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Abstract—It is  hard to  imagine  life  these  days  without  having 
some  sort  of  electronic  indication  of  one's  current  location. 
Whether the purpose is for business, personal, or emergency use, 
utilizing  smart  cell  phones,  in-vehicle  navigation  systems,  or 
location beacons, dependence on the Global Positioning System 
(GPS) is pervasive. Yet the availability of the GPS should not be 
taken  for  granted.  Both  environmental  (e.g.,  terrain,  weather) 
and intentional interference (i.e.,  jamming) can reduce or deny 
satellite access. In order to investigate these and other issues, as 
well as to explore possible alternative satellite constellations, an 
application called the Satellite Simulation Toolkit  (SatSim) was 
created. This paper presents a high-level overview of SatSim and 
an example of how it may be used to study geolocation.

I. INTRODUCTION

The  Satellite  Simulation  Toolkit  (SatSim)  is  a  software 
framework  integrating  a  number  of  functional  elements  that 
allow a  user  to  explore  different  satellite  constellations  and 
digital estimation techniques for determining a position fix for 
an observer in conjunction with the Global Positioning System 
(GPS)  [1].  A  simple  graphical  user  interface  breaks  down 
typical  geolocation  research  activities  and  tools  into  four 
sections termed tasks,  applications,  resources, and  sites using 
tabs and buttons.

Tasks are scripts written in the form of wizards that guide a 
user  through  a  series  of  steps  to  perform  some  sort  of 
simulation, visualization, or analysis, such as plotting the orbits 
of a satellite constellation or investigating the operation of a 
Kalman filter to estimate an observer's position.  Applications 
include standalone programs that perform some useful function 
like  plotting  data  or  connecting  a  GPS  receiver.  Some 
applications  might  have  an  open  application  programming 
interface (API) that allow them to be used as part of the task 
wizards.  Others  may  simply  be  useful  to  have  nearby  to 
perform a side calculation.  Resources include both web and 
local  reference  material,  such  as  satellite  ephemeris  or  data 
packet  descriptions,  collected  in  one  convenient  location. 
Finally,  sites are user-customized maps that are utilized by the 
task  wizards  for  visualizing  simulations  like  satellite  orbit 
propagation and observer position estimation. The intent of the 
toolkit design is to organize in one place all of the functionality 
typically needed by a researcher to investigate this topic.

This  project  builds  on  the  more  general  Geospatial 
Integrated Problem Solving Environment (GIPSE, pronounced 
gypsy) software framework created by the author  [2]. GIPSE 
allows  custom  applications  having  a  geospatial  basis  to  be 
developed quickly. It brings together an intuitive graphical user 
interface, a spatial database, an automatic report generator, and 
a  simple-to-use  interactive  map  editor.  The  GIPSE  core 
software  is  constructed  with  open-source  tools,  including 
Python, wxPython, and PostgreSQL, and uses non-proprietary 
map  data  from  the  National  Aeronautics  and  Space 
Administration  (NASA)  and  the  U.S.  Geological  Society 
(USGS).  Reports  may  utilize  templates  created  in  either 
OpenOffice or Microsoft formats.

As with all problem solving environments (PSE), the goal 
is  to provide the user  with an organized  set  of resources  to 
solve specific problems. The user may or may not be an expert 
in the field of study or in the use of a particular tool suite. For 
expert  users,  a PSE may allow efficient  application of well-
known tools to a very specific problem. It may also help guide 
a non-specialist to apply unfamiliar tools to a general problem.

II. SOFTWARE DESIGN

An  open  and  extensible  architecture  was  adopted  for 
SatSim to  allow the  inclusion  of  other  programs,  both  free 
open-source software (FOSS) and government/commercial off-
the-shelf (GOTS/COTS) software. This addresses the desire of 
some users who want to include software tools they are already 
familiar with in the user interface. If a published API exists or 
the program can be called through a command-line interface 
with arguments, the functionality of the additional program can 
be leveraged by the task scripts in new ways. If an API is not 
available, the program can still be added to the user interface 
manually and launched on demand similar to a shortcut, alias, 
or symbolic link.

