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c = 12.323 Å for WS2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2 (a) A monolayer MoS2 field-effect transistor (FET) connected to external

electrodes. MoS2 is deposited on a degenerately doped silicon substrate

with 270-nm-thick SiO2. The substrate acts as a back gate. One of the gold

electrodes acts as drain and the other source electrode is grounded. The

monolayer is separated from the top gate by 30 nm of ALD-grown HfO2.

The top gate width for the device is 4 mm and the top gate length, source-

gate and gate-drain spacings are 500 nm. (b) Room temperature transfer

characteristic for the FET with 10 mV applied bias voltage Vds. Back-gate

voltage Vbg is applied to the substrate and the top gate is disconnected. Inset:

Ids-Vds curve acquired for Vbg values of 0, 1 and 5 V. From Ref. [95]. . . . . 63

7.3 (a) The hexagonal lattice and corresponding 2D Brillouin zone for MoS2

or WS2. (b) Along the high symmetry lines in the Brillouin zone, DFT

calculated electronic band structures of (b) MoS2 and (c) WS2 from the bulk

(bottom panels) to double-layer (2L, middle panels) to single-layer (1L, top

panels). The solid blue arrows indicate the lowest energy transitions. The

Fermi level is set at 0 eV. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4 (a) Photoluminescence (PL) spectra normalized by Raman intensity for MoS2

layers with different thickness, showing a dramatic increase of luminescence

efficiency in MoS2 monolayer. From Ref. [102]. (b) Photoluminescence

map of a WS2 triangular island. The edges of WS2 monolayers exhibit PL

signals with extraordinary intensity, around 25 times stronger than that at

the platelets center. From Ref. [103]. . . . . . . . . . . . . . . . . . . . . . 65

xiv



7.5 (a) Schematic of Raman-active modes E1
2g and A1g of bulk MoS2. (b) Raman

spectra of thin (nL) and bulk MoS2 films. (c) Frequencies of E1
2g and A1g

(left vertical axis) and their difference (right vertical axis) as a function of

layer thickness. From Ref. [105]. . . . . . . . . . . . . . . . . . . . . . . . 65

7.6 Raman spectra of MoS2 films from (a) Ref. [105], (b) Ref. [106] and (c)

Ref. [98]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.1 (a) Side view of MoS2 bulk and single layer (1L in short). (b) Top view of

MoS2 with the unit cell delineated (analogous for WS2). (c) Heterostruc-

ture consisting of 1L MoS2 and 1L WS2. Electronic band structures of (d)

1L MoS2, (e) 1L WS2 and (f) the heterostructure shown in (c). The solid

blue arrows indicate the lowest energy transitions. In (f), red circles (green

squares) correspond to projected bands of the MoS2 (WS2) layer with the

red (green) dashed arrow showing the layer’s lowest energy transition. The

Fermi level is set at 0 eV. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.2 DFT calculated thickness dependence of (a) electronic band gaps and (b)

dielectric constants of MoS2 and WS2. For dielectric tensor ε , non-diagonal

elements are zero and εxx = εyy. . . . . . . . . . . . . . . . . . . . . . . . . 73

8.3 (a) Ab initio Raman spectra of free-standing n-layer (nL) and bulk MoS2,

with laser polarization gi=gs=(1,0,0) and wavelength 488 nm. (b) Schematic

of Raman-active modes E1
2g and A1g of bulk MoS2. (c) Frequencies of E1

2g

and A1g (left vertical axis) and their difference (right vertical axis) as a func-

tion of layer number. (d) Peak intensities of E1
2g and A1g (left vertical axis)

and their intensity ratio (right vertical axis) as a function of thickness. . . . . 74

8.4 (a) Ab initio Raman spectra of free-standing n-layer (nL) and bulk WS2, with

laser polarization gi=gs=(1,0,0) and wavelength 488 nm. (b) Schematic of

Raman-active modes E1
2g and A1g of bulk WS2. (c) Frequencies of E1

2g and

A1g (left vertical axis) and their difference (right vertical axis) as a function

of layer number. (d) Peak intensities of E1
2g and A1g (left vertical axis) and

their intensity ratio (right vertical axis) as a function of layer number. . . . . 75

xv



8.5 Raman spectra of (a) single-layer and (c) bulk MoS2 with laser polarization

gi=gs=(cosθ ,0,sinθ ). Raman spectra of (b) single-layer and (d) bulk MoS2

with laser polarization gi=(1,0,0) and gs=(cosθ ,sinθ ,0). In (a) and (c), some

of Raman spectra are scaled for comparison purpose. The inset figures show

the intensity ratio between E1
2g and A1g as a function of θ . . . . . . . . . . . 77

8.6 Raman spectra of (a) single-layer and (c) bulk WS2 with laser polarization

gi=gs=(cosθ ,0,sinθ ). Raman spectra of (b) single-layer and (d) bulk WS2

with laser polarization gi=(1,0,0) and gs=(cosθ ,sinθ ,0). In (a) and (c), some

of Raman spectra are scaled for comparison purpose. The inset figures show

the intensity ratio between E1
2g and A1g as a function of θ . . . . . . . . . . . 79

8.7 (a) A MoS2/WS2 heterostructure. For simplicity, a MoS2 (WS2) layer is

denoted as Mo (W). So the heterostructure is named as MoWMoW for its

stacking pattern. (b) Ab initio Raman spectra of various MoS2/WS2 het-

erostructures, with laser polarization gi=gs=(1,0,0) and wavelength 488 nm.

The Raman spectra of single-layer MoS2 (Mo) and WS2 (W) are also shown

for comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9.1 (a) Phase diagram of Ca(Fe1−xCox)2As2. Inset is the schematic view of the

orthorhombic unit cell with spin structure; (b) STM topography of stripe-

ordered surface on CaFe2As2 at (Vbias = 1.0 V, It = 200 pA). Inset is the

zoom-in image, where the red rectangle shows the (1×2) unit cell. . . . . . 88

9.2 (a) LEED pattern on the surface of CaFe2As2 (120 eV); (b-g): Six possible

structural models for the stripe (1×2) phase for Ca- or As- termination. . . . 90

9.3 (a) Surface structure determined by LEED I-V analysis; (b) DFT calculated

structure with AFM ordering identical to bulk; (c) Bader charge difference

between surface and bulk atoms both with AFM ordering. The yellow ar-

rows represent spins while the black arrows indicate the distortion with re-

spect to the bulk; (d) Bader charge difference of surface atoms with (W) and

without (W/O) AFM ordering. . . . . . . . . . . . . . . . . . . . . . . . . 92

xvi



9.4 (a) Averaged STS taken from the clean stripe (1×2) surface of Ca(Fe0.925Co0.075)2As2

at the indicated temperatures; (b) & (c) STM topographic images taken at

20 K and 7.4 K, respectively (Vbias = 1.0 V, It = 200 pA). The profiles along

indicated lines in (b) and (c) are shown in (d). . . . . . . . . . . . . . . . . 95

xvii



ACKNOWLEDGMENT

First of all, I would like to thank my family for being always supportive, especially willing

to allow me to go abroad for my Ph.D. study. I am grateful that my parents taught me

perseverance and diligence, helping me through challenges and eventually getting me

there for my Ph.D. degree.

There goes an old Chinese saying: “Once a teacher, always a father”. If anybody

has been more helpful and inspiring than my parents, that would be my advisor Prof.

Vincent Meunier. I am very grateful that I can have him as my mentor for my Ph.D. stud.

He has not only taught me how to do research, but also let me realize that doing research

can be a lot of fun. His insights on science are very enlightening and his easy-going

personality helps to alleviate the pressure from research. Above all, he always stands

on my side and cares what is in the best interest of me. I feel truly lucky to have such

wonderful advisor.

I also thank Dr. Eduardo Cruz-Silva and Dr. Eduardo Costa Girão a lot for always

being available for technical assistance. They helped me through the learning curve when

I just began research. As a Postdoc, Dr. Cruz-Silva is both knowledgeable and patient,

teaching me many things such as Linux operating, scripting, paper writing and even driv-

ing, etc. Dr. Girão has been also extremely helpful for teaching me using Latex, fortran

coding and so on. Especially, his Ph.D. thesis has been of great help for me to write up this

dissertation. Without their help, life would be much more difficult for me. I would also

like to thank other group members: Zac Bullard, Jonathan Owens, Pan Zhu and Adrien

Nicolai. I feel very lucky to have them as both colleagues and friends.

I also thank all the members of the Physics department, whose teachings have made

old subjects clear with new light. I am also grateful for RPI giving me the opportunity to

pursue higher education with such excellent faculty and facilities. I also thank New York

State NYSTAR for financial support.

xviii



ABSTRACT

Since its fabrication in 2004, graphene has attracted huge attention due to its exceptional

electronic properties, and is now considered as one of the most promising candidates to

replace the current semiconductor technology as silicon approaches its miniaturization

limit. However, the absence of an electronic band gap in pristine graphene makes it ill-

suited for many electronic applications. Semiconducting character can be imparted by a

variety of methods, including chemical or structural modifications. For instance, a band

gap can be opened by confining the electronic wave function in one dimension by cutting

graphene to form graphene nanoribbons (GNRs). To possess a band gap comparable to

conventional semiconductors like silicon, GNRs are required to have a width less than 3

nm and must also display sharp edges, which remains a great experimental challenge. Re-

cently, a breakthrough advance has been achieved with the controlled synthesis of atom-

ically precise nanoribbons using a bottom-up approach where small aromatic molecules

chemically assemble into high-quality subnanometer ribbons. This method not only al-

lows for the synthesis of high-quality straight GNRs, but also for more complex structures

like wiggle-like GNRs, called graphene nanowiggles (GNWs).

In Part I of this thesis, first-principles density functional theory (DFT) calculations

are carried out on a variety of GNWs to reveal their unusual electronic and magnetic prop-

erties that are absent in their individual GNRs components, such as tunable band gaps

and versatile magnetic states. The relationship between the band gap and the geometry

is dictated by the armchair or zigzag characters of the corresponding parallel and oblique

sectors, enabling GNWs to offer a broader set of geometrical parameters to tune the elec-

tronic structures compared to GNRs. In addition, first-principles many-body Green’s

function calculations within the GW approximation are performed to yield a quantitative

prediction of GNWs’ electronic properties. The enhanced electron-electron interaction

in the quasi-one-dimensional GNWs results in significant self-energy corrections to their

DFT band gaps. Consequently, the quasiparticle band gaps are typically more than twice

of the DFT band gaps and are within the most interesting range 0.0-3.7 eV.

In addition to unusual electro-magnetic properties, GNWs are also found to pos-
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sess significantly enhanced thermoelectric performance compared to their straight GNR

counterparts. The thermoelectric performance can be quantified by a dimensionless figure

of merit ZT . Peak ZT values of armchair-armchair GNWs are more than triple those of

straight armchair-edged GNRs of the same width. The highest ZT at room temperature

for pristine GNWs is 0.79. A certain pattern of structural dislocation in the the experi-

mentally available GNW is found to further enhance ZT beyond 1 at room temperature.

The electronic, magnetic and thermal properties discussed above are found for free-

standing GNWs. In reality, however, they are synthesized on a gold substrate. For the

experimentally fabricated GNW, a band gap reduction due to the substrate has been mea-

sured. DFT calculations reveal that a small net charge transfer from the GNW to the

substrate results in an electric dipole at the interface and subsequently substrate polariza-

tion. A semi-empirical image charge model is then developed to estimate the observed

band gap reduction by substrate polarization. Furthermore, a particular armchair-zigzag

GNW is chosen as a case study to verify the magnetic robustness of GNWs on gold sub-

strate. Spin-polarized DFT calculations show that the magnetic configurations are not

affected by the substrate with magnetic strength only slightly weakened.

In addition to pristine GNWs, nitrogen-doped GNWs have been also synthesized, as

reported recently in the literature. Subsequently, heterojunctions consisting of pure and

nitrogen-doped GNWs have been realized. In the final chapter of Part I, the electronic

and transport properties of these heterojunctions are studied. Nitrogen doping results

in a type-II band alignment at the heterojunction interface, which subsequently reduces

the electronic band gap of the heterojunction while increasing the transport gap. More

interestingly, as the nitrogen doping concentration increases, both the conduction and

valence band offsets at the interface increase almost linearly. Furthermore, the type-II

band alignments can be used for solar cell applications. The recently synthesized GNW

heterojunction is estimated to have a maximum power conversion efficiency of 11.3%,

hence very promising for photovoltaics.

In Part II of this thesis, we venture beyond graphene-based systems and investigate

graphene-like materials: transition metal dichalcogenides MX2 (M = Mo, W; X = S).

