
Creating a Software Framework for
Simulating Satellite Geolocation

Daniel B. Koch, Ph.D.
Computational Sciences and Engineering Division

Oak Ridge National Laboratory
Oak Ridge, TN USA

kochdb@ornl.gov

Abstract—It is hard to imagine life these days without having
some sort of electronic indication of one's current location.
Whether the purpose is for business, personal, or emergency use,
utilizing smart cell phones, in-vehicle navigation systems, or
location beacons, dependence on the Global Positioning System
(GPS) is pervasive. Yet the availability of the GPS should not be
taken for granted. Both environmental (e.g., terrain, weather)
and intentional interference (i.e., jamming) can reduce or deny
satellite access. In order to investigate these and other issues, as
well as to explore possible alternative satellite constellations, an
application called the Satellite Simulation Toolkit (SatSim) was
created. This paper presents a high-level overview of SatSim and
an example of how it may be used to study geolocation.

I. INTRODUCTION

The Satellite Simulation Toolkit (SatSim) is a software
framework integrating a number of functional elements that
allow a user to explore different satellite constellations and
digital estimation techniques for determining a position fix for
an observer in conjunction with the Global Positioning System
(GPS) [1]. A simple graphical user interface breaks down
typical geolocation research activities and tools into four
sections termed tasks, applications, resources, and sites using
tabs and buttons.

Tasks are scripts written in the form of wizards that guide a
user through a series of steps to perform some sort of
simulation, visualization, or analysis, such as plotting the orbits
of a satellite constellation or investigating the operation of a
Kalman filter to estimate an observer's position. Applications
include standalone programs that perform some useful function
like plotting data or connecting a GPS receiver. Some
applications might have an open application programming
interface (API) that allow them to be used as part of the task
wizards. Others may simply be useful to have nearby to
perform a side calculation. Resources include both web and
local reference material, such as satellite ephemeris or data
packet descriptions, collected in one convenient location.
Finally, sites are user-customized maps that are utilized by the
task wizards for visualizing simulations like satellite orbit
propagation and observer position estimation. The intent of the
toolkit design is to organize in one place all of the functionality
typically needed by a researcher to investigate this topic.

This project builds on the more general Geospatial
Integrated Problem Solving Environment (GIPSE, pronounced
gypsy) software framework created by the author [2]. GIPSE
allows custom applications having a geospatial basis to be
developed quickly. It brings together an intuitive graphical user
interface, a spatial database, an automatic report generator, and
a simple-to-use interactive map editor. The GIPSE core
software is constructed with open-source tools, including
Python, wxPython, and PostgreSQL, and uses non-proprietary
map data from the National Aeronautics and Space
Administration (NASA) and the U.S. Geological Society
(USGS). Reports may utilize templates created in either
OpenOffice or Microsoft formats.

As with all problem solving environments (PSE), the goal
is to provide the user with an organized set of resources to
solve specific problems. The user may or may not be an expert
in the field of study or in the use of a particular tool suite. For
expert users, a PSE may allow efficient application of well-
known tools to a very specific problem. It may also help guide
a non-specialist to apply unfamiliar tools to a general problem.

II. SOFTWARE DESIGN

An open and extensible architecture was adopted for
SatSim to allow the inclusion of other programs, both free
open-source software (FOSS) and government/commercial off-
the-shelf (GOTS/COTS) software. This addresses the desire of
some users who want to include software tools they are already
familiar with in the user interface. If a published API exists or
the program can be called through a command-line interface
with arguments, the functionality of the additional program can
be leveraged by the task scripts in new ways. If an API is not
available, the program can still be added to the user interface
manually and launched on demand similar to a shortcut, alias,
or symbolic link.

The SatSim user interface is inspired by the current
generation of mobile phones whose simple interfaces consist
mainly of buttons that launch applications. Simple interfaces
are a benefit to novice users learning a new program. Fig. 1
shows the first of four panels presented to the user. The Tasks
Panel is populated by buttons that launch customized scripts.
These scripts act as software wizards to guide a user through a
series of steps to complete a task. As an example, the Analyze

Prepared by ORNL, managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725.

