Airport Viz — A 3D Tool to Enhance Security Operations

Daniel B. Koch, Ph.D.
Oak Ridge National Laboratory; Oak Ridge, Tennessee, USA

Abstract

In the summer of 2000, the National Safe Skies Alliance (NSSA) awarded a project to the Applied
Visualization Center (AVC) at the University of Tennessee, Knoxville (UTK) to develop a 3D computer tool
to assist the Federal Aviation Administration security group, now the Transportation Security
Administration (TSA), in evaluating new equipment and procedures to improve airport checkpoint security.
A preliminary tool was demonstrated at the 2001 International Aviation Security Technology Symposium.
Since then, the AVC went on to construct numerous detection equipment models as well as models of
several airports. Airport Viz has been distributed by the NSSA to a number of airports around the country
which are able to incorporate their own CAD models into the software due to its unique open architecture.
It provides a checkpoint design and passenger flow simulation function, a layout design and simulation
tool for checked baggage and cargo screening, and a means to assist in the vulnerability assessment of
airport access points for pedestrians and vehicles.

Introduction

Creating a 3D application can be a daunting task even for experienced programmers. When the intended
operator is only slightly familiar with using any form of visualization for running computer simulations, the
task becomes even more formidable. Fortunately, there now exist development environments for creating
3D visual simulation tools with easy-to-understand user interfaces. This paper describes one such project
where an open-ended visual simulation tool was developed for the NSSA [1] and the TSA to simulate
airport security checkpoint layouts, checked baggage inspection systems, and other airport security
operations. Visual simulation tools can be a valuable aid for exploring new technologies and procedures
prior to fielding.

The term virtual reality often conjures up images of computer games or Hollywood films. Since the term is
becoming somewhat overused, many professionals in the field now prefer the term virtual environment or
visual simulation [2, 3]. Regardless of the terminology the aim remains the same - to use immersive
software techniques to add a level of realism to an application. The benefit of such an approach to airport
security and the methodology used to implement the tool are the topics of this paper.

The 4" International
Aviation Security Technology Symposium
November 27 — December 1, 2006

Project Description
The main goals of the project included:

- Developing an extensive library of 3D computer models of various detection equipment.

« Constructing 3D computer models of selected airports including passenger security and hand
baggage inspection areas, checked baggage areas, and pedestrian and vehicle access points.

« Writing a 3D visual flow simulation for the above models.

At the time of this writing, more than 100 computer models of various detection devices such as metal
detectors, x-ray machines, and chemical analyzers have been developed. Custom models of the
Knoxville, Atlanta, and Seattle airport checkpoint areas have also been completed. A software layout and
passenger flow simulation tool was initially written to assist airport checkpoint security designers.
Complementary tools were then developed for checked cargo/baggage screening and employee/vendor
access to restricted areas of the airport. These tools were finally consolidated into a single program called
Airport Viz.

System Design

A number of initial goals were defined for the software tool to increase its widespread adoption. First the
tool had to be easy to use by someone with average computer skills. This had implications for the user
interface design. Second, it had to be scalable, being able to run on a laptop at the low end and on a fast
graphics workstation at the high end of the hardware spectrum. Cost considerations also played a part. It
was decided that the runtime environment had to be inexpensive and not require a distribution license.
Finally, the tool had to stand alone as a means for letting the end-user create new simulations so that they
did not have to go back to the original developers for each new variation.

Figure 1 shows the screen of a typical simulation. The button bar may be seen at the lower right side of
the window. All of the major commands may be executed from the button bar. Auxiliary keyboard
commands may be executed during certain operations. Mouse movement controls the user's perspective
while the simulation is running. This allows the security designer to interactively view the simulation from
any angle, which may be useful in evaluating visual obstructions during screening operations.

The 4" International
Aviation Security Technology Symposium
November 27 — December 1, 2006

i CheckPoint Yiz 1.2 - sample

Major operations required by the user include importing different detection devices into the scene, placing
them at various locations, defining a path or paths to be taken by passengers, and specifying the
passenger traffic loads. Once the simulation starts, the user may navigate around the scene to view
passenger traffic from any perspective. Simulation speed is controllable. Passenger generation and
device operation follow probabilistic models. A layout may be saved and recalled for later use. The
application has been tested on laptop computers and dedicated graphics workstations with good results.

Software Development
With projects of this size and complexity, it was imperative that a structured approach be taken for
software development. This included using tools both for the management of the project as well as for the
actual code writing. To accomplish this, software engineering tools were selected and modified to work
within the graphical WorldUp environment. Of particular utility were those methods employed by the so-
called Cleanroom Software Engineering process [4-7]. Spiral development or incremental development
are two similar terms used to describe this process. The methodology has as its goal defect-free code.

The project spanned nearly 36 months and generated approximately 60 megabytes of code. From the
beginning, staff changes were seen as inevitable and raised concerns over ongoing support of the
software produced. Therefore, the development team set goals for the project, including the need for a

The 4" International
Aviation Security Technology Symposium
November 27 — December 1, 2006

self-documenting design, embedded training aids, and most of all, low software maintenance
requirements.