Similar to graphite, they are also layered structures stacked by weak van der Waals (vdW)

forces. Single-layer MoS2 and WS2 have been synthesized and found to show enhanced
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carrier charge mobilities and strong photoluminescence with direct band gaps, and thus

they have been considered as replacements or complements to graphene for applications.

Raman spectroscopy is often considered as one of the most popular tools to characterize

them. Despite extensive experimental Raman studies on MoS2 and WS2, it remains un-

clear how Raman intensities and especially intensity ratio of Raman modes E1
2g and A1g

depend on the materials thickness, due to the large spectrum of seemingly contradictory

findings.

To clarify such issues, for both MoS2 and WS2, DFT calculations have been car-

ried out to simulate their Raman spectra and reveal the intrinsic thickness dependence

of Raman intensities and intensity ratio. We quantitatively analyze the laser polarization

effect on the intensity ratio and reveal the high sensitivity of the intensity ratio to laser

polarization. The intensity ratio can be tuned from 0 to infinity by adjusting laser polariza-

tion, which could be key to explaining the large apparent discrepancy between measured

intensity ratios by different experimental groups where different laser polarization con-

figurations might be used.

In addition to homogeneous systems, MoS2/WS2 heterostructures can show com-

bined functionality of the individual layers, can lead to emergent properties and thus are

very desirable. Hence, we also study ab initio Raman spectra of MoS2/WS2 heterostruc-

tures up to four layers in every possible combinations and stacking orders. Each het-

erostructure configuration is found to possess a unique Raman spectrum in both frequency

and intensity that can be explained by changes in dielectric screening and interlayer cou-

pling. The results establish a set of guidelines that can be used for the experimental

identification of heterostructure configurations.

In the final part of the thesis (Part III), we highlight the experimental collaboration

project with Prof. Plummer’s group from Louisiana State University: spin-dependent sur-

face reconstruction of layered Fe-based superconductors CaFe2As2. Low energy electron

diffraction, scanning tunneling microscopy and spectroscopy, and first-principles spin-

polarized DFT are utilized to investigate the geometric, electronic, and magnetic struc-

tures of the stripe-ordered (1×2) surface of Ca(Fe1−xCox)2As2 (x= 0,0.075). The surface

is terminated with a 50% Ca layer. Compared to the bulk, the surface Ca layer has a large

inward relaxation (∼ 0.5 Å), and the underneath As-Fe2-As layer displays a significant

xxi



buckling. First-principles calculations show that the (1×2) phase is stabilized by the bulk

anti-ferromagnetic spin ordering through the spin-charge-lattice coupling. Strikingly, a

superconducting gap (∼7 meV at 7.4 K) is observed on such surface (x = 0.075 com-

pound), suggesting the coexistence of both superconductivity and AFM ordering at the

surface.
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1. List of computational methods

This chapter lists the computational methods used and developed in this thesis. The details

regarding each method are given in relevant chapters. The purpose of this chapter is to

indicate the readers where to find the details on each method.

1.1 Density functional theory

First-principles density functional theory (DFT) is the main theoretical tool used in

this thesis. The theoretical background of DFT is presented in Section 3.3. The details

about how to perform plane-wave DFT calculations using “Vienna Ab initio simulation

package” (VASP) are presented in Section 3.3, Section 4.2, Section 5.2, Section 8.2 and

Section 9.2. We also carried out localized orbital DFT calculations using “Spanish Ini-

tiative for Electronic Simulations with Thousands of Atoms” (SIESTA), as shown in

Section 6.2.

1.2 Many-body GW approximation

Since the Kohn-Sham scheme of DFT is a ground state theory using single-particle

descriptions, it is well-known to usually underestimate band gaps of low-dimensional

systems. Therefore, first-principles many-body Green’s function calculations within the

GW approximation have been also performed to provide more accurate description of

band gaps in Section 3.5.

1.3 Tight-binding and Hubbard model

For systematic studies on hundreds of GNWs, DFT is too computationally demand-

ing and thus a less expensive self-consistent tight-binding+Hubbard model has been de-

veloped in Subsection 3.3.2.
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1.4 The computation of the thermoelectric figure of merit

The formalism to compute the thermoelectric figure of merit ZT based on the full

electron and phonon band structures is presented in Section 4.2.

1.5 Image charge model for band gap reduction

To estimate the substrate polarization-induced band gap reduction, a semi-empirical

image charge model is developed in Subsection 5.3.4.

1.6 Non-equilibrium Green’s function formalism

The non-equilibrium Green’s function (NEGF) formalism to calculate electronic

transport properties is detailed in Subsection 6.2.1.

1.7 The computation of power conversion efficiency of a solar cell

For an excitonic solar cell with a type-II staggered band alignment, the theoretical

model to estimate the maximum power conversion efficiency is developed in Section 6.4.

1.8 Non-resonant first-order Raman scattering

We present the details pertaining to the formalism of non-resonant first-order Ra-

man scattering in Section 8.2.



PART I

Graphene-based materials:

graphene nanowiggles
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2. Background on graphene and graphene-based materials

This chapter provides a brief overview of graphene and graphene-derived materials. After

a brief introduction of two-dimensional graphene sheets and one-dimensional graphene

nanoribbons, we highlight the particular systems carefully studied in this thesis, namely

graphene nanowiggles. Parts of this chapter are inspired by Dr. Girão’s Ph.D. thesis [1].

2.1 Graphene sheets

Figure 2.1: (a) Graphene and its 2D Brillouin zone. (b) Band structure of graphene along high

symmetry directions. (c) 3D representation of the π bands with the Dirac points at the

K point. Graphene is hence a zero-gap semiconductor or semi-metal. From Ref. [2].

Graphene is a two-dimensional (2D) single-layer sheet of carbon atoms packed into
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a honeycomb lattice, as shown in Fig. 2.1(a). The first experimental isolation of graphene

from graphite was accomplished in 2004 [3], marking the starting point of a boom in both

experimental and theoretical investigations of this structure. In Fig. 2.1(b), its 2D band

structure shows the π bands crossing the Fermi level at the K point. Near this point, the

energy has a linear dependence on the wave vector k. The dependence on the 2D wave

vector k = (kx,ky) is conical as can be seen from the 3D rendition of the band structure

in Fig. 2.1(c). Due to this local linear relation for low-energy levels, the electrons be-

have as massless Dirac fermions [4]. In addition to such extraordinary electronic feature,

graphene also has exceptional electrical [3, 5, 6], optical [7, 8], thermal [9, 10] and me-

chanical [11] properties. For instance, it has been found that graphene exhibits high room

temperature carrier mobility (15000-27000 cm2V−1s−1) [12], quantized electrical con-

ductance, high Seebeck coefficient [13], superior room temperature thermal conductivity

as high as 5 kW/mK. All these striking properties are making graphene a rising star in

material science.

2.2 Graphene nanoribbons

The rich properties of graphene, particularly its high electronic mobility and low

contact resistance [12, 14], have made it one of the most promising candidates to replace

silicon technology as silicon approaches its miniaturization limit [15]. However, the ab-

sence of an electronic band gap for pristine graphene [Fig. 2.1(b)] limits its applicability

in the semiconductor industry. However, it can be chemically [16] or structurally [17]

modified to acquire semiconducting properties. One widely studied approach is to induce

quantum confinement along one in-plane direction, thus creating quasi-one-dimensional

structures called graphene nanoribbons (GNRs). The two most symmetric cases of GNRs

are armchair-edged GNRs (AGNRs) and zigzag-edged GNRs (ZGNRs), as presented in

Fig. 2.2.

AGNRs present a semiconductor character with band gap ∆n strongly dependent on

the number of C-C lines along its width. The gap ∆n of an AGNR approaches zero with

its width n → ∞, so it recovers as 2D graphene. More interestingly, the function of ∆n

versus n has three separate branches such that ∆3i+1 ≥ ∆3i ≥ ∆3i+2 [18].

Unlike AGNRs where spin polarization is absent, ZGNRs possess ferromagneti-
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Figure 2.2: Geometry of (a) AGNRs and (b) ZGNRs with edges hydrogenated. The red boxes

indicate the GNRs unit cells. They are periodic along the vertical direction. From Ref.

[1].

cally polarized edges with two possibilities for the edge-to-edge polarization: parallel

(FM) and anti-parallel (AFM) alignments. Hence, in addition to a non-polarized para-

magnetic (PM) state, ZGNRs can have two other possible magnetic configurations, as

illustrated in Fig. 2.3. The PM state is the most energetically unstable with a zero band

gap, while spin polarization (both FM and AFM) lowers the energy of the structure. For

the AFM, the spin up and down polarizations along the opposite edges are located on

different graphene-sub-lattices, making it the most stable and opening a band gap around

two thirds of the Brillouin zone, while the FM state has a slightly higher energy. It is

important to note that both AFM and FM are considerably more stable than the PM state,

while there is only small energy difference between AFM and FM. This difference tends

to be zero as the ZGNRs’ width increases, reflecting a decrease in the edge-to-edge in-

teraction as they are farther away from each other. A possible switching property due to

this small energy difference opens a window for the application of ZGNRs as magnetic

sensors [19].

Indeed, these magnetic properties of ZGNRs open up a series of possibilities for the

use of finite pieces of graphene in nanoelectronics and spintronics. For example, it has

been shown that ZGNRs can present a half-metallicity behavior. The electronic structure

has a metallic character for spin up levels and is semiconducting for spin down levels, or
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Figure 2.3: Paramagnetic (PM), anti-ferromagnetic (AFM) and ferromagnetic (FM) states in a

ZGNR and their corresponding band structures. The green line is the Fermi energy,

and the black and red lines stand for spin up and down levels. All the bands are

degenerate in PM and AFM states. From Ref. [1].

vice-versa, which can be utilized for spin-filtering [20].

2.3 Graphene nanowiggles

To realize the aforementioned properties of GNRs for practical technological appli-

cations, GNRs must have a width less than 3 nm with clean edges. However, it remains

a great experimental challenge to have reliable production of narrow GNRs with sharp

edges. To that end, a set of synthesis techniques, including both top-down and bottom-

up approaches, has been developed to enable the precise and controlled fabrication of

narrow and defect-free systems [23]. Most notably, a block-to-block approach has been

recently devised where small aromatic molecules are chemically assembled into highly

crystalline narrow ribbons [21]. In this method, a cyclo-dehydrogenation reaction pro-

ceeds on a metallic substrate that facilitates both the coupling and the thermally-activated
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(a) (b)

(c)

(d)

Figure 2.4: (a) Bottom-up fabrication of atomically precise GNRs. Basic steps for surface-

supported GNR synthesis, illustrated with a ball-and-stick model of the exam-

ple of 10,10′-dibromo-9,9′-bianthryl monomers. (b) Straight GNRs from bianthryl

monomers and the high-resolution STM image. (c) Chevron-type GNRs from

tetraphenyl-triphenylene monomers and the high-resolution STM image. (d) Three-

fold GNR junction obtained from a 1,3,5-tris(4′′-iodo-2′-biphenyl) benzene monomer

3 at the nodal point and monomer 2 for the ribbon arms, and its STM image. From

Ref. [21].

fusion of individual aromatic molecules, as illustrated in Fig. 2.4(a). This method not

only allows for the synthesis of high-quality straight GNRs shown in Fig. 2.4(b), but

has also demonstrated the possibility of creating more complex structures, with a vari-

ety of shapes such as wiggle-like (or chevron-type) GNRs [Fig. 2.4(c)] and multiterminal
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Figure 2.5: Monomers for the generation of graphene nanowiggles with defined edge-doping via

on-surface polymerization followed by cyclo-dehydrogenation. Shown are monomers

1-3 with either none, one or two doping N-atoms, while the synthesis is exemplarily

shown for the case of the doubly nitrogen-doped GNW. From Ref. [22].

GNRs [Fig. 2.4(d)]. The wiggle-like GNRs in Fig. 2.4(c), namely graphene nanowiggles

(GNWs), can be characterized by a periodic repetition of GNRs junctions. The GNW

experimentally fabricated shows electronic properties different from its individual GNRs

components, owing to its unique wiggle-like edges [21].

