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OutlineOutline
• Traveling-wave linear accelerators
• Longitudinal beam dynamicsLongitudinal beam dynamics

M t i l f W l Ch t 3 4 6• Material from Wangler, Chapters 3, 4, 6



Guided Electromagnetic Waves in a Cylindrical Guided Electromagnetic Waves in a Cylindrical 
Waveguide Waveguide 

• We can accomplish each of these by transporting EM waves in a 
waveguide

• Take a cylindrical geometry.  The wave equation in cylindrical 
coordinates for the z field component iscoordinates for the z field component is
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• Assume the EM wave propagates in the Z direction.  Let’s look for 
a solution that has a finite electric field in that same direction:

)cos(),(),,,( 0 tzkrEtzrEE zzz ωφφ −==
The azimuthal dependence must be repetitive in φ:• The azimuthal dependence must be repetitive in φ:

)cos()cos()( tzknrRE zz ωφ −=
• The wave equation yields:
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Cylindrical WaveguidesCylindrical Waveguides
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• Which results in the following differential equation for R(r) (with 
x=kcr)

• The solutions to this equation are Bessel functions of order n,  Jn(kcr), 
which look like this:



Cylindrical WaveguidesCylindrical Waveguides

• The solution is:
)cos()cos()( tzknrkJE cn ωφ −=

• The boundary conditions require that
)cos()cos()( tzknrkJE zcnz ωφ

0)(E
• Which requires that 
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• Label the n-th zero of J :

n allfor  0)( =akJ cn

0)( =mnm xJLabel the n th zero of Jm: 
• For m=0, x01 = 2.405 
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Cutoff Frequency and Dispersion CurveCutoff Frequency and Dispersion Curve

222
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• The cylindrically symmetric waveguide has

222 )( ckzc +=ωω0 zc zc

• A plot of ω vs. k is a hyperbola, 
called the Dispersion Curvep

Two cases:
• ω > ωc: kz is a real number and 

the wave propagates
• ω < ωc: kz is an imaginary 

number and the wave decays 
exponentially with distance
O l EM ith f• Only EM waves with frequency 
above cutoff are transported!



Phase Velocity and Group VelocityPhase Velocity and Group Velocity
• The propagating wave solution has

tzkz ωφ −=)cos(),(0 φzrEEz =

A point of constant φ propagates ith a elocit called the phase

Th l t ti i li d i l id h h

• A point of constant φ propagates with a velocity, called the phase 
velocity, 
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• The electromagnetic wave in cylindrical waveguide has phase 
velocity that is faster than the speed of light:  

• This won’t work to accelerate particles.  We need to modify the phase 
velocity to something smaller than the speed of light to accelerate 
particlesparticles 

• The group velocity is the velocity of energy flow:

UvP gRF =
A d i i b• And is given by:

dk
dvg
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Traveling Wave StructuresTraveling Wave Structures

ccvp >=

• Recall that in the cylindrical waveguide, the electromagnetic wave 
has phase velocity that is faster than the speed of light:  
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c
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• This won’t work to accelerate particles.  We need to modify the phase 
velocity to the speed of light (or slower) to accelerate particles in a 
traveling wavetraveling wave

• Imagine a situation where the EM wave phase velocity equals the 
particle velocity

• Then the particle “rides the wave” PARTICLEvThen the particle rides the wave

Pv

• A “disk-loaded waveguide” can be made to have a phase velocity 
equal to the speed of light.  These structures are often used to 
accelerate electrons

• The best and largest example of such an accelerator is the SLAC 
two-mile long linac



DiskDisk--loaded waveguide structureloaded waveguide structure

KEK



Energy Gain in a DiskEnergy Gain in a Disk--Loaded WaveguideLoaded Waveguide

D fiDefine
• Ea: longitudinal accelerating field amplitude
• U: stored energy per unit length
• Pw: traveling wave power
• dPw/dz: power dissipation per unit length
• Shunt impedance per unit length )//(2 dzdPErL −=Shunt impedance per unit length
• We have )//( dzdPUQ w−=ω

)//( dzdPEr waL
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We ha e t o choices for the accelerating str ct re consideredWe have two choices for the accelerating structure, considered 
now in turn



Constant Impedance Traveling Constant Impedance Traveling Wave StructureWave Structure

