
Magnetic Fields and Magnet Design
Jeff Holmes, Stuart Henderson, Yan Zhang

USPAS
January, 2009

Vanderbilt

Lecture 2



Beam optics: The process of guiding a charged particle beam from 
A to B using magnets. 
An array of magnets which accomplishes this is a transport system, or 
magnetic  lattice. 

Recall the Lorentz Force on a particle: 
F = ma = e/c(E + v × B) = mv2/ρ, where m=γm0 (relativistic mass)

In magnetic transport systems, typically we have E=0.  So, 

F = ma = e/c(v × B) = m0γv2/ρ

Definition of Beam Optics



The simplest type of magnetic field is a constant field. A charged 
particle in a constant field executes a circular orbit, with radius 
ρ and frequency ω.
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To find the direction of 
the force on the particle, 
use the right-hand-rule.ω

Force on a Particle in a Magnetic Field

What would happen if the initial velocity had a component in 
the direction of the field?



A dipole magnet gives us a constant field, B.

The field lines in a magnet run from
North to South. The field shown at right is 
positive in the vertical direction.

Symbol convention:  
x - traveling into the page, 
• - traveling out of the page.

In the field shown, for a positively charged 
particle traveling into the page, the force is 
to the right.

In an accelerator lattice, dipoles are used to bend the beam trajectory. The 
set of dipoles in a lattice defines the reference trajectory:
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Dipole Magnets



Let’s consider the dipole field force in more detail. Using the Lorentz Force 
equation, we can derive the following useful relations:

For a particle of mass m, energy E, and momentum p, in a uniform field 
B:

(**Derivations**)
1) The bending radius of the motion of the particle in the dipole field 

is given by:

2) Re-arranging (1), we define the “magnetic rigidity” to be the 
required magnetic bending strength for given radius and energy:
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Field Equations for a Dipole



Recall that a current in a wire generates a magnetic field B which 
curls around the wire:
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Or, by winding many turns on a coil we can create a strong uniform 
magnetic field.

B The field strength is given by 
one of Maxwell’s equations:
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Generating a B Field from a Current



In an accelerator dipole magnet, we use current-carrying wires and 
metal cores of high μ to set up a strong dipole field:

N turns of current I generate 
a small H=B/μ in the metal. 
Hence, the field, B, across the 
gap, G, is large. G B

BB

(**Derivation**)

Using Maxwell’s equation for B, we can derive the relationship between 
B in the gap, and I in the wires:
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The Dipole Current-to-Field Relationship



We have seen that a dipole produces a constant field that can be
used to bend a beam.

Now we need something that can focus a beam. Without focusing, a 
beam will naturally diverge.

Consider the optical analogy of focusing a ray of light through a lens:
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The rays come to a focus 
at the focal point, f. The 
focusing angle depends on 
the distance from center, 
x.
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The farther off axis, the stronger 
the focusing effect! The 
dependence is linear for small x.

Optical Analogy for Focusing



Now consider a magnetic lens. This lens imparts a transverse 
momentum kick, Δp, to the particle beam with momemtum p.  

For a field which increases 
linearly with x, the resulting 
kick, Δp, will also increase 
linearly with x.

Beginning with the Lorentz force equation, we can solve for the focal 
length and focusing strength, k:

(**Derivation**)
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Focusing Particles with Magnets



A quadrupole magnet imparts a force proportional to distance from 
the center. This magnet has 4 poles:

X

Consider a positive particle traveling 
into the page (into the magnet field).

According to the right hand rule, the 
force on a particle on the right side of 
the magnet is to the right, and the 
force on a similar particle on left side 
is to the left.   

This magnet is horizontally defocusing. A distribution of 
particles in x would be defocused!

What about the vertical direction?
-> A quadrupole which defocuses in one plane focuses in the other.
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Quadrupole Magnets



As with a dipole, in an accelerator we use current-carrying wires 
wrapped around metal cores to create a quadrupole magnet:

The field lines are denser near 
the edges of the magnet, meaning 
the field is stronger there.

The strength of By is a function 
of x, and visa-versa. The field at 
the center is zero!