As mentioned above, the building blocks of GNWs are individual aromatic molecules

called monomers. By doping monomers with nitrogen atoms in the first place and using

them as building blocks (Fig. 2.5), nitrogen-doped GNWs with an atomically precise edge

structure and doping pattern have been synthesized recently [22]. Furthermore, by using

both pure and nitrogen-doped monomers as building blocks, heterojunctions combining

segments of pure GNWs (p-GNWs) and nitrogen-doped GNWs (N-GNWs) have been

also synthesized (denoted as p-N-GNW heterojunctions) [24].
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2.4 Overview for the rest of Part I

Inspired by the major experimental advance discussed above, in the rest of Part I of

this thesis, we consider numerous GNWs beyond the one synthesized. In Chapter 3, we

develop a general framework to classify nanowiggles according to their geometries and

employ the first-principles density functional theory and tight-binding+Hubbard model to

reveal their unusual electronic and magnetic properties which conventional GNRs do not

possess. Also, in light of the fact that DFT Kohn-Sham band gap often fails to quantita-

tively match experimental data, a first-principles many-body Green’s function approach

within the GW approximation is utilized to provide more accurate description of GNWs’

band gaps. In Chapter 4, we then demonstrate that GNWs also possess superior ther-

moelectric properties compared to their straight GNR counterparts. We also present a

systematic study to establish how geometry and spin states influence ZT at room tem-

perature. Chapter 5 is dedicated to an investigation of substrate effects on electronic and

magnetic properties of GNWs. Finally, in Chapter 6, we investigate the electronic and

transport properties of p-N-GNW heterojunctions, which show type-II band alignments

for excitonic solar cell applications.



3. Electronic and magnetic properties of GNWs

In this chapter we present a detailed description about geometry and nomenclature of

GNWs. Then we use first-principles density functional theory to highlight the micro-

scopic origins of the emerging electronic and magnetic properties of GNWs [25]. A

tight-binding+Hubbard model is also developed for a systematic study on how geometry

and spin influence the electronic band gaps [26]. Finally, a first-principles many-body

Green’s function approach within the GW approximation is employed to yield more ac-

curate quasiparticle band gaps of GNWs [27].

3.1 Introduction

As mentioned in Chapter 2, an atomically precise bottom-up approach has been

developed by Cai et al. [21] to chemically assemble small aromatic molecules into high-

quality subnanometer ribbons, including the novel GNWs. They can be characterized

by a periodic repetition of GNR junctions. Motivated by the development of this practi-

cal synthesis technique, we here consider a variety of GNWs beyond the experimentally

fabricated one to explore what these new structures can bring.

3.2 Geometry and nomenclature

GNWs consist in successive repetitions of parallel and oblique (relative to the

GNWs periodic direction) GNR domains seamlessly stitched together without the need

of structural defects [Fig. 3.1(a)]. Parallel (P) and oblique (O) sectors can be either

armchair- (A) or zigzag- (Z) edged, leading to four types of GNWs: armchair-armchair

(AA), armchair-zigzag (AZ), zigzag-armchair (ZA) and zigzag-zigzag (ZZ), as shown

Portions of this chapter previously appeared as: E. C. Girão, L. Liang, E. Cruz-Silva,

A. Filho, and V. Meunier, Phys. Rev. Lett. 107, 135501 (2011).

Portions of this chapter previously appeared as: E. C. Girão, E. Cruz-Silva, L. Liang,

A. Souza Filho, and V. Meunier, Phys. Rev. B 85, 235431 (2012).

Portions of this chapter previously appeared as: L. Liang, E. C. Girão, and V. Meunier,

Phys. Rev. B 88, 035420 (2013).
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Figure 3.1: (a) Geometry and nomenclature of a hydrogenated GNW made up of successive par-

allel (P) and oblique (O) sectors with armchair- (A) or zigzag- (Z) edged geometries.

(b)-(e) Examples of an AA, AZ, ZA and ZZ GNW, respectively. They are periodic in

the horizontal direction.

in Figs. 3.1(b-e), respectively. Following the conventional notation used for straight

nanoribbons, we define the width of the parallel (Pα ) and oblique (Oα ) sectors by the

number of C-C dimer lines (α = A) or zigzag strips (α = Z) along their width, depending

on whether these are armchair or zigzag sectors. Therefore, each structure can be uniquely

identified by a (Pα ,Oβ ) notation. For example, for the GNW in Fig. 3.1(a), the widths of

armchair-edged P and zigzag-edged O sectors are PA = 7 and OZ = 5, respectively. So it

is uniquely identified as (7A,5Z). The nanowiggle reported experimentally [21] is shown

in Fig. 3.1(b) and is made of armchair parallel and armchair oblique sectors (type AA)

with widths corresponding to (9A,6A).



13

3.3 Theoretical methods

Density functional theory (DFT) is the main theoretical tool used in this thesis.

Therefore, before we discuss how to use DFT for a variety of calculations, the theoretical

background of DFT is presented below, parts of which are inspired by Dr. Girão’s Ph.D.

thesis [1].

3.3.1 Density functional theory

In DFT, the electronic density n(r) plays the central role. This is better understood

with the two Hohenberg-Kohn theorems which constitute the basis of DFT [28].

1.If two systems of interacting electrons, one trapped in an external potential V1

and the other in V2, have the same ground state density n(r), then necessarily V1 −V2 =

constant.

2. Let E[n] be the functional for the energy relative to the electronic density n for

a given external potential Vext . Then this functional has its global minimum (ground state

energy) for the exact density n0 corresponding to the ground state.

Based on the first theorem, all the system properties are determined by the electronic

density for the ground state since n0 determines Vext , which determines the Hamiltonian,

which in turn defines the ground state and all the excited states. From the second theorem,

we can use the energy functional E[n] to determine the exact ground state energy and

density. The energy functional is written as

E[n] = T [n]+U [n]+V [n] (3.1)

where T [n] is the kinetic energy functional, U [n] accounts for all the electron-electron

interactions and V [n] =
∫

drVext(r)n(r) is the potential energy functional from the external

field. In principle, by the minimization of the functional E[n] with respect to n(r), we can

obtain the ground state density n0 and thus all other ground state observables. However,

U [n] is not explicitly known.

The necessary recipe to go around such issue is given by the Kohn-Sham ansatz

[29]. The ground state of the system of interacting electrons can be written as the ground

state of an auxiliary system of non-interacting electrons. The one-electron wavefunctions
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for this auxiliary system are determined by Schrödinger-like equations in the form

Ĥσ
auxψσ

i (r) =− h̄2

2me

∇2ψσ
i (r)+V σ ψσ

i (r) = εσ
i ψσ

i (r), (3.2)

where σ labels the electron spin. The electronic density is written as

n(r) = ∑
σ

Nσ

∑
i=1

|ψσ
i (r)|2 (3.3)

and the corresponding kinetic energy is

Taux =− h̄2

2me
∑
σ

Nσ

∑
i=1

〈ψσ
i |∇2|ψσ

i 〉=
h̄2

2me
∑
σ

Nσ

∑
i=1

∫

dr|∇ψσ
i (r)|2. (3.4)

The classical Coulomb interaction is

EHartree[n] =
1

8πε0

∫ ∫

drdr′
n(r)n(r′)
|r− r′| (3.5)

and hence the Kohn-Sham energy functional is given as

EKS[n] = Taux[n]+
∫

drVext(r)n(r)+EHartree[n]+Exc[n], (3.6)

where Exc is the functional which accounts for the exchange and all the correlation effects.

If we consider E = EKS, we have

Exc[n] = T [n]−Taux[n]+U [n]−EHartree[n], (3.7)

which indicates that Exc contains the exchange contribution and all the other correlation

effects related to kinetic energy and electron-electron interactions. It can be written as

Exc[n] =
∫

drn(r)εxc([n],r), (3.8)

where εxc([n],r) is the exchange-correlation energy per electron at position r for the given

density n(r). One then proceeds with the minimization of the energy functional EKS[n]
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relative to the density n, and it ends up as

δTaux[n]

δψσ∗
i

+
δEext [n]

δψσ∗
i

+
δEHartree[n]

δψσ∗
i

+
δExc[n]

δψσ∗
i

− εσ
i ψσ

i

= − h̄2

2me

∇2ψσ
i (r)+

(

δEext [n]

δn(r)
+

δEHartree[n]

δn(r)
+

δExc[n]

δn(r)

)

δn(r)

δψσ∗
i

− εσ
i ψσ

i = 0,

(3.9)

resulting in

− h̄2

2me

∇2ψσ
i (r)+

(

Vext(r)+VHartree(r)+ εxc(r)

)

ψσ
i = εσ

i ψσ
i . (3.10)

This is the well-known Kohn-Sham equation for the auxiliary system of non-interacting

electrons. It recasts the many-electron problem into a set of one-electron Schrödinger-

like equations. The Hartree potential (representing the interaction of any electron with

the electronic cloud) is given by

VHartree[n] =
1

8πε0

∫

dr′
n(r)

|r− r′| , (3.11)

and the external potential Vext is also known. But the major problem of DFT is that the

exact form of the exchange and correlation energy term Exc (or εxc) is still not known.

Even though DFT, in principle, yields the exact solution for the electronic problem, its

practical implementation requires an approximation to Exc.

The widely used approximation is the local density approximation (LDA), where

the functional depends only on the density at the coordinate:

ELDA
xc [n] =

∫

drn(r)εxc(n). (3.12)

LDA tends to work well for homogeneous systems, but for inhomogeneous systems, gen-

eralized gradient approximation (GGA) is usually preferred which also takes into account

the gradient of the density at the same coordinate:

EGGA
xc [n] =

∫

drn(r)εxc(n,∇n). (3.13)
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The well-known GGA functionals include the Perdew-Wang 1991 [30] and Perdew-Burke-

Ernzerhof [31]. The meta-GGA is potentially more accurate than the GGA, since it in-

cludes the second derivative of the electron density whereas the GGA considers only the

first derivative. In addition, hybrid functionals incorporate a portion of exact exchange

from HartreeFock theory [32] with exchange and correlation from other sources (ab ini-

tio or empirical). The most commonly used hybrid functionals include B3LYP (Becke,

3-parameter, Lee-Yang-Parr) [33, 34] and HSE (Heyd-Scuseria-Ernzerhof) [35].

In practical implementations of DFT, a wavefunction can be represented in either

plane-wave or localized atomic-orbital basis. In the plane-wave basis, the wavefunction

is linear combination of plane waves ei(k+G)r, where G corresponds to reciprocal space

lattice. The number of plane waves and the basis-set quality are controlled by a single

energy-cutoff value. All plane waves in the basis are mutually orthogonal and are not

associated with any particular atom. One disadvantage of the plane-wave approach is that

the empty space in the supercell requires the same computational cost as the structure.

As for the atomic-orbital basis, the wavefunction is described by the numerical atomic

orbitals defined on a real-space grid. The localized atomic-orbital approach works more

efficiently for molecules since it does not waste computational power on the vacuum.

But the atomic-orbital basis is non-orthogonal and depends on atomic positions, which

may lead to basis set superposition errors. In this thesis, we have used the VASP pack-

age for plane-wave DFT calculations and the SIESTA package for atomic-orbital DFT

calculations.

To obtain electronic properties of GNWs systems depicted in Fig. 3.1, plane-wave

DFT calculations are performed using the VASP package [36, 37] within GGA using

the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional [31]. Atomic struc-

tures are fully relaxed until residual forces below 0.01 eV/Å, using fine k-point samplings

within the Monkhorst-Pack scheme [38] and projector augmented wave (PAW) pseudopo-

tentials with a cutoff energy of 400 eV. However, DFT is too computationally demanding

to perform a systematic study. Therefore a less expensive self-consistent π band tight-

binding+U (TBU) model has been used [25, 39]. Such TBU model is mainly developed

by Dr. Girão [26] and the model presented below is inspired by his Ph.D. thesis [1].
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3.3.2 Tight-binding+Hubbard model

Figure 3.2: Schematic of the first-, second-, and third-nearest neighbor hopping integrals (γ1, γ2

and γ3) on an armchair-edged graphitic structure. The different chemical environment

at the edges is accounted for by a modified first neighbor interaction for these frontier

atoms. From Ref. [26].

In a tight-binding model, the Hamiltonian is given as:

Ĥ0 = ∑
R

∑
i

∑
σ

|R, i,σ〉εi〈R, i,σ |+∑
R

∑
i

∑
R′

∑
j
∑
σ

|R, i,σ〉γ(R,i),(R′, j)〈R′, j,σ |, (3.14)

where |R, i,σ〉 denotes the orbital of atom i with spin σ in the real space cell at R.

γ(R,i),(R′, j) are the hopping integrals representing the real-space Hamiltonian elements be-

tween the orbitals |R, i,σ〉 and |R′, j,σ〉 (with γ(R,i),(R,i) = 0) and εi is the on-site energy

representing the real-space Hamiltonian element between the orbital |R, i,σ〉 and itself.

Here we consider orthonormal orbitals so that 〈R, i,σ |R′, j,σ ′〉= δ(R,i,σ),(R′, j,σ ′).