Results task, with a typical instruction screen as shown in Fig.
2, guides a user through a set of steps to analyze and
summarize simulation results. As the steps in the wizard are
followed, the user provides or selects data and often interacts
with a map. At the conclusion of the task, a formatted report
may be generated automatically. Other tasks may be simpler,
involving only the gathering or viewing of data or map features
from the built-in spatial database without the need for a report.
Additional screens shown are dedicated to external program
links (Fig. 3), local and web documents (Fig. 4), and interactive
maps (Fig. 5). This simple four-panel organizational scheme
lends itself to quick mastering by a new user.

One of the major components of SatSim is the Oak Ridge
National Laboratory (ORNL) Geospatial Viewer (OGV) [3]. It
is used to provide various interactive map displays, including
true-color satellite/aerial images, false-color elevation maps,
and thematic maps, that form the foundation for viewing
geospatial data and simulations. On top of the base map layer,
georegistered overlays and vector features from the spatial
database can be displayed. A number of mark-up tools allow
the user to add their own georegistered features. An OGV map
is highly interactive and can be customized, automated, and
animated to meet the specific needs of a visualization. It is also
a means to both export and import geospatial data to and from
other Geographic Information System (GIS) data sources and
applications, both open and proprietary, through common file
formats.

III. SIMULATION EXAMPLE

The Simulate Geolocation task is a Python script that uses
the functionality of several underlying programs and modules
contained within SatSim to simulate GPS navigation. It acts as
a wizard, prompting the user to select a satellite constellation as
well as a display map for visualization. Using the physics of
satellite motion, range and doppler data are generated for a
particular observer position. These data are then used as inputs
to the estimator which is implemented with a digital Kalman
filter. Position errors and estimator convergence, among other
performance data, are collected in files for later plotting with

the Analyze Results task. The wizard also controls the map-
based visualization as the simulation progresses.

Fundamental to the operation of SatSim is knowing the
orbital dynamics of the satellite constellation. This is provided
by the SPG4 propagator software [4]. Using two-line element
(TLE) files updated frequently and available on-line [5], the
position and velocity of each satellite in the constellation is
calculated at each simulation update time. The output data from
the propagator are provided in the earth-centered, earth-fixed
(ECEF) coordinate frame. Satellite subpoints on the surface of
the Earth are plotted on a map by converting these data to
geographic coordinates (i.e., latitude and longitude). The icons
placed on the map may be right-clicked by the user to view the
satellite height and the period of its orbit among other
parameters.

Using the relative position of each satellite in the
constellation with respect to an observer, SatSim first
disregards those satellites which fall below a user-specified
elevation angle. This allows the simulation of shadowing due
to terrain or the use of a directional receiver antenna. For those
satellites left in clear view of the observer, both a pseudorange
and pseudorange-rate are computed. The pseudorange is equal
to the true range between the pair plus an error term related to
the unknown clock bias between the satellite transmitter and
terrestrial receiver. The bias value can be set by the user.
Similarly, a clock drift error term is added to the true radial
velocity from the satellite to the observer to produce the
pseudorange-rate value. The pseudorange and pseudorange-rate
values represent the measured data used by the estimator to
calculate the observer's position [6] [7].

The Kalman filter is often employed for estimating the
position of an observer using GPS navigation [8]. To be more
specific, the discrete-time version of the extended Kalman filter
(EKF) is used since the equations describing the satellite-
observer geometry are nonlinear. SatSim uses a five-state EKF
to estimate the unknown position of a stationary observer in
ECEF coordinates as well as the unknown clock bias and drift.
At every update of the simulation, the position, velocity,

Figure 1. Tasks panel. Figure 2. Analysis task wizard.

pseudorange, and pseudorange-rate are used for every satellite
in view as inputs. In theory, only three visible satellites are
needed for determining observer position. Having more
satellites in view is a practical necessity and results in smaller
errors. For the GPS, this is usually not a problem outside of
urban areas with tall buildings.

