δ
(k)

π(k)(1)

)

, . . . , h
(

δ
(k)

π(k)(n)

)

– If c(k) = 1: P outputs h
(

σ(k)
)

, τ (k), h
(

β
(k)
1

)

, . . . , h
(

β
(k)
n

)

and

δ
(k)

π(k)(1)
, . . . , δ

(k)

π(k)(n)

4. (Verification) For k = 1, · · · , κ, the verifier checks the following depending
on the value of c(k):

– If c(k) = 0: V re-encrypts input (aj , bj) with re-encryption factors β
(k)
j ,

then permutes them according to permutation σ(k) and checks that the
result matches the set W(k) received from P in Step 1.

– If c(k) = 1: V re-encrypts output
(

a′

π(j), b
′

π(j)

)

with re-encryption factors

−δ
(k)

π(k)(j)
, then permutes them according to the inverse of permutation

τ (k) and checks that the result matches the set W (k) received from P in
Step 1.

Finally, V reconstructs the collapsed Merkle hash tree T (k) and verifies that
the root of that tree is equal to the root ρ(k) output by server Si in the
key generation step. It should be clear that the values output at the end
of step 3 enable V to reconstruct the Merkle hash tree T (k) regardless of
whether c(k) = 0 or c(k) = 1.
If any of the verification steps fails, the verifier V raises an alarm and the
prover (i.e. mix-server Si) is discarded.

Non-interactive proof of tamper-evidence. The interactive protocol given
above to verify the tamper-freeness of a mix server’s operation can be trans-
formed into a non-interactive protocol with the Fiat-Shamir heuristic (also known
as the random oracle model): the κ challenges in Step 1 of the proof can be re-

placed by the κ left-most bits of the hash of
(

(a′

π(1), b
′

π(1)), · · · , (a′
π(n), b

′

π(n))
)

.

A non-interactive protocol allows proofs of tamper-freeness to be verified by un-

dercover observers. Undercover observers need not reveal their existence until
they detect an incorrect proof and raise an alarm.

Decryption phase The final outputs of the mix server is decrypted by a quo-
rum of mix servers. Quorum ElGamal decryption can be made tamper-evident
following the techniques of [3].

6.1 Properties

Proposition 1. If the hash function h is second pre-image resistant, then a

dishonest prover P can cheat the verifier V with probability at most 2−κ in the

proof of tamper-evidence.

Proof. The proof is by contraposition. Let us assume the existence of a prover
P who can cheat the verifier V in the proof of tamper-evidence with probability
2−κ + ε. We show how to use P to find a second pre-image for the function h.
We proceed as follows:

1. V executes one instance of the key generation step described in Section 6. In
particular, V outputs the roots ρ(1), . . . , ρ(κ) of κ collapsed Merkle hash trees
T (1), . . . , T (κ). V also outputs a batch of n input ciphertexts ((a1, b1), . . . , (an, bn)).

2. P outputs a new batch of n ciphertexts ((a′′

1 , b′′1), . . . , (a′′

n, b′′n)), such that
there exists at least one index j ∈ {1, . . . , n} such that

(a′′

j , b′′j) 6= ReEnc
((

aπ(j), bπ(j)

)

, απ(j)

)

.

This condition expresses the assumption that P is a dishonest prover.
3. P outputs commitments W(k) for k = 1, . . . , κ. We distinguish two cases:

– If W(k) is not equal to the re-encryption of the inputs (aj , bj) with re-

encryption factors β
(k)
j permuted according to permutation σ(k), then

we say that the commitment W (k) is “input-incorrect” and we define
c(k) = 1.

– Otherwise, the commitment W(k) is equal to the re-encryption of the

inputs (aj , bj) with re-encryption factors β
(k)
j permuted according to

permutation σ(k). But since (a′′

j , b′′j) 6= ReEnc
((

aπ(j), bπ(j)

)

, απ(j)

)

, it

must then be the case that W(k) is not equal to the re-encryption of

the outputs (a′

π(j), b
′

π(j)) with re-encryption factors −δ
(k)

π(k)(j)
permuted

according to the inverse of permutation τ (k). We say then that the com-
mitment W(k) is “output-incorrect” and we define c(k) = 0.

4. The verifier V outputs κ random challenges c(1), . . . , c(κ) ∈ {0, 1}.
5. The prover responds to these challenges and the responses are verified by V

as described in the protocol of section 6.