For carbon based materials, we restrict the orthogonal basis to the π orbital and

the interactions are accounted up to 3rd neighbors [19], which means that γ(R,i),(R′, j) is

non zero only when |R, i〉 and |R′, j〉 are no more than 3 neighbors away. This π orbital

description implicitly considers that carbon atoms on the edges are saturated with hydro-

gens. Using the parametrization proposed in Ref. [40], γ1 = 3.2 eV, γ2 = 0 eV and γ3 = 0.3

eV for the first-, second-, and third-nearest neighbor hopping integrals, respectively, as il-

lustrated in Fig. 3.2. The different chemical environment at the edges is accounted for by
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including a ∆γ1 = 0.2 eV correction to the γ1 parameter for the frontier atoms [40].

Furthermore, to consider the interaction between two electrons with opposite spins

occupying the same state, a Hubbard-like (U) term is added to the Hamiltonian. This

has been shown to reproduce quite well the most relevant physical aspects of magnetic

states in a number of graphitic systems, including zigzag-edged GNRs [19]. The Hubbard

Hamiltonian Ĥ ′ is written in terms of the number operators n̂
↑
i and n̂

↓
i for the spin-orbitals

from atom i as

Ĥ ′ =U ∑
i

n̂
↑
i n̂

↓
i , (3.15)

where the single parameter U corresponds to the on-site Coulomb repulsion. Due to the

complexity of the two-body problem, this Hamiltonian is written in a mean-field fashion:

Ĥ ′ =U ∑
i

(

〈n̂↑i 〉n̂
↓
i + n̂

↑
i 〈n̂

↓
i 〉
)

, (3.16)

where the densities 〈n̂↑i 〉 and 〈n̂↓i 〉 are determined self-consistently [26]. Here the U is

parameterized on DFT-PBE calculations as 0.92γ1, resulting in an excellent agreement

between the DFT and TBU results, as demonstrated in Fig. 3.3.

3.4 Electronic and magnetic properties

In both DFT and TBU calculations, we observe the emergence of multiple magnetic

states from GNWs (Fig. 3.3). This finding can be rationalized by the properties of indi-

vidual armchair- and zigzag-edged GNRs: the ground state of AGNRs is paramagnetic

(PM) while ZGNRs’ ground state is anti-ferromagnetic (AFM) with possible metastable

PM and ferromagnetic (FM) spin configurations, as discussed in Chapter 2. In the rest

of this section, we discuss electronic and magnetic properties of each type of GNWs in

detail, as well as the corresponding systematic TBU studies.

3.4.1 AA-GNWs

The AA GNW (9A,6A) in Fig. 3.1(b), made of both armchair parallel and oblique

sectors, only has a PM electronic configuration (Fig. 3.3). A large DFT band gap (1.58

eV) is observed for (9A,6A), while DFT band gaps of its individual components AGNR-6

(oblique sector) and AGNR-9 (parallel sector) are 1.08 and 0.76 eV, respectively. This
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Figure 3.3: TBU (solid lines) and DFT (dashed lines) electronic band structures of different mag-

netic states for AA (9A,6A), AZ (6A,7Z), ZA (4Z,9A) and ZZ (7Z,7Z) GNWs. The

schematic spin distributions (black: up, red: down) are shown on top of each panel.

The Fermi level is set at 0 eV for each graph.

indicates that the interplay between the parallel and oblique constituents alters electronic

properties of the GNW from its constituents. As shown in Fig. 3.3, the TBU model pro-

vides a good description of GNWs’ electronic structures. This encourages us to conduct a

systematic study using TBU in order to understand the relation between electronic struc-

ture and geometry for GNWs. The band gaps from TBU calculations are plotted for a

variety of AA GNWs as a function of OA and PA in Fig. 3.4(a) (OA and PA are varied

from 4 to 25). They can be classified according the multiple-of-three rules, as evidenced

by grids evenly spaced in units of 3. As discussed in Chapter 2, for AGNRs, the en-
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Figure 3.4: TBU energy band gap as a function of the widths of parallel (P) and oblique sectors

(O) for (a) AA GNWs in the PM state, and for (b) AZ, (c) ZA and (d) ZZ GNWs

in the AFM state. The points absent mainly on the upper-left corner of each graph

correspond to geometries not allowed by the particular choice for P and O. For (b)-

(d), the systems that do not possess a stable AFM state are marked by a cross. In these

charts, the band gap minima and maxima (in unit of eV) are (a) ∆AA
min=0.00, ∆AA

max=1.70;

(b) ∆AZ
min=0.18, ∆AZ

max=0.45; (c) ∆ZA
min=0.11, ∆ZA

max=0.48; (d) ∆ZZ
min=0.21, ∆ZZ

max=0.49.

ergy gap ∆N with N = (3i+ j) C-C lines follows the relation ∆3i+1 ≥ ∆3i ≥ ∆3i+2, which

also explains why AA GNWs with mod(OA,3)=mod(PA,3)=2 possess the smallest gaps

[shown in dark blue patterns in Fig. 3.4(a)].

3.4.2 AZ-GNWs

In contrast to the AA-GNW case, for GNWs with at least one zigzag edge, spin-

dependent properties prove to be more intriguing. As presented in Fig. 3.3, unlike straight

ZGNRs with two zigzag edges, (6A,7Z) has four zigzag edges in its one periodic unit
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cell, giving rising to a variety of spin configurations. It not only exhibits paramag-

netic (PM), ferromagnetic (FM), and anti-ferromagnetic (AFM) spin orderings, but also

shows two new metastable states: longitudinal-anti-ferromagnetic (LAFM) and trans-

anti-ferromagnetic (TAFM). For each state, the spin polarization is maximal on the zigzag

edges, where it has a local ferromagnetic ordering. The AFM is the most energetically

stable: compared to it, DFT (TBU) relative energy is 0.288 (0.852) eV for PM, 0.045

(0.046) eV for FM, 0.025 (0.027) eV for LAFM and 0.020 (0.027) eV for TAFM. Fig. 3.3

also shows that AFM has the largest DFT (TBU) band gap 0.46 (0.42) eV: compared to

it, DFT (TBU) band gap is 0.02 (0. 02) eV for PM, 0.30 (0.27) eV for FM, 0.37 (0.34) eV

for LAFM and 0.40 (0.36) eV for TAFM. Note that their band gaps open at either Γ or X

point in the Brillouin zone, and bands around the Fermi level show a very small disper-

sion (< 0.1 eV), particularly for spin-polarized cases, because the spatial spin distribution

is restricted to the portion of the nanowiggle with a zigzag edge (e.g., the zigzag portion

behaves like a quantum dot). Since AFM is the most stable configuration, we performed

the systematic band gap study based on this particular spin distribution. The AZ-GNW

series considered here spans sector widths PA and OZ from 5 to 17 [Fig. 3.4(b)]. We ob-

serve three distinct behaviors corresponding to sector widths PA such that mod(PA,3)=0,

1, or 2. Moving horizontally across the chart, the band gap oscillates slightly for small OZ

values and gradually converges to a PA-dependent constant corresponding to the isolated

AGNR originated from the wedge-healed GNW.

3.4.3 ZA-GNWs

In Fig. 3.3, ZA GNW (4Z,9A) behaves most like a conventional ZGNR, which

shows similar PM, FM and AFM states. Total energy calculations using DFT (TBU) show

that the AFM state is more stable than both the PM and FM configurations, by 0.128 eV

(0.438 eV) and 0.057 eV (0.131 eV), respectively. In contrast to the PM and FM con-

figurations, the AFM spin distribution breaks the improper translational symmetry of the

lattice, and the corresponding bands do not simply fold at the X point. The diffraction at

the Bragg plane at X yields a fairly large ∆TBU=0.23 eV (∆DFT=0.26 eV) band gap. Our

systematic study of ZA GNWs focuses on the AFM spin arrangement [Fig. 3.4(c)] for PZ

and OA sectors varying from 2 to 10 and 6 to 17, respectively. The general features of the
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2D plot show a clear distinction between 3 families as we move along the plots vertical

direction (i.e., PZ as changes). These three families correspond to different values of OA

such that mod(OA,3)=0, 1, or 2, for reasons similar to those given for the AZ systems.

3.4.4 ZZ-GNWs

ZZ GNWs constitute the fourth possibility of assembling achiral GNRs into GNWs.

In Fig. 3.3, the PM state has a zero band gap. Interestingly, neither DFT nor TBU predict

a stable FM state for the (7Z,7Z) system. This can be explained by the symmetry of

the A and B graphene sublattices. The coexistence of spin-up along the entire length

of the ZZ GNW edge would indeed require the local spin on sites belonging to both A

and B sublattices on connected parallel and oblique sectors to be aligned, causing the

FM configuration to be unstable. However, the A-B bipartition of the lattice does not

preclude other spin configurations like a new longitudinal-ferrimagnetic (LFiM) state.

Because of the quasi-AFM spin distribution (due to the A-B bipartition of the lattice), the

total magnetization of LFiM is quite small (MTBU = 0.07µB,MDFT = 0.01µB). Hence,

except for a small spin-up and spin-down splitting, the LFiM bands are very similar to the

PM ones. Once again, DFT (TBU) predicts the AFM state to be more stable than the PM

or LFiM states, by 0.055 eV (0.446 eV) and 0.056 eV (0.397 eV), respectively. The AFM

state also has DFT (TBU) band gap as 0.25 (0.26) eV. The systematic study of the AFM

state for a series of ZZ GNWs [Fig. 3.4(d)] indicates that the band gap changes smoothly

as PZ and OZ cover the range of values from 4 to 17. The combined variations along

the horizontal and vertical directions explain why the gap tends to get smaller along the

chart’s diagonal to eventually vanish as the 2D graphene character is recovered.

3.5 Quasiparticle corrections

So far, our DFT and TBU studies have shown that complex edge topologies of

GNWs give rise to tunable band gaps and versatile magnetic states [25, 26]. However, the

Kohn-Sham single-particle scheme of DFT is a ground state theory and hence (strictly

speaking) it can only properly describe occupied bands [41]. Furthermore, Kohn-Sham

DFT takes no account of many-body dynamical effects such as screening of added elec-

trons or holes [42]. Consequently, while often qualitatively correct, its band structure
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often fails to give reliable quantitative values for the band gaps of insulators and semicon-

ductors, which are often underestimated by as much as 1.0 eV or more [41, 43].

- +
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electron screening
hole

+ + +
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++
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quasiparticle

Figure 3.5: The repulsive Coulomb interaction creates a Coulomb hole (or cloud) around an elec-

tron to form a quasiparticle.

In a many-electron system, the electrons are correlated by the strong Coulomb in-

teraction. The motion of one electron depends on the motion of all other electrons. For

example, in a system composed of electrons in a background of positively-charged nuclei,

electrons repel each other according to Coulomb’s interaction. Consequently, an electron

will repel other electrons creating a small region around itself in which there are fewer

electrons. This region can be treated as a positively-charged screening hole (or cloud).

The Coulomb hole behaves together with the electron like a single entity called quasi-

particle, as shown in Fig. 3.5. The formation of the Coulomb hole around the electron

enhances the attractive Coulomb potential felt by the electron, and thus more energy is

required to excite the electron, leading to a larger band gap. The Kohn-Sham single-

particle scheme fails to consider the Coulomb hole, and hence underestimates the band

gap. By taking into account of the interaction between the electron and its surrounding

Coulomb hole, the many-body perturbation approach within the GW approximation has

proved to yield larger band gaps, closer to experimental data [43, 44].

Since the Coulomb hole reduces the total charge of the quasiparticle, the effec-

tive interaction between quasiparticles is screened and considerably weaker than the bare

Coulomb interaction between electrons. In fact, the screened Coulomb interaction is suf-

ficiently small so that the quasiparticles can be regarded as approximately independent

[41]. In the many-body perturbation theory, for any state | j >, its quasiparticle (QP)
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energy is given by

E
QP
j = EKS

j + 〈Ψj|Σ(EQP
j )−Vxc|Ψj〉 , (3.17)

where EKS
j is the DFT Kohn-Sham (KS) eigenvalue of state | j > and Vxc is the DFT

exchange-correlation (xc) potential. Since the DFT xc potential is not sufficiently accu-

rate, self-energy Σ is introduced as a correction term, which is the product of the nonin-

teracting one-electron Green’s function G and the screened Coulomb potential W under

the GW approximation.

In this thesis, a first-principles many-body GW approach is used to provide more

accurate description of GNWs’ band gaps. Starting from DFT, QP energies are calculated

within the self-consistent GW approximation as implemented in VASP. An iteration loop

is run only for the calculation of G while W is fixed to the initial DFT obtained W0 (called

GW0 in VASP). Since GW calculations are very computationally costly, depending on

the size of a GNW, QP energies are iterated two or three times and the energy cutoff for

response function is chosen between 80 to 120 eV, which is sufficient to yield QP shifts

accurate to within 0.2 eV [27].