• Consider a disk-loaded waveguide with uniform cell geometry along the 
length, then Q, vg, rL, α0 are independent of z:
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• Power decays exponentially along the length of the structure
• The Electric field amplitude is
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• At the end of a waveguide of length Lg g
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Constant Impedance Structure ParametersConstant Impedance Structure Parameters



Constant Gradient Traveling Wave StructureConstant Gradient Traveling Wave Structure
• A more common design keeps the gradient constant over the length
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• A more common design keeps the gradient constant over the length, 
which requires that the attenuation α0 depend on z

dz
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• Which can be integrated to yield
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• The attenuation factor is

L• The energy gain 
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• To achieve a constant gradient, the 
SLAC linac structure tapers from a 
radius of 4 2 to 4 1 cm and the iris radiiradius of 4.2 to 4.1 cm, and the iris radii 
taper from 1.3 to 1.0 cm over 3 meters



Constant Gradient Traveling Wave StructureConstant Gradient Traveling Wave Structure

• The group velocity is
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• The filling time is
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• For typical parameters the filling time is

∫ ∫ −−g eLzLzv0 0 )1)(/(1)( 0 ωω

For typical parameters, the filling time is 
~1 µsec, and the beam pulse is 1-2 µsec



Constant Gradient Structure ParametersConstant Gradient Structure Parameters



SLAC LinacSLAC Linac
• Largest in the world.  

Reached energies of 
50 GeV



Synchronicity condition in multicell RF Synchronicity condition in multicell RF 
structuresstructures

TM010 Cavities
Drift spaces

l1 l2 l3 l4 l5

β1 β2 β3 β4
β5

• Suppose we want a particle to arrive at the center of each gap at φ=0.  
Then we would have to space the cavities so that the RF phase 
advanced by

l1 l2 l3 l4 l5

advanced by 
– 2π if the coupled cavity array was driven in zero-mode
– Or by π if the coupled cavity array was driven in pi-mode



Synchronicity ConditionSynchronicity Condition

Zero-mode: π
βλ
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• RF gaps (cells) are spaced by βλ, which 
increases as the particle velocity increases

Pi-mode: πππωφ nlctct 22Pi mode: π
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• RF gaps (cells) are spaced by βλ/2, which 
increases as the particle velocity increasesincreases as the particle velocity increases



Longitudinal DynamicsLongitudinal Dynamics
• The drift space length between gaps was calculated for a particular particle with a• The drift space length between gaps was calculated for a particular particle with a 

very specific energy.  This is the reference particle, or the synchronous particle.
• What happens to particles slightly faster or slower than the synchronous particle that 

the linac was designed to accelerate?
• Linacs are operated to provide longitudinal focusing to properly accelerate particle• Linacs are operated to provide longitudinal focusing to properly accelerate particle 

over a range in energies or arrival time
• Slower particles arrive at the next gap later than the synchronous particle

– They experience a larger accelerating field
Faster particles arrive at the next gap earlier than the synchronous particle• Faster particles arrive at the next gap earlier than the synchronous particle

– They experience a smaller accelerating field



Equations of Motion IEquations of Motion I

• Consider an array of accelerating cells with drift tubes and accelerating gaps
• The array is designed at the n-th cell for a particle with synchronous phase, kinetic 

energy and velocity φsn, Wsn, βsn.  Note that the synchronous phase is not zero!
• We express the phase energy and velocity for an arbitrary particle in the n-th cellWe express the phase, energy and velocity for an arbitrary particle in the n th cell 

as φn, Wn, βn
• Assume that the particles receive a longitudinal kick at the geometric center of the 

cell, and drift freely to the center of the next cell
• The half-cell length isThe half cell length is
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• Where N=1/2 for Pi-mode and 1 for zero-mode
• The cell length (center of one drift tube to center of next) is therefore
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Equations of Motion IIEquations of Motion II
• The RF phase changes as the particle advances from one gap to the 

next according to
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• The phase change during the time an arbitrary particle travels from 
gap n-1 to gap n, relative to the synchronous particle is
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Equations of Motion IIIEquations of Motion III
• Next, derive the difference in kinetic energies of the arbitrary particle 

and the synchronous particle

( ) )cos(cos0TLqEWW φφ −=−Δ( ) )cos(cos ,0 nsnnns TLqEWW φφΔ

• To figure out the dynamics, we could track particles through gaps on 
a computer using these difference equations