The  SatSim  user  interface  is  inspired  by  the  current 
generation of mobile phones whose simple interfaces  consist 
mainly of buttons that  launch applications.  Simple interfaces 
are a benefit to novice users learning a new program. Fig.  1 
shows the first of four panels presented to the user. The Tasks  
Panel is populated by buttons that launch customized scripts. 
These scripts act as software wizards to guide a user through a 
series of steps to complete a task. As an example, the Analyze 
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Results task, with a typical instruction screen as shown in Fig. 
2,  guides  a  user  through  a  set  of  steps  to  analyze  and 
summarize simulation results. As the steps in the wizard are 
followed, the user provides or selects data and often interacts 
with a map. At the conclusion of the task, a formatted report 
may be generated automatically.  Other tasks may be simpler, 
involving only the gathering or viewing of data or map features 
from the built-in spatial database without the need for a report. 
Additional  screens  shown are  dedicated  to  external  program 
links (Fig. 3), local and web documents (Fig. 4), and interactive 
maps (Fig.  5).  This simple four-panel  organizational  scheme 
lends itself to quick mastering by a new user.

One of the major components of SatSim is the Oak Ridge 
National Laboratory (ORNL) Geospatial Viewer (OGV) [3]. It 
is used to provide various interactive map displays, including 
true-color  satellite/aerial  images,  false-color  elevation  maps, 
and  thematic  maps,  that  form  the  foundation  for  viewing 
geospatial data and simulations. On top of the base map layer, 
georegistered  overlays  and  vector  features  from  the  spatial 
database can be displayed. A number of mark-up tools allow 
the user to add their own georegistered features. An OGV map 
is highly interactive and can  be customized,  automated,  and 
animated to meet the specific needs of a visualization. It is also 
a means to both export and import geospatial data to and from 
other Geographic Information System (GIS) data sources and 
applications, both open and proprietary, through common file 
formats.

III. SIMULATION EXAMPLE

The Simulate Geolocation task is a Python script that uses 
the functionality of several underlying programs and modules 
contained within SatSim to simulate GPS navigation. It acts as 
a wizard, prompting the user to select a satellite constellation as 
well as a display map for visualization. Using the physics of 
satellite  motion,  range  and  doppler  data  are  generated  for  a 
particular observer position. These data are then used as inputs 
to the estimator which is implemented with a digital Kalman 
filter. Position errors and estimator convergence, among other 
performance data, are collected in files for later plotting with 

the  Analyze Results task.  The wizard also controls the map-
based visualization as the simulation progresses.

Fundamental  to  the  operation  of  SatSim is  knowing the 
orbital dynamics of the satellite constellation. This is provided 
by the SPG4 propagator software  [4]. Using two-line element 
(TLE) files updated frequently and available on-line  [5],  the 
position and velocity of  each  satellite in the constellation is 
calculated at each simulation update time. The output data from 
the propagator are provided in the earth-centered, earth-fixed 
(ECEF) coordinate frame. Satellite subpoints on the surface of 
the  Earth  are  plotted  on  a  map by converting  these  data  to 
geographic coordinates (i.e., latitude and longitude). The icons 
placed on the map may be right-clicked by the user to view the 
satellite  height  and  the  period  of  its  orbit  among  other 
parameters.

Using  the  relative  position  of  each  satellite  in  the 
constellation  with  respect  to  an  observer,  SatSim  first 
disregards  those  satellites  which  fall  below a  user-specified 
elevation angle. This allows the simulation of shadowing due 
to terrain or the use of a directional receiver antenna. For those 
satellites left in clear view of the observer, both a pseudorange 
and pseudorange-rate are computed. The pseudorange is equal 
to the true range between the pair plus an error term related to 
the unknown clock bias between the satellite transmitter and 
terrestrial  receiver.  The  bias  value  can  be  set  by  the  user. 
Similarly,  a clock drift error term is added to the true radial 
velocity  from  the  satellite  to  the  observer  to  produce  the 
pseudorange-rate value. The pseudorange and pseudorange-rate 
values represent  the measured data used by the estimator to 
calculate the observer's position [6] [7].