For AA (9A,6A) in Fig. 3.6(a), its QP band gap is increased to 3.70 eV from the DFT

one (1.58 eV), suggesting it as an insulator, in agreement with previous findings [45]. The

significant self-energy correction can be attributed to the enhanced Coulomb interaction

in such reduced dimensionality systems [44, 45]. For AZ (7A,4Z) in Fig. 3.6(b), the AFM

state has the largest DFT band gap 0.50 eV: compared to it, DFT band gap is 0.28 eV for

PM, 0.18 eV for FM, 0.12 eV for LAFM, and 0.22 eV for TAFM. Self-energy corrections

yield QP band gap 0.70 eV for PM, 0.61 eV for FM, 0.56 eV for LAFM, 1.14 eV for

TAFM, and 1.46 eV for AFM. They are quite comparable to band gaps of conventional

semiconductor elements such as Si (1.11 eV), Se (1.74 eV) and Ge (0.67 eV). More

importantly, the existence of versatile magnetic configurations demonstrates the potential

to utilize spin for band gap engineering in GNWs. Turning to ZA (3Z,8A) [Fig. 3.6(c)], it

shows PM (DFT band gap 0.00 eV), FM (DFT band gap 0.41 eV) and AFM (DFT band

gap 0.53 eV) states. QP band gap remains zero for PM, while becomes 1.22 eV for FM

and 1.52 eV for AFM. As for ZZ (7Z,6Z) in Fig. 3.6(d), both DFT and QP band gaps of

the PM and LFiM states are zero, while the most stable state AFM has a QP (DFT) band

gap 0.93 eV (0.28 eV). Once again, self-energy corrections by GW demonstrate that ZA
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Figure 3.6: GW (solid lines) and DFT (dashed lines) electronic band structures of different mag-

netic states for the GNWs shown in Fig. 3.1. The schematic spin distributions (black:

up, red: down) are shown on top of each panel. The Fermi level is set at 0 eV for each

graph.

and ZZ GNWs can have band gaps comparable to Si. The GW and DFT band gaps of

different magnetic states for all four GNWs are summarized in Table 3.1.

Clearly, the enhanced electron-electron interaction in the quasi-one-dimensional

wiggle-edged systems results in significant self-energy corrections to their DFT band

gaps. Consequently, the calculated QP band gaps are within the most interesting range

0.0-3.7 eV.
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Table 3.1: The summary of GW and DFT band gaps of different magnetic states for the four

GNWs.

magnetic states

GNW (9A,6A) GNW (7A,4Z) GNW (3Z,8A) GNW (7Z,6Z)

GW /DFT GW /DFT GW /DFT GW /DFT

band gaps (eV) band gaps (eV) band gaps (eV) band gaps (eV)

PM 3.70/1.58 0.70/0.28 0.00/0.00 0.00/0.00

FM 0.61/0.18 1.22/0.41

LAFM 0.56/0.12

TAFM 1.14/0.22

AFM 1.46/0.50 1.52/0.53 0.93/0.28

3.6 Summary

In this chapter, we have predicted the emergence of physical phenomena in exper-

imentally observed GNWs that are absent in their constitutive GNRs. The emergence

of these properties is the result of the interplay between the properties of the GNR con-

stituents, the symmetry of the atomic structure, and the bipartition of the graphene lattice.

The relationship between the gap and the geometry is dictated by the armchair or zigzag

characters of the corresponding parallel and oblique sectors, enabling GNWs to offer a

broader set of geometrical parameters to tune the electronic structure compared to GNRs.

All GNWs with at least one zigzag sector have an AFM ground state. More importantly, a

number of new metastable spin distributions are found due to GNWs’ unique wiggle-like

edges. For instance, the existence of versatile magnetic states in the AZ GNW (7A,4Z)

enables its QP band gap to be tuned from 0.56 to 1.46 eV, the ideal band gap range for

semiconductor devices, thereby demonstrating GNWs’ potential for nanoelectronic and

spintronic applications. Finally, our systematic study establishes a road map for guiding

the design and synthesis of specific GNWs for practical applications.



4. Thermal and thermoelectric properties of GNWs

In Chapter 3, we have shown that GNWs possess unusual electro-magnetic properties. In

this chapter, we show that GNWs also possess superior thermoelectric properties com-

pared to their straight GNR counterparts using a combination of density functional theory

and semi-empirical approaches [46]. We also present a systematic study for a large set

of nanowiggle structures to establish how geometry and spin influence the thermoelectric

figure of merit ZT at room temperature. The highest ZT at room temperature is found

to be 0.79. To further enhance ZT above 1 at room temperature, we devise a structural

dislocation in the experimentally available GNW and find its ZT to exceed unity at room

temperature [47].

4.1 Introduction

The thermoelectric effect is the direct conversion of temperature gradients into elec-

tric voltage and vice versa. This energy conversion mechanism can be used for power

generation and refrigeration applications [48, 49]. Ideal thermoelectric materials are re-

quired to have good electrical conduction to allow facile transport of electrons across the

structure. At the same time, to avoid the temperature gradient to be degraded by heat

dissipation, good thermoelectric materials also need to be poor heat conductors. Quan-

titatively, the thermoelectric conversion efficiency is thus expressed by the dimension-

less figure of merit ZT = S2GeT/k, where S is the thermal power (or Seebeck coeffi-

cient), T is the average temperature, Ge is electrical conductance and k = kel + kph is

the total thermal conductance, including contributions from electrons kel and phonons

kph. Much attention has been devoted to finding means to enhance ZT . For example,

the Seebeck coefficient S can be improved by reducing the dimensionality of the system

[50, 51]. ZT can also be boosted by degrading the thermal conductance due to phonons

Portions of this chapter previously appeared as: L. Liang, E. Cruz-Silva, E. C. Girão, and

V. Meunier, Phys. Rev. B 86, 115438 (2012).

Portions of this chapter previously appeared as: L. Liang and V. Meunier, Appl. Phys.

Lett. 102, 143101 (2013).
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kph and the presence of sharp resonances in the electronic conductance Ge [52, 53].

Among new materials under intense scrutiny, graphene has attracted immense in-

terest due to its outstanding thermal properties. However, its extremely high thermal

conductivity (see Chapter 2) indicates that graphene is not intrinsically a good candi-

date for thermoelectric devices without tailored modifications. One such modification

consists in reducing its dimensionality. To that respect, 1D GNRs stand out as better can-

didates for thermoelectric applications due to their semiconducting behaviors and reduced

edge-dependent thermal conductivities [54]. Unfortunately, reported peak ZT values for

pristine GNRs at room temperature remain inferior to 0.4 [55], a value shy of what other

competing technologies can offer [49]. Here, we use DFT to investigate whether newly

fabricated GNWs can be better candidates. We find that the presence of wiggle-like edges

significantly reduces phonon thermal conductance without appreciably altering electri-

cal transport, resulting in significant enhancement of ZT compared to GNRs. Then a

semi-empirical approach is employed to perform a systematic study on geometrical and

magnetic effects on thermoelectric properties.

4.2 Theoretical methods

Thermoelectric properties are obtained after the computation of the ballistic trans-

port properties of electrons and phonons [52, 56]. The ballistic phonon thermal conduc-

tance kph is evaluated using the following Landauer-type formula [56, 57]

kph =
h̄2

2πkBT 2

∫ ∞

0
dωω2Tph(ω)

eh̄ω/kBT

(eh̄ω/kBT −1)2
, (4.1)

where the phonon transmission function Tph(ω) is obtained using DFT calculations com-

bined with the non-equilibrium Green’s function formalism [52]. In the specific case of

1D systems, Tph(ω) is simply given by the number of phonon modes at frequency ω . It

can be seen from Eq. (4.1) that, at low temperatures, low-frequency modes have dominat-

ing contributions to the thermal conductance.

Similarly, the electron transmission function Tel(E) leads to the computation of the
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Figure 4.1: ZT versus chemical potential µ at T =300 K obtained both by DFT (black) and TB

(red) for AA (9A,6A), AZ (7A,4Z), ZA (4Z,9A) and ZZ (6Z,4Z) GNWs. Except the AA

GNW in the PM state, others are all in the AFM state.

following integral [58]:

Kn(µ) =
2

h

∫ ∞

−∞
dETel(E)(E −µ)n

(

−∂ f (E,µ)

∂E

)

, (4.2)

where f (E,µ) = 1/(1+ e(E−µ)/kBT ) is the Fermi-Dirac distribution function evaluated

for chemical potential µ . Like the phonon transmission, Tel(E) is defined as the num-

ber of electronic bands crossing energy E for 1D systems. The integrals in the above

equations are very sensitive to the electronic bands around the Fermi energy and pro-

vide all the quantities needed to evaluate ZT : Ge = e2K0(µ), S = K1(µ)/[eT K0(µ)] and

kel = {K2(µ)− [K1(µ)]
2/K0(µ)}/T . Finally, the thermoelectric figure of merit ZT can

be obtained by

ZT =
S2GeT

kel + kph
. (4.3)

The formalism to compute ZT has been implemented using the electron and phonon

transmission functions Tel(E) and Tph(ω), which are obtained by counting the number of

bands at a given electronic energy or phonon frequency from the full electron and phonon
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band structures of the system, respectively. For example, to obtain accurate full electron

and phonon band structures for GNWs depicted in Fig. 3.1 in Chapter 3, DFT calcu-

lations are performed using the VASP package (more details in “Theoretical Methods”

of Chapter 3). For phonon calculations, a supercell constructed from the optimized unit

cell is used by VASP to generate the force constants matrix in the finite displacement

scheme. Then PHONOPY code was utilized to obtain the phonon dispersion over the

whole Brillouin zone [59]. However, DFT is too computationally demanding to perform

a systematic study. Therefore, we use the TBU model developed in Chapter 3 to calculate

electronic and magnetic properties of GNWs and GNRs systems, and a less expensive

density-functional based tight binding method (DFTB+) [60] is used to build force con-

stant matrices and compute phonon transmission functions. This combination of TBU and

DFTB+ (referred as TB below) yields ZT in excellent agreement with DFT calculations,

as exemplified by the case study shown in Fig. 4.1.

4.3 Thermal and thermoelectric properties

4.3.1 AA-GNWs

Fig. 4.2(a) shows DFT-calculated phonon dispersions and corresponding transmis-

sion functions of AA (9A,6A) and its straight counterpart AGNR-9 in their paramagnetic

(PM) state. It can be readily seen that the nanoribbon exhibits more dispersive phonon

branches than the nanowiggle, generally resulting in larger values of transmission func-

tion Tph(ω). The existence of a large number of flat phonon bands in (9A,6A) gives its

Tph(ω) more frequencies that do not contribute to thermal transport compared to AGNR-

9. Therefore, the thermal conductance of the nanowiggle is substantially lower than that

of the nanoribbon, as clearly seen in Fig. 4.2(b). As a result, at room temperature, the

straight AGNR-9 has a thermal conductance of 1.22 nW/K while the nanowiggle’s one is

decreased to 0.54 nW/K. Such spectacular suppression of phonon transmission and cor-

responding reduction of thermal conductance arise from the wiggle-like edges acting as

scattering centers and the mismatch of phonon modes in the parallel and oblique sectors

[53]. Conversely, the wiggle-like edges do not significantly disrupt electrical conduction

[Figs. 4.2(c-d)]. Fig. 4.2(c) shows that a larger electronic band gap (1.48 eV) develops

in the electrical conductance of the nanowiggle, compared to the band gap (0.58 eV) of
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Figure 4.2: DFT Phonon dispersions and transmission functions of AGNR-9 and AA (9A,6A) with

their structures on the top. AGNR-9 is the straight counterpart to (9A,6A) sharing the

same width. (b) Thermal conductance kph versus temperature of (9A,6A) (solid line)

and AGNR-9 (dashed line). (c) Electrical conductance Ge; (d) thermal power S; and

(e) thermoelectric figure of merit ZT versus chemical potential µ at room temperature

(T =300 K) of (9A,6A) (solid line) and AGNR-9 (dashed line). The zero in the chemical

potential is chosen at the Fermi level. Both structures are in the PM state.

AGNR-9. Since a large electronic band gap can yield high thermopower values [53],

(9A,6A) exhibits higher S than AGNR-9 [Fig. 4.2(d)]. This, combined with the preserved

electrical conductance Ge and degraded phonon thermal conductance, gives (9A,6A) a

high peak with ZT value 0.66 at µ=-1.08 eV [to be compared to 0.13 of the correspond-

ing AGNR-9 in Fig. 4.2(e)], in excellent agreement with a previous study [55].

