

Acceleration and Phase Stability

Second Chapter First Class

August 30, 2004

Accelerator Systems Division

Oak Ridge National Laboratory

March 10-12, 2003

Types of Accelerators

- DC Accelerators:
 - Get DC beams of low energy and narrow energy spread
 - Cockcroft-Walton
 - Charge Capacitors in Parallel
 - Discharge in Series
 - ~750 keV
 - Front ends on high energy accelerators until RFQs
 - Tandem Van de Graaff
 - Transport charges on insulating belt to high voltage terminal
 - ~15 MeV
 - Limited by high voltage breakdown
 - Can double the voltage with stripper foil tandem
 - Can't make circular DC accelerator -

$$\times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

 ∇

Types of Accelerators

- AC Accelerators:
 - Induction Accelerators
 - Induction linear accelerators (linacs)
 - High Intensity
 - Up to a few MeV
 - Betatron
 - Get constant orbit radius
 - Energy limited by monotonic increse of flux

$$\dot{\Phi} = 2\pi r^2 B$$

- RF Accelerators
 - RF linacs
 - Highest energy electron accelerators
 - Preacceleration for synchrotrons
 - Cyclotrons
 - Big magnets
 - Split RF cavities called "Dee"s
 - Spiral orbit
 - Energies to several hundred MeV
 - Synchrotrons
 - Strong focusing
 - Highest energies for protons TeV
 - Electron light sources

March 10-12, 2003

- RF Cavities are highly metallic conducting cavities that can support an infinite number of electromagnetic wave solutions.
- The boundary conditions for these solutions are approximately conducting walls.
- Although there are an infinite number of solutions, we want a low order solution with strong E_z , where the beam travels in the z direction. A good choice is the TM_{010} mode.
- There are a few figures of merit that are used to describe RF cavities:
 - The transit time factor relates the actual energy boost to the energy boost from a fixed (in time) field
 - The Q of the cavity relates the loss rate due to resistivity of the walls to the energy stored in the fields inside the cavity.
 - The shunt impedance relates the energy gain per unit charge in the beam to the resistive loss rate.
- For proton or ion synchrotrons, it is usually necessary to adjust the cavity frequency as the beam is accelerated.

- There is a variety of ways to arrange cavities into individual or multicell accelerating structures.
- Accelerating structures can be driven independent RF sources for each cavity, or a single source can drive multiple cavities.
- The relationship between phases in successive cavities is of critical importance the fields are time varying and they must be aligned with the beam as it passes through.
- Because the cavity fields vary in time, it is necessary to use bunched, rather than continuous, beams.
- In electron linacs, traveling waves are used to accelerate the beam. It is necessary to slow their phase velocities, which are greater than c, using disks inserted into the waveguide.

- Read Edwards and Syphers, Chapter 2 through page 41.
- Problems, due Tuesday, 09/14/2004:
 - 2.1
 - 2.2
 - 2.3
 - 2.4
 - 2.5
 - 2.7

March 10-12, 2003