Program Operation
Referring back to Figure 1 it can be seen that the user interface is very simple. User control is restricted to
the use of a button bar for basic operations and keyboard commands for certain options. All of the
available commands are always visible unlike drop-down menu systems. Pop-up tool tips help the user
associate button operations with their respective icons.

Initially a user starts off with a blank workspace and imports an airport model. It is then populated with
various detectors and architectural elements using a menu system organized according to categories. In
this respect the tool behaves similarly to a CAD program. Using the mouse and arrow keys, the user lays
out the checkpoint design. Figure 2 shows a screen capture of information displayed while importing a
typical device model. An end user may add to the model database if they have the capability of building
their own 3D models.

Import Object

Select a model and press [mpart.

Category
Heimatn Spstems

Model
HI-SCAN E040i |

kMaodel Infa | Presiew Back

Figure 2. Model Import Screen

The next step involves defining paths that the simulated passengers take through the checkpoint layout.
Users may define several groups of paths for the same physical layout to experiment with different
passenger processing schemes. Alarm handling paths may also be defined to cover the situation where
additional passenger screening is needed such as after triggering a metal detector for example. Figure 3
illustrates what the user sees during path definition.

The 4" International
Aviation Security Technology Symposium
November 27 — December 1, 2006

i CheckPoint ¥iz 1.3 - sample

Figure 3. Path Definition Screen

Finally, the simulation is ready to run. The user begins by specifying various passenger parameters such
as traffic load and walking speed. These values feed the underlying probabilistic model. The frame time
can also be specified allowing the user to run the simulation in real time or faster/slower as desired. Once
a simulation has run its course a window showing statistics for the passenger flow is displayed. The data
may then be saved to a file for further analysis. Figure 4 shows the results of one such simulation run.

The 4" International
Aviation Security Technology Symposium
November 27 — December 1, 2006

Uszer-Defined Settings

Dezired Pazzenger Amval Rate 250 paszengers/min
Pazzenager W alking Speed 15 feetfzec

Simulatian Time 01 zeciframe

Simulation Hesults

Elapzed Time 98 min

Frame R ate 200 frames/sec

Actual Pazzenger Amival Rate 171 paszzengers/min

Owerall Throughput 140 pazzengers
141 pazzengers/min

Path T hroughpits

exit: B0 pagzengers [B.1 pazzengerz/min]
left; 24 pazzengers (2.4 pazsengerzmin]
center: 22 pazzengers [2.2 pazsengers/min)
nght: 34 pazzengers [3.4 pazsengers/min]

Save Data... Cloze

Figure 4. Statistics Screen

While the example above highlights a passenger checkpoint design, the software allows any sort of flow
simulation which includes checked baggage operations and passenger/vehicle airport access.

Conclusions

The underlying 3D visualization technology used in developing the software tool described here may be
extended to other complementary areas. Now that the placement and flow simulation has been
developed, it is possible to interact with it in an immersive setting. This would involve the use of
peripherals such as a head mounted display and pinch gloves with head and hand trackers. An operator
or security person could experience the visualization as though they were inside it. The equipment and
airport settings would appear life-size thus giving the user many more cues as to the desirability of a
particular layout. In addition, checkpoint operators could actually be given realistic detection equipment
training in this manner.

The 4" International
Aviation Security Technology Symposium
November 27 — December 1, 2006

References

[1] National Safe Skies Alliance, http://www.sskies.org

[2] J. Vince, Virtual Reality Systems, Harlow, UK: Addison-Wesley, 1995.

[3] L. Davis, et. al., “Enabling a Continuum of Virtual Environment Experiences”, IEEE Computer
Graphics and Applications, Vol. 23, No. 2, pp. 10-12, March/April 2003.

[4] H.D. Mills, “Stepwise Refinement and Verification in Box-Structured Systems”, IEEE Computer,
Vol. 21, No. 6, pp. 44-54, June 1988.

[5] A. Hausler, R.C. Linger and C.J. Trammell, “Adopting Cleanroom Software Engineering with a
Phased Approach”, IBM Systems Journal, Vol. 33, No. 1, 1994.

[6] R.C. Linger, “Cleanroom Process Model”, IEEE Software, Vol. 11, pp. 50-58, March 1994.

[7] S.J. Prowell, C.J. Trammell, R.C. Linger, J.H. Poore, Cleanroom Software Engineering,
Technology and Process, Reading, MA: Addison-Wesley, 1999.

Acknowledgments

The author would like to acknowledge the contributions of several students and colleagues to the
development of Airport Viz including (in alphabetical order): Susan Beck, Marcus Dutton, Qi Lin, Neena
Nambiar, Kim Nylander, Matthew Washer, Andrew Wilson, and Dayu Yang. Dr. Koch is currently a senior
R&D staff member at the Oak Ridge National Laboratory where he is creating a software framework for
combining discrete-time simulation with geospatial data in a virtual environment for homeland security
applications. He also serves as Deputy Director of the joint UT/ORNL Center for Homeland Security and is
an Adjunct Associate Professor at UTK.

The 4" International
Aviation Security Technology Symposium
November 27 — December 1, 2006