Using a similar notation as in [8], the state vector at discrete
time index k for the EKF consists of the stationary observer
coordinates as well as the clock bias and clock drift error terms
as in (1).

xk=[
xobs

yobs

zobs

d
ḋ
] (1)

We assume in this simple model that the clock drift term ḋ
is constant and that the clock bias term d depends upon it
linearly with time so that the state transition can be described
by

xk=[1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 t
0 0 0 0 1

]xk−1 . (2)

In this linear model the Jacobian F k of the state transition
function is equal to the matrix in (2). Note that the model does
not require  t to be constant for each update.

Although the process function is linear, the measurement
function is not since it contains range and range-rate terms
involving squares and square roots. The estimated
measurement vector is given by

zk=[rsod ṙsoḋ] . (3)

where rso represents the satellite-observer range and
ṙso the range-rate using estimated values for the observer

position and satellite ephemeris. The true measurement vector
zk would consist of the measured pseudorange and

pseudorange-rate values. The corresponding Jacobian H k
is given by

H k=[u so x u so y u so z 1 0
−v sat x/rso −vsat y /rso −v sat z /r so 0 1] (4)

where uso represents a unit vector from the satellite to the
observer. For simplicity the time dependence of the elements in
(3) and (4) have not been shown explicitly.

With these definitions, the EKF time update (prediction)
equations are:

x k
--=F k x k −1 (5)

Pk
--=F k P k−1 F k

TQ (6)

while the measurement update (correction) equations are given
by:

S k=H k P k
-- H k

TR (7)

K k=P k
-- H k

T Sk
−1 (8)

xk=x k
--K k  zk−zk  (9)

Pk= I−K k H k P k
-- (10)

We note that the process and measurement noise covariance
matrices Q and R are held constant in SatSim. This constraint
could be relaxed in a future version.

Since the discussion is dealing with a simulation, and the
true position of the observer is known, it is possible to inspect
the performance of the EKF at every update. SatSim computes
the observer position error vector and presents it either in
ECEF or east-north-up (ENU) coordinates. The latter is the
coordinate frame of the observer also referred to as the local

Figure 3. Applications panel. Figure 4. Resources panel.

tangent plane. In addition to position, bias, and drift estimation
errors, SatSim tracks the error covariance matrix Pk of the
EKF, which describes convergence, and a number of residual
errors, which describe model fit. Other outputs track the overall
relative geometry between the satellites and the observer. Plots
are available for all of the outputs as a function of time through
the Analyze Results task.

Since Python is an interpreted language, one may question
its suitability for simulation purposes. Fortunately, the
language has several mechanisms for interacting with compiled
modules written in other languages for time-critical or
computation-intensive operations. As mentioned previously,
the SPG4 program, written in C and compiled for each
operating system that SatSim supports (Windows, Mac OS X,
Linux), is used to calculate satellite position and velocity. In a
similar fashion the EKF is implemented using the numerical
Python library numpy which is written in C++. In the case of
SPG4, the program is called within Python as a subprocess. For
numpy, Python bindings to matrix functions are already
provided so they can be called normally. This blending of
interpreted and compiled program modules allows graphical
user interfaces to be quickly coded in a simple language while
not sacrificing the speed of a compiled language for numerical
simulations.

IV. OTHER EXAMPLES

The Show Orbit task is used to plot the ground track of one
orbital period of either a single satellite or an entire
constellation on a map that the user chooses. Fig. 6 illustrates
one orbit for the International Space Station (ISS) beginning at
the time the task was run. Right-clicking on the satellite icon
reveals the geographic coordinates of the current satellite
subpoint, its height above the earth, and the time required for
one orbit. These values come from using the SPG4 program
and the corresponding satellite TLE file.