With probability 2−κ, we have c(k) = c(k) for all k = 1, . . . , κ. The prover,
however, succeeds in convincing the verifier with probability 2−κ + ε. It follows
that with probability ε, the prover succeeds in convincing the verifier when there
exists an index k such that c(k) 6= c(k). In this case, we show how to compute a
second pre-image for the function h.

Without loss of generality, let us assume that for some k ∈ {1, . . . , κ}, we have
c(k) = 1 and c(k) = 0. In other words, the commitment W (k) is “input-incorrect”,
and V verifies the relationship between the inputs and the commitment. The root

ρ(k) of the Merkle tree T (k) commits P to the values σ(k), τ (k), β
(k)
1 , . . . , β

(k)
n

and δ
(k)
1 , . . . , δ

(k)
n . Let us denote σ

′(k), τ
′(k), β

′(k)
1 , . . . , β

′(k)
n and δ

′(k)
1 , . . . , δ

′(k)
n

the values used by P to compute W (k). Let us denote T
′(k) the collapsed Merkle

tree computed with these alternate values and let ρ
′(k) be the root of that tree.

We know two things:

• The commitment W(k) is “input-incorrect”. Thus
(

σ
′(k), β

′(k)
1 , . . . , β

′(k)
n

)

6=
(

σ(k), β
(k)
1 , . . . , β

(k)
n

)

.

• The proof succeeds. Thus ρ(k) = ρ
′(k).

Thus we have used P to compute a second pre-image for the function h. ut

Proposition 2. Our mix network protocol is tamper-evident.

Proof. This is an immediate corollary of Proposition 1. The proof of tamper-
evidence ensures that the operation of every mix server is entirely deterministic
based on the inputs committed to in the key generation step. ut

Proposition 3. Our mix network protocol guarantees correctness.

Proof. The correctness of the mixing follows immediately from tamper-freeness.
Indeed, we assume that correct re-encryption factors and permutations are se-
lected in the key-generation phase, since the mix server is assumed uncorrupted
during that phase (see our model and its justification in Section 3). ut

7 Conclusion

Motivated by electronic elections, much research has been devoted to building
mix networks that are secure against privacy threats, and whose operation can
be verified correct. This paper introduces a new notion of security, which we
call tamper-evidence. A mix server is tamper-evident if any variation from a
prescribed deterministic mode of operation is detectable. The tamper-evident
mix network scheme we propose extends the security requirements of mix net-
works to the run-time detection of covert channels (which constitute one kind of
disallowed variation from the prescribed deterministic operation). The tamper-
evidence of mix servers is verified by non-interactive observers, whom we call
undercover observers. Undercover observers can operate stealthily (at least up
to the point when they must raise an alarm) and are thus nearly impossible to
detect and attack.

References

1. M. Abe. Mix-networks on permutation networks, In ASIACRYPT ’99, LNCS 1716, Springer-
Verlag, 1999. pp. 258–273.

2. D. Chaum. Secret Ballot Receipts: True Voter-Verifiable Elections. RSA CryptoBytes, Volume
7, No. 2, 2004.

3. J. Choi, P. Golle, and M. Jakobsson. Tamper-Evident Digital Signatures: Protecting Certifi-
cation Authorities Against Malware. IACR ePrint report, No. 147, 2005.

4. Y. Desmedt. Subliminal-free authentication and signature. In Advances in Cryptology – Eu-
rocrypt ’88, LNCS 330. Springer-Verlag, 1988. pp. 23–33.

5. A. Fiat and A. Shamir. How to prove yourself: Practical Solution to Identification and Sig-
nature Problems. In Advances in Cryptology – Crypto’86, LNCS 26. Springer-Verlag, 1987.
pp. 186–194.

6. P. Golle and M. Jakobsson. Reusable Anonymous Return Channels. In Proc. of the Workshop
on Privacy in the Electronic Society(WPES) ’03, ACM Press, 2003, pp. 94–100.

7. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure Distributed Key Generation for
Discrete-Log Based Cryptosystems. In Proc. of Eurocrypt ’99, LNCS 1592, Springer-Verlag,
1999. pp. 295–310.

8. M. Jakobsson. A practical mix. In Proc. of Eurocrypt ’98, LNCS 1403, Springer-Verlag, 1998.
pp. 448–461.

9. A. Juels and J. Guajardo. RSA Key Generation with Verifiable Randomness. In Public Key
Cryptography 2002, LNCS 2274, Springer-Verlag, 2002. pp. 357–374.