• To get a feel for the dynamics “on paper”, we can convert these 
difference equations to differential equations by replacing the 
discrete action of the fields with a continuous field

• So we replace 
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Equations of Motion IVEquations of Motion IV
Assume acceleration rate is small and that E T φ and β are• Assume acceleration rate is small, and that E0T, φs and βs are 
constant

• We arrive at the equations of motion:
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• Finally
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• Where V is the potential energy term, and H (the Hamiltonian) is total 

energy



Stable RF BucketStable RF Bucket
• There is a potential well 

when -π <φs< 0
• There is acceleration for      

/2 /2-π/2 <φs< π/2
• The stable region for phase 

motion is φ2 < φ < -φs
Th “ t i ” d fi th• The “separatrix” defines the 
area within which the 
trajectories are stable.

• The stable area is called theThe stable area is called the 
“bucket”

• Stable motion means that 
particles follow a trajectory p j y
about the stable phase, with 
constant amplitude given by 
Hφ



Hamiltonian and Hamiltonian and SeparatrixSeparatrix ParametersParameters

• We can calculate the Hamiltonian to complete the discussion
• At the potential maximum where, φ = -φs , φ’=0 and w=0

))()( i (BH φφφ ))cos()(sin( sssBH φφφφ −−−=

• The points on the separatrix must therefore satisfy
2Aw

• We can calculate the “size” of the separatrix.  We will do the energy width.  
Th i idth d t φ φ
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The maximum energy width corresponds to φ = φs
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is twice this value:
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Phase WidthPhase Width

• The maximum phase width is determined 
from the two solutions for w=0.  One 
solution is φ1= -φs. The other solution φ2 is 
given byg y

• The total phase width is
ssss φφφφφφ sincoscossin 22 −=−

φφΨ• The total phase width is
• The phase width is zero at φs=0 and 

i t φ /2 i i 2 (

2φφ −−=Ψ s

maximum at φs=-π/2, giving ψ=2π (see 
Wangler figure 6.4)



Small Amplitude OscillationsSmall Amplitude Oscillations
• Look at small amplitude oscillations.  Letting φ-φs be 

small, 
0))(sin( =−−+′′ ssAB φφφφ

• This is an equation for simple harmonic motion with an angular 
frequency given by
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• Note that as the beam becomes relativistic the frequency goes to• Note that as the beam becomes relativistic, the frequency goes to 
zero

• From the equation of motion we can calculate the trajectory of a 
particle:particle:
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• This is the equation of an ellipse in w, φ-φs phase space
• Particles on a particular ellipse circulate indefinitely on that 

trajectory



Longitudinal Phase Space MotionLongitudinal Phase Space Motion
• We studied the approximation of small acceleration rate, and constant 

velocity, synchronous phase, etc.
• In a real linac, the velocity increases, and the phase space motion and 

β = const β ≠ const

separatrix becomes more complicated.
• The “acceptance” takes a shape called the “golf-club”

βγ = const βγ ≠ const



Longitudinal Dynamics: Real data from SNS Longitudinal Dynamics: Real data from SNS 
Drift Tube LinacDrift Tube Linac

• Longitudinal “Acceptance Scan”Simulated DTL1 
Acceptance

DataData

FWHM=24 deg



Measurement of SNS SC Linac Acceptance (Y. Measurement of SNS SC Linac Acceptance (Y. 
Zhang)Zhang)

SimulationMeasurement



Adiabatic Phase DampingAdiabatic Phase Damping
• Louiville’s theorem:

The density in phase space of non-interacting particles in a conservative 
or Hamiltonian system measured along the trajectory of a particle is y g j y p
invariant.

• Or, if you prefer: phase space area is conserved
• Area of ellipse: WA ΔΔφArea of ellipse:

00 WArea ΔΔ= φπ
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• Which gives
)( ssγβ

• Since area is conserved an initial 
distribution with phase width (Δφ)i
acquired a smaller phase widthacquired a smaller phase width 
after acceleration:
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The EndThe End

• That concludes our whirlwind tour of 
Linear Accelerators

• Now, on to Rings….Now, on to Rings….