B

(**Derivation**)

Using Maxwell’s equation for B, we can derive the relationship between 
B in the gap, and I in the wires:
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Quadrupole Current-to-Field Equations



Quadrupoles focus in one plane while defocusing in the other. So, 
how can this be used to provide net focusing in an accelerator?

Consider again the optical analogy of two lenses, with focal lengths 
f1 and f2, separated by a distance d:
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The combined f is:
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What if f1 = -f2?

The net effect is focusing, 1/f = d/(f1f2)

Focusing Using Arrays of Quadrupoles



The key is to alternate focusing and defocusing quadrupoles. This is 
called a FODO lattice (Focus-Drift-Defocus-Drift). :

More on Focusing Particles …



Many other types of magnets are used in an accelerator. For 
instance, gradient magnets are a type of “combined function”
magnet which bend and focus simultaneously:

The B field in this magnet has both quadrupole and dipole 
components.

Another type of magnet is the solenoid, shown previously, which 
focuses in the radial direction.

Other Types of Magnets



So far we have derived the B fields for two types of magnets (dipole 
and quadrupole). It would be very useful for us to have a general 
expression to represent the B field of any magnet.  

Assumptions for a general accelerator magnet: 
1) There is a material-free region for passage of particles.
2) The magnet is long enough that we can ignore components of 

B in the z direction, and treat only the (x,y) plane.
3) Fields are calculated in a current-free region (                ) ->

there is a scalar potential V such that            .

Then, because                  , we have
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Laplace’s Equation 
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What does a solution to Laplace’s equation provide?

1) Any electromagnetic potential, V, which satisfies Laplace’s 
equation can be visualized using a set of equipotential lines (in 
2D) or equipotential surfaces (in 3D).

1) The B field, and thus the force on a particle, can easily be 
derived by differentiating V:

2) This is mathematically equivalent to the problem of 
electrostatics for E fields in charge-free regions.
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Properties of Solutions to Laplace’s Equation



If we adopt a cylindrical coordinate system for the solution, V, then 
we can guess a solution for the potential in the form of a Taylor 
expansion:  

By plugging this into Laplace’s equation in cylindrical coordinates, we 
can easily show that this satisfies ΔV=0.

V (r,ϕ,z) = −cp
e

rn

n!
[An (z)einφ

n>0
∑ + Bn (z)e− inφ ]

Where r = radial coordinate
An = coefficients
n = order in Taylor series
z = longitudinal coordinate. We neglect this 
dependence, assuming long magnets .

(**Proof**)

Solution to Laplace’s Equation



In practice, it will be more convenient to write the solution in
Cartesian coordinates, and to separate the real and imaginary pieces. 

Re[Vn (x,y)] = −cp
e

(−1)m (An + Bn ) xn−2m

(n − 2m)!
y 2m

(2m)!m= 0

n / 2

∑

Im[Vn (x,y)] = −cp
e

(−1)m (An − Bn ) xn−2m−1

(n − 2m −1)!
y 2m +1

(2m +1)!m= 0

(n−1)/ 2

∑

The real and imaginary pieces correspond to different physical 
orientations of the magnets – “skew” (real) and “normal” (imaginary). 
We are usually more interested in the “normal” magnets, because 
they decouple the linear motion in x and y.

(**Explanation**)

The Real and Imaginary Pieces 

Skew n-pole

Normal n-pole



Explicit Terms Through Octupole
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Octupole, n=4



Recall that a solution to Laplace’s equation gives a set of 
equipotential lines in the x-y plane. Some examples for “normal”
magnets:

Case n=1:

(**Derivations**)

Case n=2:

Equipotential lines 
are lines of 
constant y.
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Equipotential lines 
are lines of 
constant xy.

Equipotential Lines for Multipoles



Example: Expand the potential for the n=1 case, and then find the 
field from the potential.

(**Derivations**)
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We find that n=1 gives a dipole field. The coefficient A1-B1 is the dipole 
strength found earlier (κ=1/ρ). Note that for the normal case, only the 
vertical field (horizontal bending) is present. 

