# Status of High Intensity Effects in the Spallation Neutron Source Ring

S. Cousineau, on behalf of the SNS Project PAC11, New York City





#### **Parameters**

Design ring parameters:

- Ring circumference: 248 m
- Beam: 1 GeV, 695 ns, 1.5e14 ppp
- Working point (6.23,6.20)
- Space charge tune shift 0.15

Ring was designed to accommodate a high intensity beam:

- ✓ Injection painting
- ✓ Collimation
- ✓ Titanium nitride coating in most areas
- $\checkmark$  Solenoidal windings in portion of collimation region.



collimation

electron scanner

wirescanner

emittance station

## **Current Operational Status**

- Ran 1.08 MW (> 1e14 ppp) in previous run cycle. Power lowered in 2011 to save \$\$\$.
- Up to 1.55e14 ppp accumulated in high intensity studies.
- Focus for first few years on ramping beam power, troubleshooting equipment issues. Now we begin to look at collective effects. Much of the data analyzed was taken for another purpose.
- Many interesting high intensity effects observed, both in production beam and in dedicated experiments.

Presently the beam intensity is NOT limited by collective effects.



3 Managed by UT-Battelle for the U.S. Department of Energy

#### **Profile Evolution of Production Beam**

Electron scanner profile measurement shows beam evolution during accumulation of a ~1.1 MW (1.2e14 ppp) production beam.



4 Managed by UT-Battelle

#### **Space Charge Profile Dilution Measurements**

Fix the painting scheme and vary the intensity via beam decimation.



- Space charge dilutes the beam.
- Significant dilution occurs by ~1e13 ppp.
- Creates a beam shape more ideally suited for the target.
- No significantly extended tails discernable.

5 Managed by UT-Battelle for the U.S. Department of Energy National Labora

#### **Impact on Emittance**

RMS emittance measurement for profiles shown on previous slide.



Though profile shape changes with intensity, rms emittance remains fairly constant.

6 Managed by UT-Battelle for the U.S. Department of Energy



#### **Transverse Coupling: Profiles**

Transverse coupling is observed for certain intensities and tune splits. <u>Example:</u> Horizontal beam size varied using horizontal injection kickers.



#### **Transverse Coupling: Emittance**

Coupling observed in emittance measurements.



# **Intensity Dependence Transverse Coupling**



• For some cases the presence of coupling depends only on intensity, and for others it depends on intensity and tune split.

• The two cases above have different machine configurations, specifically the closed orbit in the injection region.

• We have operated production beam in coupled state with no issues. Would be more ideal to restore independent control of transverse planes.

9 Managed by UT-Battelle for the U.S. Department of Energ

#### Profile Broadening due to Half-Integer Resonance

• Intensity 1.2e14 ppp. (Data taken Dec 14, 2010)

• Lowering vertical tune induces broadening in the vertical plane.

• No effect observed in the horizontal plane.



10 Managed by UT-Battelle for the U.S. Department of Energy

# **Comparison with ORBIT Simulations**



• ORBIT simulations have reasonable success reproducing measured profiles at both low and high intensity.

- The code slightly underestimates the amount of profile dilution.
- Simulations have not yet been used extensively to understand space charge effects in the ring.



### **Review of Instabilities Observed at SNS**

The following instabilities have been observed during dedicated high intensity studies:

- 1. Extraction kicker transverse instability, ~6 MHz.
- 2. Resistive wall instability, ~ 200 kHz
- 3. e-p instability, 20 100 MHz

Recent work has focused on the e-p instability. At SNS it does not have a clear-cut parameter dependence. Case by case variation is seen for:

- Intensity threshold for instability
- Dependence on 1<sup>st</sup> and 2<sup>nd</sup> harmonic RF
- Leading plane of instability (horizontal or vertical)
- Trailing or leading edge instability



# **Characteristics of e-p at SNS**

• We sometimes observe e-p on the leading edge of the beam, and other times the trailing edge or a combination of both.



• Additionally, the instability not consistent with Landau damping laws.



## Effect of Bunch Shape On e-p

The instability can be suppressed by creating a flatter profile using 1<sup>st</sup> or 2<sup>nd</sup> harmonic RF.



## e-p Signatures During Production

- Trace levels of e-p sometimes observed during production.
- Data shown here if from an 880 kW production beam on 03/17/2011.



#### e-p Feedback System

- New e-p feedback system can extinguish low level e-p during production.
- Studies not yet done to evaluate effectiveness for higher levels of e-p activity.



# **Extraction Kicker Instability Benchmark**

ORBIT's transverse impedance model was successfully used to model the extraction kicker instability.



# **Summary of Collective Effects**

| Phenomenon Observed                         | During Production?   | Impact on Production                                  |
|---------------------------------------------|----------------------|-------------------------------------------------------|
| Space charge profile<br>broadening          | Yes                  | Makes a flatter beam on target.                       |
| Transverse coupling                         | Sometimes            | Loss of independent control of planes. No impact yet. |
| Broadening due to resonance                 | Νο                   |                                                       |
| e-p Instability                             | Yes (very low level) | No impact.                                            |
| Extraction kicker<br>transverse instability | Νο                   |                                                       |
| Resistive wall instability                  | Νο                   |                                                       |

![](_page_17_Picture_2.jpeg)

#### **Ring Loss Pattern for 1 MW Operations**

- SNS ring losses are dominated by injection.
- Losses due to high intensity effects show up in the collimation region, along with RF and extraction based losses.
- Beam power is not limited by ring losses. Presently power is limited by SNS mission to provide high reliability for users.

![](_page_18_Figure_4.jpeg)

Ring loss snapshot for 1 MW operation.

![](_page_19_Picture_0.jpeg)

# The SNS ring is an ideal environment for studying high intensity effects.

PLEASE JOIN US!

![](_page_19_Picture_3.jpeg)