10. M. Jakobsson, A. Juels, and R. Rivest. Making mix nets robust for electronic voting by ran-
domized partial checking. In Proc. of USENIX’02, pp. 339–353.

11. M. Jakobsson, T. Leighton, S. Micali, and M. Szydlo. Fractal Merkle Tree Representation and
Traversal. In Proc. of RSA Cryptographers’ Track 2003, 2003.

12. M. Jakobsson and M. Yung. Distributed ”Magic Ink” Signatures. In Advances in Cryptology
– Eurocrypt ’97, LNCS 1233, Springer-Verlag, 1997. pp. 450–464.

13. C. Karlof, N. Sastry, and D. Wagner, Cryptographic Voting Protocols: A Systems Perspective.
In USENIX Security ’05, August 2005. pp. 33–50.

14. M. Lepinksi, S. Micali, and A. Shelat. Collusion-Free Protocols. In STOC ’05, ACM Press,
2005.

15. R. Merkle. Secrecy, authentication, and public key systems. Ph.D. dissertation, Dept. of Elec-
trical Engineering, Stanford Univ., 1979.

16. M. Michels and P. Horster. Some remarks on a receipt-free and universally verifiable mix-
type voting scheme. In K. Kim and T. Matsumoto, editors, ASIACRYPT ’96, LNCS 1163,
Springer-Verlag, 1996.

17. C. A. Neff. A verifiable secret shuffle and its application to e-voting. In Proc. of CCS ’01.
ACM Press, 2001. pp. 116–125

18. W. Ogata, K. Kurosawa, K. Sako, and K. Takatani. Fault tolerant anonymous channel. In
Proc. of ICICS ’97, LNCS 1334, Springer-Verlag, 1997. pp. 440–444.

19. C. Park, K. Itho, and K. Kurosawa. All/Nothing Election Scheme and Anonymous Channel.
In Proceeding of Eurocrypt ’93, 1993.

20. D. Pointcheval and J. Stern. Security proofs for signature schemes. In Advances in Cryptology
– Eurocrypt ’96, LNCS 1070. Springer-Verlag, 1996. pp. 387–398.

21. Pedro A.D. Rezende. Electronic Voting Systems – Is Brazil Ahead of its Time?. RSA Crypto-
Bytes, Volume 7, No. 2, 2004.

22. M. K. Reiter and X. Wang. Fragile Mixing. In Proc. of CCS ’04, 2004. pp. 227–235
23. C. P. Schnorr. Efficient Signature Generation for Smart Cards. In Proc. of Crypto ’89, 1989.

pp. 239–252.
24. G. J. Simmons. The prisoners’ problem and the subliminal channel. In Proc. of Crypto ’83,

1983. pp. 51–67.
25. G. J. Simmons. The subliminal channel and digital signature. In Proc. of Eurocrypt ’84, LNCS

209, Springer-Verlag, 1996. pp. 364–378.
26. M. E. Smid and D. K. Branstad. Response to comments on the NIST proposed Digital Signa-

ture Standard. In Proc. of Crypto ’92, LNCS 740. Springer-Verlag, 1992. pp. 76–87.
27. M. Stadler, Publicly Verifiable Secret Sharing, In Advances in Cryptology – Eurocrypt ’96,

LNCS 1070, Springer-Verlag, 1996. pp. 190–199.
28. A. Young and M. Yung. The Dark Side of ”Black-Box” Cryptography, or: Should We Trust

Capstone? In Proc. of Crypto 1996, 1996. pp. 89–103.
29. A. Young and M. Yung. The prevalence of Kleptographic attacks on discrete-log based cryp-

tosystems. In Proc. of Crypto ’97, 1997. pp. 264–276.
30. A. Young and M. Yung. Kleptography: using cryptography against cryptography. In Proc. of

Eurocrypt ’97, LNCS 1233, Springer-Verlag, 1997. pp. 62–74.
31. A. Young and M. Yung. Auto-Recoverable and Auto-Certifiable Cryptosystems. In Advances

in Cryptology – Eurocrypt ’98, LNCS 1403, Springer-Verlag, 1998. pp. 119–133.
32. Y. Tsiounis and M. Yung. On the Security of ElGamal Based Encryption. In Proc. of PKC

’98, LNCS 1431, Springer-Verlag, Feb. 1998. pp. 117–134