Example: The Dipole Field



Another Example: Now expand the n=2 case:

(**Derivations**)
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These are the equations for a normal quadrupole, which we derived 
earlier. We can associate the coefficient A2-B2 with the quadrupole
strength, k. 

Example: The Quadrupole Field



Finally, let’s get the B fields in general for any n:
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Where the coefficients, An and Bn, are related to the “multipole strength 
parameters”:
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(**Explanation**)

General Definition of B-Field
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The general equation for B allows us to write the field for any n-pole 
magnet. Examples of upright magnets:

180° between 
poles

90° between 
poles

60° between 
poles

n=1: Dipole n=2: Quadrupole n=3: Sextupole n=4: Octupole

45° between 
poles

• In general, poles are 360°/2n apart.
• The skew version of the magnet is obtained by rotating the upright 
magnet by 180°/2n.

Other n-Pole Magnets



n-Pole Uses
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Bending (following 
reference trajectory)

Focusing the beam

“Chromatic 
compensation”



Magnet examples
Dipole Quadrupole

Sextupole



However, there is no such thing as a perfect n-pole magnet!
All magnets have at least small contributions from other 
multipoles besides the main multipole. Generally, we require 
that the main multipole be much stronger than the other 
multipoles.

In terms of the Taylor series expansion for B, we require the 
fields generated by the desired An±Bn to be much larger 
(several orders of magnitude) than fields generated by 
unwanted An’±Bn’.

In a “separated function” accelerator lattice, the magnets are 
designed to fulfill specific duties: Dipoles bend the beam, 
quadrupoles focus the beam, etc.  

Realistic Magnetic Fields



How do we design a real magnet for a specific multipole component?
As seen earlier, our solution to Laplace’s equation, V, gives us the 
equipotential lines for any particular multipole. Since             , the 
field is perpendicular to the equipotential surfaces. Because B is also 
perpendicular to the surface of a ferromagnetic material, such as 
iron, the surface is an equipotential surface. Therefore, we design 
the ferromagnetic “pole tip” to match the equipotential surface of 
the desired multipole.
The equation for the equipotential surface becomes the equation for 
the pole tip geometry.

V(x,y)=const

Iron(**Examples** - Dipole 
and Quadrupole)

Magnet Design – Pole Tip Geometry

VB ∇=



Now we need to add a B field to the material.

Below saturation of iron or similar material, the field lines on the 
vacuum side are always perpendicular to the pole tip surface:

Magnetic lines may 
have both || and ⊥ path 
inside the material, but 
outside, only the field  
⊥ to the surface 
survives.

Below saturation, we can add the B field any way we want inside the 
material. By setting the pole tip geometry to the magnetic 
equipotential for a multipole, we get B fields of the desired multipoles.

B

Iron Core

B-Fields at the Pole Tips



In a non-saturated field, the relationship between field strength, B, 
and driving current, I, is linear. Above saturation, an increase in 
current does not generate a corresponding increase in field:

I

H=μB

μ1

μ2

μ3

Different materials saturate at different levels. 

Saturation of Magnetic Materials



Hysteresis and Magnet Cycling

An external B-field, created by a current I, creates a B-field in iron by 
aligning tiny internal dipoles (electron spins) in the material.

However, if the current and external field are dropped to zero, the 
material remains partially magnetized.This gives rise to “hysteresis” and 
the need for magnet cycling.

a - start point
b - saturation
c - residual magnetization
d - B=0
e – saturation with –BIa

b

e

c

d
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Summary:
1) First, we found the equations for dipole and quadrupole

magnets, and analyzed the resulting force on the particle: We 
found that dipoles are used to bend particles along the 
“reference trajectory”, and quadrupoles are used to focus 
particles.

2) Then, we found that we could derive the equations for the B 
fields for any accelerator magnet from a general form.

3) Finally, we discussed the basic principles of magnet design. 

Now we have the complete equations for B. We also have the 
equation for the force on a particle due to these fields: F=q(v x B)

We can now write the equation of motion for a particle in an 
accelerator!

Summary