4.3.2 ZZ-GNWs

In contrast to AGNRs, ZGNRs in the PM configuration have a zero electronic band

gap. The metallic behavior results in the mutual cancellation of electron and hole contri-

butions to S, leading to very small values of S and subsequently almost zero ZT values for

all widths [54, 61]. Our calculations show that ZGNR-6 [Fig. 4.3(a)] in the PM state has

a peak ZT value of only 0.08 at room temperature (not shown). Clearly, opening a band

gap is necessary to enhance ZT in ZGNRs. The AFM spin ordering opens a band gap

of 0.40 eV for ZGNR-6 [Fig. 4.3(c)] and gives a corresponding ZT peak of 0.12 [shown

as a dashed line in Fig. 4.3(e)]. To further increase ZT , thermal conductance needs to be
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Figure 4.3: DFT Phonon dispersions and transmission functions of ZGNR-6 and ZZ (6Z,4Z) with

their structures on the top. ZGNR-6 is the straight counterpart to (6Z,4Z) sharing the

same width. (b) kph versus temperature of (6Z,4Z) (solid line) and ZGNR-6 (dashed

line). (c) Ge; (d) S; and (e) ZT versus µ at room temperature of (6Z,4Z) (solid line)

and ZGNR-6 (dashed line). The zero in the chemical potential is chosen at the Fermi

level. Both structures are in their AFM state.

reduced. Similar to AA nanowiggles, the wiggle-like edges in ZZ systems also result in

much less dispersive phonon branches compared to their straight GNR counterparts and

thus generally smaller values of transmission functions [Fig. 4.3(a)]. Subsequently, kph of

(6Z,4Z) is dramatically reduced, as shown in Fig. 4.3(b). At room temperature, (6Z,4Z) in

the AFM spin ordering has a thermal conductance of 0.54 nW/K while ZGNR-6 shows

kph as high as 1.95 nW/K. Similar reduction of kph is observed for the nanowiggle in the

PM state as well (not shown). In addition, its particular edge structure opens up a band

gap of 0.12 eV even in the PM state, indicative to a larger thermopower S. Indeed, at

room temperature, the peak S of PM ZGNR-6 is only 97.06 µV/K but PM (6Z,4Z) has

a S peak of 477.94 µV/K. The substantial reduction of kph with enhanced power factor

S2Ge enables the peak ZT of (6Z,4Z) in the PM configuration reaching 0.36 (not shown),

more than four times that (0.08) of PM ZGNR-6. AFM spin ordering opens the band gap

to 0.26 eV for (6Z,4Z) [Fig. 4.3(c)], resulting in the peak ZT of 0.38 at room temperature

[solid line in Fig. 4.3(e)].
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4.3.3 Electronic resonant tunneling

Turning to the two other types of nanowiggles AZ and ZA, DFT calculations also

show flat phonon branches and reduced thermal conductance. It is important to note that

many strategies, like the introduction of atomic vacancies and Stone-Wales defects, usu-

ally suppress both thermal and electrical conductance. Here, GNWs are able to have

thermal conductance suppressed while essentially preserving electronic conduction, as

shown in Figs. 4.2 (c-d) and Figs. 4.3 (c-d). This can be explained by electronic resonant

tunneling. In a nanowiggle composed of alternate parallel and oblique sectors, the paral-

lel sectors act as barriers between oblique sectors, and vice versa. In other words, GNWs

can be seen as multi-barrier systems, where a resonant tunneling transport may occur

and induce strong oscillations of the electrical conductance and thermopower [53, 62].

From Figs. 4.2(c) and 4.2(d), in comparison to AGNR-9, oscillations (multiple peaks)

of the electrical conductance and thermopower of the nanowiggle (solid line) are clearly

present, indicating the existence of resonant tunneling. Those peaks are directly responsi-

ble for multiple ZT peaks in Fig. 4.2(e). Similar oscillations of the electrical conductance

and thermopower can be seen in Figs. 4.3(c) and 4.3(d) as well for (6Z,4Z), resulting in

multiple peaks of ZT close to the Fermi level in Fig. 4.3(e). Such resonant tunneling

effect not only preserves electrical conduction, but also leads to multiple ZT peaks so

that good thermoelectric performance can occur at many chemical potential values. On

the contrary, straight GNRs only show few significant ZT peaks close to Fermi level [see

dashed line plots in both Figs. 4.2(e) and 4.3(e)].

4.4 Systematic study: establishing a roadmap to optimal ZT in GNWs

The charts shown in Fig. 4.4 describe how peak ZT values vary with respect to the

widths of parallel (P) and oblique (O) sectors for AA nanowiggles in the PM state, and for

AZ, ZA and ZZ nanowiggles in the AFM state, since only the PM spin ordering exists for

AA GNWs and the AFM state is the most stable spin configuration for nanowiggles con-

taining zigzag edges, as discussed in Chapter 3. Each color-coded square represents the

highest ZT peak value for a specific GNW structure, with the chemical potential ranging

from -2 eV to 2 eV at room temperature. Due to the dependence of ZT on both elec-

tric and thermal conductions, it exhibits complex relations to geometrical parameters P
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Figure 4.4: Peak ZT (room temperature) versus the widths of parallel (P) and oblique (O) sectors

for (a) AA GNWs in the PM state, and for (b) AZ, (c) ZA and (d) ZZ GNWs in the

AFM state. The points absent mainly on the upper-left corner of each graph correspond

to geometries not allowed by the particular choice for P and O. In (a), the column on

the right side of the frame represents peak ZT values of AA GNWs’ straight counter-

parts in the PM state. Similarly in (d), the column next to the frame shows peak ZT of

ZZ GNWs’ straight counterparts in the AFM state. In these charts, minima and max-

ima of peak ZT values are (a) ZTmin=0.04, ZTmax=0.79; (b) ZTmin=0.12, ZTmax=0.65;

(c) ZTmin=0.07, ZTmax=0.56; (d) ZTmin=0.04, ZTmax=0.57.

and O. In general, our calculations predict that kph gradually increases with the increase

of P and O while electronic band gap decreases when the size of a structure gets larger.

Therefore, small ZT values (shown in blue) are usually found in the upper-right portion

of each graph where P and O are the largest, while ZT values exceeding a half of unity
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(shown in red) appear mainly in the lower-left area of each graph. In addition to such

general rule, for AA GNWs in Fig. 4.4(a), electronic band gaps can be classified ac-

cording the multiple-of-three rules like straight AGNRs. The band gap ∆N for AGNRs

with N = (3i+ j) C-C lines follows the relation ∆3i+1 > ∆3i > ∆3i+2, indicating that AA

GNWs with mod(PA,3)=mod(OA,3)=2 possess the smallest band gaps. Generally, in these

structures, small band gaps lead to small values of thermopower and therefore small ZT

values [shown in blue marks in Fig. 4.4(a) evenly spaced in units of 3]. For many other

systems, the existence of large band gaps (up to 1.7 eV) results in large thermopower

values and ZT values usually higher than 0.5, indicating that AA GNWs are the best can-

didates as thermoelectrics among all four types of nanowiggle systems. Although straight

AGNRs possess similarly large band gaps, the considerably higher thermal conductance

renders their peak ZT values significantly smaller, as demonstrated in the column of data

shown on the right side of the frame in Fig. 4.4(a). With the notable exception of very

narrow AGNRs (P<8), the peak ZT value quickly decreases to the blue region as P in-

creases. Similar results can be observed in Fig. 4.4(d) where peak ZT values of straight

ZGNRs (shown as a column of data next to the frame) are much smaller than those of

their nanowiggle counterparts.

4.5 Structural modifications to further enhance ZT

So far, we have shown that GNWs have better thermoelectric performance com-

pared to GNRs. However, even so, the highest ZT at room temperature for pristine GNWs

we studied is 0.79. For practical thermoelectric applications, it is often accepted that a

system should have ZT higher than 1. Our DFT calculations show that a certain pattern

of structural dislocation in the the experimentally available GNW (9A,6A) [Fig. 4.5(a)]

can make ZT exceed 1 at room temperature [47]. The dislocation results in further ther-

mal conductance reduction [Fig. 4.5(b)]. As a result, at room temperature, the dislocated

GNW has a thermal conductance of 0.32 nW/K while the defect-free one’s thermal con-

ductance is 0.53 nW/K. As for electrical conduction, the dislocation also results in de-

crease of electrical conductance [Fig. 4.5(c)] and thermal power [Fig. 4.5(d)]. However,

compared to the reduction in electrical conduction caused by the dislocation, the reduc-

tion of thermal conductance by the dislocation is more significant, leading to an overall
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Figure 4.5: (a) Atomic structures of the defect-free GNW (9A,6A) (on the top) and its dislocated

counterpart (on the bottom). They are periodic in the horizontal direction. (b) thermal

conductance kph versus temperature of the GNW (black line) and dislocated counter-

part (red line). (c) Electrical conductance Ge, (d) thermal power S, and (e) thermoelec-

tric figure of merit ZT versus chemical potential µ at room temperature (T =300 K) of

the GNW (black line) and dislocated counterpart (red line). The zero in the chemical

potential is chosen at the Fermi level.

enhancement of ZT , as shown in Fig. 4.5(e). At room temperature, the peak ZT of the

perfect GNW is 0.66 at µ=-1.08 eV while that of the dislocated counterpart is 1.01 at µ=-

1.12 eV. At liquid nitrogen temperature (T =78K), the peak ZT of the dislocated GNW

becomes 1.10 at µ=1.70 eV, which is also higher than 1.

4.6 Summary

In this chapter, GNWs are found to possess significantly enhanced thermoelectric

performance compared to their straight GNRs counterparts. Such improvement originates

from the combination of (i) reduced phonon thermal conductance due to phonon scatter-

ing by wiggle-like edges and the mismatch of phonon modes in the parallel and oblique

sectors, and (ii) the electron resonant tunneling effect between these sectors which guar-

antee good electronic conduction. In general, peak ZT values of AA GNWs are more

than triple those of straight AGNRs of the same width. For many GNWs with at least one

zigzag sector, the interplay between parallel and oblique sectors opens a band gap, leading

to larger thermopower and consequently to higher ZT while peak ZT values of straight
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ZGNRs are almost zero due to their metallicity. Among all nanowiggle structures studied

here, AA (6A,5A) has the maximum ZT = 0.79 at room temperature. A larger proportion

of AA systems possess ZT higher than 0.5 in comparison to the other three types of achi-

ral GNWs, leading to the conclusion that the experimentally available AA GNWs are the

most promising candidates for thermoelectric applications. Additionally, our systematic

study of the effects of geometry on ZT provides the guideline for the experimental design

and synthesis of specific GNWs for thermoelectric applications. The highest ZT at room

temperature for pristine GNWs we studied is 0.79. Finally, a structural dislocation in the

experimentally available GNW (9A,6A) is found to further enhance ZT over 1 at room

temperature.



5. Substrate effects on electronic and magnetic properties of GNRs

and GNWs

In Chapters 3 and 4, we have discussed the electronic, magnetic and thermal properties

of free-standing GNWs. In reality, however, they are synthesized on a gold substrate.

Hence, in this chapter, the influence of the gold substrate on electronic properties of both

GNRs and GNWs is investigated [63]. Furthermore, a particular armchair-zigzag GNW

is chosen to study the substrate influence on its magnetic properties [27].

5.1 Introduction

While many of the predicted potential uses of graphene rely on its intrinsic proper-

ties, a substrate is usually required to support such an atomically thin material for practical

applications [64]. In particular, metallic substrates are often used as catalysts in graphene

formation, as probes during electrical measurements, or as source and drain electrodes in

electronic devices [65]. It follows that one of the most important challenges for the use of

graphene-based electronic devices is to develop a precise understanding of the interaction

between graphene and its supporting metallic substrate.

As mentioned in Chapter 2, an atomically precise bottom-up approach has been de-

veloped [21] to grow subnanometer wide straight and wiggle-like armchair GNRs with

clean edges on a gold substrate. The high quality of these samples allows their elec-

tronic properties to be measured with high fidelity on a stepped Au(788) surface. The

corresponding band gaps are found to be smaller than theoretically predicted quasipar-

ticle band gaps of their free-standing counterparts [66]. Evidently, these results indi-

cate the gold substrate has a deep influence on their electronic properties and a satisfac-

tory understanding of those effects calls for methods beyond density functional theory.

Portions of this chapter previously appeared as: L. Liang and V. Meunier, Phys. Rev. B

86, 195404 (2012).

Portions of this chapter previously appeared as: L. Liang, E. C. Girão, and V. Meunier,

Phys. Rev. B 88, 035420 (2013).
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Here, we first carry out DFT calculations to study electronic properties of experi-

mentally synthesized AGNR-7 and AA GNW (9A,6A) on the gold substrate. DFT fails

to capture the experimentally observed band gap reductions due to the substrate, and

hence we combine the many-body GW approach (as discussed in Chapter 3) and a semi-

empirical image charge model to describe the band gap reductions.