Fig. 7 shows the output from the Track Real-time task. Here
the user has selected the entire Iridium communications
satellite constellation. Starting with the current time, the

positions of each satellite are plotted at increments of one
second. The resulting ground tracks are also shown streaming
behind. Iridium satellites are organized in six, nearly polar
orbital planes which are easily discerned from the figure. One
can also see the counterrotating seam by observing the
opposing trailing ground tracks over South America.

In order to gain insight into the behavior of satellite
geolocation, it is instructive to view the satellite positions and
output from the EKF position estimate as a function of time.
Fig. 8 shows the GPS constellation near the time of
convergence for the estimator. For each satellite, its current
subpoint is indicated by an icon as in previous examples. Also
shown are the intersections of each satellite pseudorange
sphere with the WGS-84 ellipsoid (solid yellow line) as well as
the intersection of the doppler cone with the plane of the
satellite velocity vector (dashed yellow line). The former is not
a perfect circle due to the geographic map projection used
while the latter shows how the doppler cone angle changes as
the satellite approaches or recedes relative to the observer's
position. A magenta dot shows the estimated position of the
observer calculated by the EKF. At convergence the
pseudorange rings will theoretically intersect at a single point.

Once a geolocation simulation has been run, several
different performance graphs may be plotted. Only two of
several choices are presented here. Fig. 9 shows the position
estimate error in the ENU observer coordinate frame. Fig. 10
shows convergence behavior by plotting the trace of the error
covariance matrix of the EKF. The user can zoom in to a
portion of the plot dynamically for greater readability. Plotting
is achieved using the open-source gnuplot program called as a
subprocess within SatSim.

V. CONCLUSION

The development of SatSim has proven useful for the study
of satellite geolocation. Although there are certainly a number
of alternative satellite analysis and visualization programs
available either for free or commercially, none afforded this
author the ability to make low-level code changes or customize
the visualization of results in a cross-platform environment.
Using the GIPSE framework helps organize functionality,

Figure 5. Sites panel. Figure 6. World map showing one orbit of the International Space Station.

documentation, and data in a way that facilitates research.
Being able to show animated results in a GIS context often
offers insight into the workings of the estimator. A bonus is
that animated maps makes presentations more meaningful for
colleagues who are not well versed in the field.

ACKNOWLEDGMENT

The author would like to express his thanks for ideas and
feedback offered by his colleagues at ORNL, especially Ms.
Laura Anderson, Mr. Ben Huey, Dr. Jorge Suris-Pietri, and Mr.
Michael Vann.

REFERENCES

[1] A. El-Rabbany, Introduction to GPS – the global positioning system, 2nd

edition. Norwood, MA: Artech House, 2006.

[2] D. B. Koch, “A geospatial integrated problem solving environment for
homeland security applications,” Proc. of the 10th Annual IEEE
International Conference on Technologies for Homeland Security, pp.
211–215, November 8-10, 2010.

[3] D. B. Koch, “Building custom GIS applications using open-source
toolkits – a case study,” Free and Open Source Software for Geospatial
Conference, http://2009.foss4g.org/presentations/#presentation_18,
October 20-23, 2009.

[4] D. Vallado, P. Crawford, R. Hujsak, and T. Kelso, Revisiting spacetrack
report #3: rev 1, AIAA Report 2006-6753-Rev1. Herndon, VA:
American Institute of Aeronautics and Astronautics, 2006.

[5] “CelesTrak,” http://celestrak.com/, accessed December 2010.
[6] E. Kaplan and C. Hegarty, Understanding GPS – principles and

applications, 2nd edition. Norwood, MA: Artech House, 2006.
[7] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle, GNSS – Global

Navigation Satellite Systems. Vienna, Austria: Springer-Verlag, 2008.
[8] G. Welch and G. Bishop, “An introduction to the Kalman filter, TR95-

041, University of North Carolina at Chapel Hill, July 2006.

Figure 8. Convergence of pseudorange rings during geolocation.

Figure 10. Convergence behavior of the error covariance matrix.

Figure 7. Real-time tracking example showing Iridium constellation.

Figure 9. Position errors for the East-North-Up coordinate frame.