The  Kalman  filter  is  often  employed  for  estimating  the 
position of an observer using GPS navigation [8]. To be more 
specific, the discrete-time version of the extended Kalman filter 
(EKF)  is  used  since  the  equations  describing  the  satellite-
observer geometry are nonlinear. SatSim uses a five-state EKF 
to estimate the unknown position of a stationary observer in 
ECEF coordinates as well as the unknown clock bias and drift. 
At  every  update  of  the  simulation,  the  position,  velocity, 
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pseudorange, and pseudorange-rate are used for every satellite 
in  view as  inputs.  In  theory,  only three visible satellites  are 
needed  for  determining  observer  position.  Having  more 
satellites in view is a practical necessity and results in smaller 
errors. For the GPS, this is usually not a problem outside of 
urban areas with tall buildings.

Using a similar notation as in [8], the state vector at discrete 
time index  k for the EKF consists of the stationary observer 
coordinates as well as the clock bias and clock drift error terms 
as in (1).

xk=[
xobs

yobs

zobs

d
ḋ
] (1)

We assume in this simple model that the clock drift term ḋ
is  constant  and  that  the  clock  bias  term  d depends  upon  it 
linearly with time so that the state transition can be described 
by

xk=[1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 t
0 0 0 0 1

]xk−1 . (2)

In this linear model the Jacobian F k  of the state transition 
function is equal to the matrix in (2). Note that the model does 
not require  t  to be constant for each update.

Although the process function is linear,  the measurement 
function  is  not  since  it  contains  range  and  range-rate  terms 
involving  squares  and  square  roots.  The  estimated 
measurement vector is given by

zk=[rsod ṙsoḋ ] . (3)

where  rso  represents  the  satellite-observer  range  and 
ṙso  the range-rate using estimated values for the observer 

position and satellite ephemeris. The true measurement vector 
zk  would  consist  of  the  measured  pseudorange  and 

pseudorange-rate values. The corresponding Jacobian  H k  
is given by

H k=[ u so x u so y u so z 1 0
−v sat x/rso −vsat y /rso −v sat z /r so 0 1] (4)

where uso  represents a unit vector from the satellite to the 
observer. For simplicity the time dependence of the elements in 
(3) and (4) have not been shown explicitly.

With these  definitions,  the  EKF time update  (prediction) 
equations are:

x k
--=F k x k −1 (5)

Pk
--=F k P k−1 F k

TQ (6)

while the measurement update (correction) equations are given 
by:

S k=H k P k
-- H k

TR (7)

K k=P k
-- H k

T Sk
−1 (8)

xk=x k
--K k  zk−zk  (9)

Pk= I−K k H k P k
-- (10)

We note that the process and measurement  noise covariance 
matrices Q and R are held constant in SatSim. This constraint 
could be relaxed in a future version.

Since the discussion is dealing with a simulation, and the 
true position of the observer is known, it is possible to inspect 
the performance of the EKF at every update. SatSim computes 
the  observer  position  error  vector  and  presents  it  either  in 
ECEF or  east-north-up  (ENU)  coordinates.  The latter  is  the 
coordinate frame of the observer also referred to as the local 

Figure 3. Applications panel. Figure 4. Resources panel.



tangent plane. In addition to position, bias, and drift estimation 
errors, SatSim tracks the error covariance matrix Pk  of the 
EKF, which describes convergence, and a number of residual 
errors, which describe model fit. Other outputs track the overall 
relative geometry between the satellites and the observer. Plots 
are available for all of the outputs as a function of time through 
the Analyze Results task.