5.2 Theoretical methods

Previous DFT calculations showed that the bonding of graphene to a Au(111) sur-

face is weak [65, 67] and also predicted weak physisorption for GNRs deposited on an

Au/InAs(110) surface [68]. Local density approximation (LDA) is well known to overes-

timate the binding in such weakly bonded systems where van der Waals (vdW) interac-

tions dominate, and is not suitable for inhomogeneous GNRs-metal interfaces in principle.

A generalized gradient approximation (GGA) for inhomogeneous systems, however, does

not necessarily improve the results due to its tendency to underestimate the binding. In

practice, in the case of graphene on gold, no binding is predicted at all within GGA [65].

A solution is to complement GGA with the semi-empirical approach based on Grimme

formula [69] to capture the vdW interaction.

DFT calculations are performed using the VASP package (more details in “Theoret-

ical Methods” of Chapter 3). The vdW interaction is included within a DFT-D2 approach

of Grimme [69], as implemented in VASP. We have used a value of 40.62 J nm6/mol

for the Au dispersion coefficient C6 and of 1.772 Å for the Au vdW radius R0 [65]. The

simulated scanning tunneling microscopy (STM) images shown here are computed using

converged electronic densities within the Tersoff-Hamann approximation [70].

The Au(111) surface is modeled by a periodic slab geometry constructed from the

GGA-optimized Au bulk and each supercell contains seven gold layers with a GNR or

GNW adsorbed over the top layer. A vacuum spacing of 16 Å is used to avoid spurious

interactions with replicas. We adapt the graphene in-plane lattice constant according to

the GGA-optimized gold lattice constants. It follows that the C-C bond length is slightly

stretched to 1.45 Å compared to its experimental value 1.42 Å, corresponding to a small

lattice mismatch of 2.1%. As shown in Fig. 5.1, due to symmetry, the most stable in-plane

adsorption geometries of AGNR-7 and AA GNW (9A,6A) on the substrate correspond to
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Figure 5.1: The adsorption geometry of a hydrogenated (a) AGNR-7 and (b) AA (9A,6A) on the

Au(111) surface. One unit cell is shown for both cases. Numbers indicate separation

distances in Å between circled C atoms and Au atoms right below them. To visualize

the bulking of the GNW upon adsorption on the substrate, a height variation (blue

curve) of the GNW along the blue line is shown on the right side.

a carbon atom either on top of a gold atom (e.g., carbon atoms highlighted by red dashed

circles) or on top of the center of the bridge between two gold atoms [67].

5.3 Substrate effects on electronic properties

5.3.1 Geometry on the substrate

In Fig. 5.1(a), AGNR-7 is shown to exhibit a surface buckling of ∼0.12 Å. Edge C

atoms move downwards more compared to basal C atoms. The average vertical separation

distance between the straight GNR and Au(111) surface is in the range 3.07-3.19 Å,

indicating only weak physisorption at the interface, as predicted previously [65, 67, 68].

Similar structural corrugation of ∼0.13 Å has been observed for (9A,6A) [Fig. 5.1(b)].

The equilibrium separation distance between edge C atoms (red dashed circles) of the

nanowiggle and gold substrate is ∼3.06 Å, while the distance between atoms in the central

nanowiggle and the substrate is ∼3.19 Å. (9A,6A) also has a separation distance to the

substrate larger than 3.0 Å and hence is only physisorbed on the substrate.

We used the relaxed geometries to simulate constant current STM images, corre-

sponding to the occupied states within 1 eV of the Fermi level. The images show both
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Figure 5.2: Simulated constant current STM images of AGNR-7 on the gold surface at -1 eV bias

voltage with tip height range given by (a) Hmin = 2.18 Å, Hmax = 5.18 Å and (b) Hmin

= 4.42 Å, Hmax = 6.40 Å. Hmin and Hmax represent the minimum and maximum tip-

substrate distance, respectively. Simulated constant current STM images of (9A,6A)

on the Au(111) surface at -1 eV bias voltage with (c) Hmin = 2.20 Å, Hmax = 5.23 Å

and (d) Hmin = 4.38 Å, Hmax = 6.43 Å.

the GNR and GNW (mostly in red) with only a weak visible registry of the gold sur-

face atoms (rendered in lightly blue circles), in Figs. 5.2(a) and 5.2(c). However, when a

smaller constant current is chosen (equivalent to raising the STM tip away from the sub-

strate at constant bias) in Figs. 5.2(b) and 5.2(d), the substrate can no longer be detected

while atomic details of the the GNR and GNW are revealed, showing that electronic states

close to the Fermi level are mostly concentrated at the edge. In other words, edge states

can be detected at low bias, consistent with experimental STM observations [21, 66].

Furthermore, careful examination on Fig. 5.2(d) reveals that edge atoms at the bottom of

V-shape valleys exhibit larger contrast than other edge atoms, in agreement with recent

findings on the distribution of the local current flowing along the system [71].

5.3.2 Band structures on the substrate

Figs. 5.3(a) and 5.3(c) are DFT band structures of AGNR-7 supported on the Au(111)

surface and its free-standing counterpart (dashed lines), respectively. Clearly, the GNR-

Au(111) system is metallic. However, compared to bands of the isolated GNR, the GNR-

projected bands [highlighted by red dots in Fig. 5.3(b)] still exhibit the main features of

the isolated GNR. They are slightly perturbed due to the weak interaction between the

AGNR-7 and substrate. Also, in comparison to the DFT band gap (1.47 eV) of the iso-

lated AGNR-7, the DFT band gap (1.45 eV) of the adsorbed AGNR-7 is only slightly

reduced. Similarly, as shown in Fig. 5.3(e), projection bands (in red dots) of the AA
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Figure 5.3: (a) Electronic band structures of AGNR-7 deposited on a Au(111) substrate. The dots

superimposed on the bands correspond to projected bands due to AGNR-7. Panel (b)

only shows the dots, for clarity. (d) Electronic band structures of (9A,6A) deposited

on a Au(111) substrate. The dots show the projected bands of (9A,6A). Panel (e) only

shows the projected bands of (9A,6A) for clarity. The size of the dot is proportional

to the amplitude of the projection. (c) and (f) show electronic band structures of free-

standing AGNR-7 and (9A,6A), respectively. Solid (dashed) lines represent bands at

the GW (DFT) level. The Fermi level is set at 0 eV in each graph.

(9A,6A) adsorbed on the gold surface are weakly perturbed by the substrate, compared to

bands of its isolated counterpart [Fig. 5.3(f) in dashed lines]. The DFT band gap (1.43

eV) of the adsorbed (9A,6A) is also reduced by 0.07 eV compared to the DFT band gap

(1.50 eV) of the isolated counterpart.

5.3.3 Charge transfer and substrate polarization

Due to the vdW interaction between the adsorbates and gold substrate, previous

works have shown that a small charge transfer often occurs at the interface, leading to

the doping of the adsorbates [65, 67, 68]. To determine whether the adsorbed GNR and

GNW are n- or p-typed doped, work functions of the isolated GNR (GNW) and the clean

Au(111) surface are calculated. The work function of the surface is 5.21 eV, higher than

the work functions of both the GNR and GNW, which are 4.71 eV and 4.80 eV, respec-

tively. Thus, provided electronic band structures of isolated systems remain essentially

unchanged upon formation of the interface, we can infer an electronic charge transfer from
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the adsorbed GNR (GNW) to the surface and hence a p-type doping of the adsorbed GNR

(GNW), consistent with previous results [67, 68]. Of course, band structures of both the

adsorbates and substrate are weakly perturbed, but p- type doping of the adsorbates should

still take place. To verify this hypothesis, we computed plane-averaged electronic densi-

ties ρ(z) to visualize the electronic redistribution ∆ρ(z) = ρM|G(z)−ρM(z)−ρG(z) upon

formation of the interface, where ρM|G(z), ρM(z) and ρG(z) represent plane-averaged

electronic densities of the GNR (GNW)-Au(111) system, isolated Au(111) surface and

isolated GNR (GNW), respectively. As shown in Fig. 5.4(a), both electronic redistri-

butions ∆ρ(z) are localized at the interface. For both AGNR-7 and (9A,6A), it can be

found that ∆ρ(z)< 0 within around 1 Å below the adsorbate, while there is an increase in

∆ρ(z) > 0 within ∼1.4 Å above the Au surface, clearly demonstrating electronic charge

transfers from the adsorbate to the substrate. Such electronic charge redistributions at the

interface lead to electronic dipole moments and thus substrate polarization.

5.3.4 Band gap reduction by substrate polarization: an image charge approach

Figure 5.4: (a) Plane-averaged difference electronic charge densities ∆ρ(z) = ρM|G(z)−ρM(z)−
ρG(z) upon formation of the interface for AGNR-7 and AA (9A,6A), respectively. (b)

Plane-averaged exchange-correlation potential of a clean gold surface and image po-

tential. The origin is set at the first gold layer, and z0 and z1 are fitted by setting

the intersection of the two curves at z1. (c) Plane-averaged charge densities for the

conduction band minimum (CBmin) and the valence band maximum (VBmax) of the

free-standing (9A,6A).
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As mentioned in Section 3.5 in Chapter 3, an electron will repel other electrons cre-

ating a small region around itself in which there are fewer electrons. This region can be

treated as a positively-charged screening hole, which increases the attractive Coulomb po-

tential felt by the electron inside the hole and subsequently increases the band gap. How-

ever, the substrate polarization is expected to screen the Coulomb potential experienced

by the electron and in turn effectively reduce the band gap of the adsorbate compared to

that of its isolated counterpart [42, 64, 72, 73]. Such long-range many-body polarization

effect, however, cannot be easily modeled by conventional DFT using local or semi-local

approximations as implemented in LDA or GGA since these xc potentials fail to repro-

duce the asymptotic image potential tail shape of a metal surface [72, 74]. In principle,

this effect can be captured by more accurate GW calculations. However, it is very com-

putationally demanding and complicated to perform GW calculations on a large metallic

system. The slab model to simulate a metal surface usually requires many metal atoms,

which significantly increases the computational cost of GW calculations. An even bigger

challenge is that GW requires the computation of dielectric constants while they are in-

finity for perfect metals, and thus GW calculations are currently unavailable for metallic

systems in most DFT softwares. Therefore in this thesis, instead of using GW on the gold

surface, we adopt a semi-empirical image charge model as a computationally much less

demanding alternative to estimate the band gap reduction.

In such a model [64, 73], the quasiparticle (QP) energy of a substrate-supported

layer is given by E
QP
j;supported = E

QP
j;free +∆Pj, where E

QP
j;free is the QP GW energy of state

| j > of the free-standing layer (GNR or GNW here), and ∆Pj is the correction term to

account for substrate polarization. Although conventional DFT accurately models the

short-range surface potential, it fails to depict the potential far from the surface. In the

long-range limit, effective potential due to the surface is better described by an image

potential, Vim [74]. Hence, ∆Pj can be approximated as

∆Pj =
∫

z>z1

dr[Vim(z)−V Au(111)
xc (r)]ρ j(r), (5.1)

where Vim(z) = −e2/4|z− z0| is the image potential and V
Au(111)
xc (r) is the xc potential

of a clean Au(111) surface; ρ j(r) is the charge density of state | j > of the free-standing
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layer. z0 is the image plane position and z1 is where the transition from short-range to

long-range limit takes place and Vim(z) starts to deviate from V
Au(111)
xc (r) [74] .

To calculate ∆Pj, simulations are performed separately for the two subsystems, us-

ing atomic positions determined in the optimized GNR(GNW)-Au(111) system. The

clean gold surface is first treated to obtain the xc potential V
Au(111)
xc (r); the free-standing

AGNR-7 or (9A,6A) is used to obtain the DFT charge densities at the conduction band

minimum (CBmin) and the valence band maximum (VBmax). Finally, the QP band gap of a

substrate-supported GNR (GNW) can be obtained using E
QP
gap;supported=E

QP
gap;free+∆PCBmin

-

∆PVBmax , where ∆PCBmin
and ∆PVBmax are corrections to the CBmin and VBmax, respec-

tively.