Since Python is an interpreted language, one may question 
its  suitability  for  simulation  purposes.  Fortunately,  the 
language has several mechanisms for interacting with compiled 
modules  written  in  other  languages  for  time-critical  or 
computation-intensive  operations.  As  mentioned  previously, 
the  SPG4  program,  written  in  C  and  compiled  for  each 
operating system that SatSim supports (Windows, Mac OS X, 
Linux), is used to calculate satellite position and velocity. In a 
similar fashion the EKF is implemented using the numerical 
Python library  numpy which is written in C++. In the case of 
SPG4, the program is called within Python as a subprocess. For 
numpy,  Python  bindings  to  matrix  functions  are  already 
provided  so  they  can  be  called  normally.  This  blending  of 
interpreted  and  compiled  program modules  allows  graphical 
user interfaces to be quickly coded in a simple language while 
not sacrificing the speed of a compiled language for numerical 
simulations.

IV. OTHER EXAMPLES

The Show Orbit task is used to plot the ground track of one 
orbital  period  of  either  a  single  satellite  or  an  entire 
constellation on a map that the user chooses. Fig.  6 illustrates 
one orbit for the International Space Station (ISS) beginning at 
the time the task was run. Right-clicking on the satellite icon 
reveals  the  geographic  coordinates  of  the  current  satellite 
subpoint, its height above the earth, and the time required for 
one orbit. These values come from using the SPG4 program 
and the corresponding satellite TLE file.

Fig. 7 shows the output from the Track Real-time task. Here 
the  user  has  selected  the  entire  Iridium  communications 
satellite  constellation.  Starting  with  the  current  time,  the 

positions  of  each  satellite  are  plotted  at  increments  of  one 
second. The resulting ground tracks are also shown streaming 
behind.  Iridium  satellites  are  organized  in  six,  nearly  polar 
orbital planes which are easily discerned from the figure. One 
can  also  see  the  counterrotating  seam by  observing  the 
opposing trailing ground tracks over South America.

In  order  to  gain  insight  into  the  behavior  of  satellite 
geolocation, it is instructive to view the satellite positions and 
output from the EKF position estimate as a function of time. 
Fig.  8 shows  the  GPS  constellation  near  the  time  of 
convergence  for  the  estimator.  For  each  satellite,  its  current 
subpoint is indicated by an icon as in previous examples. Also 
shown  are  the  intersections  of  each  satellite  pseudorange 
sphere with the WGS-84 ellipsoid (solid yellow line) as well as 
the  intersection  of  the  doppler  cone  with  the  plane  of  the 
satellite velocity vector (dashed yellow line). The former is not 
a  perfect  circle  due  to  the  geographic  map  projection  used 
while the latter shows how the doppler cone angle changes as 
the  satellite  approaches  or  recedes  relative  to  the  observer's 
position. A magenta dot shows the estimated position of the 
observer  calculated  by  the  EKF.  At  convergence  the 
pseudorange rings will theoretically intersect at a single point.

Once  a  geolocation  simulation  has  been  run,  several 
different  performance  graphs  may  be  plotted.  Only  two  of 
several  choices are presented here. Fig.  9 shows the position 
estimate error in the ENU observer coordinate frame. Fig.  10 
shows convergence behavior by plotting the trace of the error 
covariance  matrix  of  the  EKF.  The  user  can  zoom in  to  a 
portion of the plot dynamically for greater readability. Plotting 
is achieved using the open-source gnuplot program called as a 
subprocess within SatSim.

V. CONCLUSION

The development of SatSim has proven useful for the study 
of satellite geolocation. Although there are certainly a number 
of  alternative  satellite  analysis  and  visualization  programs 
available either  for  free  or commercially,  none afforded this 
author the ability to make low-level code changes or customize 
the  visualization  of  results  in  a  cross-platform environment. 
Using  the  GIPSE  framework  helps  organize  functionality, 

Figure 5. Sites panel. Figure 6. World map showing one orbit of the International Space Station.



documentation,  and  data  in  a  way  that  facilitates  research. 
Being able to show animated results in a  GIS  context often 
offers insight into the workings of the estimator. A bonus is 
that animated maps makes presentations more meaningful for 
colleagues who are not well versed in the field.
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Figure 8. Convergence of pseudorange rings during geolocation.

Figure 10. Convergence behavior of the error covariance matrix.

Figure 7. Real-time tracking example showing Iridium constellation.

Figure 9. Position errors for the East-North-Up coordinate frame.