Table 5.1: DFT and GW band gaps of free-standing and substrate-supported AGNR-7 and GNW

(9A,6A). For the substrate-supported case, the GW band gaps are estimated in com-

bination of GW and the image charge model. The experimental band gaps [66] of

substrate-supported AGNR-7 and (9A,6A) are also shown for comparison.

free-standing substrate-supported free-standing substrate-supported

AGNR-7 AGNR-7 GNW (9A,6A) GNW (9A,6A)

DFT band
1.47 1.45 1.50 1.43

gap (eV)

GW band
3.53 2.85 3.62 2.96

gap (eV)

experimental band
2.8 ± 0.4 3.1 ± 0.4

gap (eV)

As shown in Figs. 5.3(c) and 5.3(f) (solid lines), the GW band gaps of the free-

standing AGNR-7 and (9A,6A) are 3.53 eV and 3.62 eV respectively, much larger than

their DFT band gaps (1.47 eV and 1.50 eV) [Table 5.1]. Previous works [44, 45] show

GW band gaps of AGNR-7 and (9A,6A) are 3.80 and 3.71 eV respectively, slightly larger

than ours. This can be explained by the fact that the GNR (GNW) is deposited on the gold

substrate and stretched slightly to ensure lattice match between them. This stretch tends to

decrease band gaps slightly [75]. From Fig. 5.4(b), by computing the intersection of the xc

potential and image potential, we find z0 and z1 as 1.08 Å and 2.50 Å respectively. These

values agree with the results by Li et al. [73]. In Fig. 5.4(c), charge densities of (9A,6A)

reach zero rapidly as they approach the surface, indicating weak coupling at the interface.

The image charge model can be used only in the weak-coupling limit, which holds for our
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case here. Hence, ∆PCBmin
-∆PVBmax is calculated as -0.66 eV and therefore the QP band

gap of the adsorbed (9A,6A) is reduced to 2.96 eV [see Table 5.1], in agreement with the

experimental value (3.1 ± 0.4 eV) [66]. Similarly, as shown in Table 5.1, the band gap

reduction of the straight AGNR-7 by the substrate is estimated as 0.68 eV and thus its

QP band gap is 2.85 eV, well consistent with the experimental one (2.8 ± 0.4 eV) [66].

As discussed above, conventional DFT calculations yield only a DFT band gap reduction

of 0.02 eV for the adsorbed AGNR-7 and 0.07 eV for the adsorbed (9A,6A), as shown in

Table 5.1. Clearly, DFT fails to quantitatively capture band gap reductions by substrate

polarization while the semi-empirical image charge model offers a very satisfactory and

computationally less demanding (compared to a full GW method) tool to estimate such

band gap reductions.

5.4 Substrate effects on magnetic properties
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Figure 5.5: Top view of two most stable adsorption geometries of the GNW (7A,4Z) in the AFM

state on the Au(111) surface. The system is periodic in both horizontal and vertical

directions and one unit cell is shown. To ensure the strongest binding with the sub-

strate, a carbon atom should be either on top of a gold atom or on top of the center of

the bridge between two gold atoms. Numbers in red indicate separation distances in

Å between circled C atoms and Au atoms right below them. To visualize the bulking

of the GNW upon adsorption on the substrate, a height variation (blue curve) of the

GNW along the blue line is shown on the left side.

In Chapter 3, we have predicted that versatile spin orderings are present in GNWs.

However, those findings are based on free-standing GNWs and the experimentally fabri-

cated GNWs are supported on a gold substrate. In this chapter, we have already demon-

strated that the gold substrate can have significant influence on electronic properties of

GNWs. Therefore, it is essential to find out how the substrate affects their magnetic prop-
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erties. As a case study, we chose the AZ GNW (7A,4Z) in Fig. 3.1(c), one thoroughly

studied in Chapter 3, to investigate the influence of the Au(111) surface on its spin prop-

erties.

Due to symmetry, a stable in-plane adsorption geometry of (7A,4Z) on the gold

substrate corresponds to a carbon atom either on top of a gold atom (e.g., carbon atoms

highlighted by red dashed circles in Fig. 5.5) or on top of the center of the bridge between

two gold atoms [63, 67]. Both geometries shown in Fig. 5.5 satisfy such requirement. Our

DFT calculations indicate that the left geometry is more stable than the right one by 0.484

eV because half of zigzag edge C atoms in the left panel stay right on top of gold atoms

while none of zigzag edge C atoms in the right panel do. Hence, zigzag edge C atoms have

stronger binding with the Au(111) surface in Fig. 5.5(a), subsequently leading to slightly

shorter separation distances (see red numbers in Fig. 5.5) and more stable adsorption

geometry. In Fig. 5.5(a), edge C atoms of (7A,4Z) move downwards more compared

to basal C atoms, resulting in a surface buckling of ∼0.19 Å, similar to the structural

corrugation observed for (9A,6A) on the Au(111) surface [Fig. 5.1(b)]. More importantly,

the vertical separation distance between the (7A,4Z) GNW and Au(111) surface ranges

from 2.94 Å to 3.17 Å, indicating relatively weak physisorption at the interface. Similar

conclusions can be reached for the configuration shown in Fig. 5.5(b). Spin-polarized

DFT calculations show that the magnetic configuration does not significantly vary in the

presence of the gold substrate while its strength is only mildly weakened. For example,

in the AFM (TAFM) state, the maximum atomic magnetic moment is 0.127 (0.119) µB

for unsupported (7A,4Z) and decreases to 0.108 (0.095) µB when it is gold-supported for

both geometries in Fig. 5.5. This can be understood by the fact that the gold substrate

only interacts with the GNW by weak physical forces. Additionally, for conventional

ZGNR-6 adsorbed on the Au(111) surface, its AFM state also remains with the maximum

atomic magnetic moment reducing to 0.133 µB compared to 0.145 µB of the free-standing

one, consistent with recent experimental observations [76]. Therefore, it seems that the

versatile magnetic states of GNWs are indeed present even when they are on the Au(111)

substrate.

Note that the magnetic robustness of GNWs on the gold substrate is assessed by

spin-polarized DFT calculations, which cannot fully capture many-body polarization ef-
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fects by the substrate [63, 64]. Such many-body effects are found to reduce the band gap

of the adsorbate and may influence its magnetic properties as well. Due to the extreme

difficulty to perform spin-polarized GW calculations for GNWs on the metallic substrate,

the study on the many-body effects on magnetism of GNWs is beyond the scope of this

thesis.

5.5 Summary

In this chapter, we have used first-principles theory to show that both the GNR

and GNW are weakly adsorbed on the Au(111) surface by the vdW force. Particularly,

carbon atoms located at the edge tend to bend more towards to the substrate than basal

carbon atoms. Despite being at lower vertical positions, simulated STM images show

larger corrugation at edge atoms. The small net charge transfer detected from the GNR

(GNW) to the substrate results in a p-type doping of the GNR (GNW). Such charge

transfer gives rise to an electric dipole at the interface, leading to substrate polarization.

A semi-empirical image charge model has been developed to assess polarization-induced

band gap reductions. The band gap reductions of AGNR-7 and (9A,6A) by the gold sub-

strate are estimated as 0.68 eV and 0.66 eV, respectively. Consequently, the quasiparticle

band gaps of the adsorbed AGNR-7 and (9A,6A) are 2.85 eV and 2.96 eV respectively,

which agree well with experimentally measured values. This indicates that the image

charge model provides a satisfactory and computationally tractable method (compared to

full GW calculations) to predict band gap reductions for both AGNR-7 and (9A,6A) sup-

ported on the Au(111) surface. Furthermore, metal substrates like gold affect significantly

electronic properties of atomically thin materials such as GNRs and GNWs, and accurate

theoretical calculations of these materials should always take in account substrate effects.

Finally, our spin-polarized DFT calculations indicate that the Au(111) substrate on which

GNWs are synthesized does not considerably alter their magnetic properties.



6. Heterojunctions of pure and nitrogen-doped GNWs

So far, we have studied pure GNWs. Recently, nitrogen atoms have been doped to GNWs

and heterojunctions consisting of pure and nitrogen-doped GNWs have been synthesized

[Cai et al., Submitted] [24]. In this chapter, the electronic and transport properties of

GNW heterojunctions are studied. Furthermore, as shown below, nitrogen doping results

in type-II band alignments at the interface, demonstrating the potential of heterojunctions

for excitonic solar cell applications. In this chapter, we also estimate the maximum solar

power conversion efficiency of heterojunctions.

6.1 Introduction
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Figure 6.1: For a GNW heterojunction, the pure GNW (p-GNW) is on the left side of the interface

and the nitrogen-doped GNW (N-GNW) is on the right side. There are two types of

experimentally realized nitrogen doping in the GNW (9A,6A): (a) two nitrogen atoms

per monomer unit and (b) four nitrogen atoms per monomer unit. They are denoted as

N2 and N4, respectively. Then the corresponding nitrogen-doped GNWs are labeled as

N2-GNW and N4-GNW, respectively. Hence, the two types of GNW heterojunctions

are denoted as (a) p-N2-GNW heterojunction (b) p-N4-GNW heterojunction.

As mentioned in Fig. 2.5 of Chapter 2, nitrogen-doped GNWs with an atomically

precise edge structure have been synthesized recently [22]. Furthermore, heterojunctions

combining segments of pure and nitrogen-doped GNWs have been also synthesized (de-

noted as p-N-GNW heterojunctions) [24]. Here, we investigate two types of nitrogen

doping which have been experimentally realized: two nitrogen atoms per monomer unit

49
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(denoted as N2) and four nitrogen atoms per monomer unit (denoted as N4), as shown

in Fig. 6.1. Then the corresponding nitrogen-doped GNWs are labeled as N2-GNW and

N4-GNW, respectively. Hence, the heterojunction consisting of the pure GNW (p-GNW)

and N2-GNW is denoted as p-N2-GNW heterojunction [Fig. 6.1(a)], and the heterojunc-

tion consisting of the p-GNW and N4-GNW is denoted as p-N4-GNW heterojunction

[Fig. 6.1(b)]. For a better understanding of the nitrogen doping effects on GNW hetero-

junctions, we use the non-equilibrium Green’s function formalism combined with density

functional theory (NEGF-DFT) computational methodology to study the electronic and

transport properties of heterojunctions.

6.2 Theoretical methods

Localized orbital DFT calculations have been performed with SIESTA [77] on the

heterojunctions shown in Figs. 6.3(a) and 6.4(a), within GGA using the Perdew-Burke-

Ernzerhof (PBE) exchange-correlation functional [31]. A real-space mesh equivalent to

a plane-wave cutoff energy of 250 Ryd and the Γ-point sampling in the Brillouin zone

were used. The size of the unit cell along the periodic direction was sufficiently large (in

excess of 6 nm) for the Γ-point sampling to yield converged results. The basis set was

composed of double-zeta with single polarization (DZP) orbitals, with an energy shift of

50 meV. All atoms were relaxed until the residue forces were all below 0.04 eV/Å. After

reaching the equilibrium, the converged Hamiltonians and overlap matrices were cast in

a format suitable for electronic transport and density of states calculations within NEGF

formalism framework [78]. Our electronic transport codes are mainly developed by Prof.

Meunier and Dr. Girão. The NEGF formalism presented below is partially taken from

their works [1, 78].

6.2.1 Non-equilibrium Green’s function (NEGF) formalism

LEFT LEAD RIGHT LEADCONDUCTOR

Figure 6.2: Schematic of a transport system consisting of a conductor and two semi-infinite leads:

left and right leads.
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At nanometer distances, electrons can move ballistically through a device, without

any scattering. For ballistic transport, the relation between the current I and the voltage

(V ) is I = GV , where G is the quantum conductance. The famous Landauer formula [79]

relates G to the transmission coefficient T via

G = (2e2/h)T . (6.1)

Since metallic systems have a number n of bands crossing at the Fermi level, they

do typically behave like ideal n-channel ballistic conductor: every electron injected into

it should pass through without scattering. The theoretical conductance should thus be a

constant G = 2×G0 = 2× (2e2/h)≈ 2× (12.9KΩ)−1. In principle, at larger electron en-

ergies the electrons are able to probe additional bands, which would give a corresponding

increase in G. In practice, the propagating electrons will be scattered by lattice defects

and phonons, and the injection of electrons must proceed through contacts, which can act

as strong scatterers. In addition, Luttinger liquid effects can substantially reduce conduc-

tance in the limit of weak coupling to the electrodes.

A calculation of quantum conductance requires the evaluation of the transmission

probability T through an open system, consisting of a conductor and two or more leads

[80, 81], as shown in Fig. 6.2. A popular approach to calculate the transmission probabil-

ity T has been established by means of an entity called Green’s function (GF). The GF

is defined as

G(E) = [εS−H]−1, (6.2)

where ε = E ± iδ and δ being an infinitesimal real positive number (ε = E + iδ for the

retarded GF Gr and ε = E − iδ for the advanced GF Ga). H and S are the Hamiltonian

and overlap matrices of the system. If we partition the system into a left electrode (L), a

conductor (or central region) (C), and a right electrode (R), we can write its Hamiltonian

in terms of a local-orbital basis as









HL HLC 0

HCL HC HRC

0 HCR HR









, (6.3)
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where HC describes the conductor and H{L,R} represent the semi-infinite left/right leads.

Also, H{L,R}C and HC{L,R} describe the interaction between the conductor and the leads.

The interaction between the leads is considered as zero, corresponding to zero elements

in the Hamiltonian. The overlap matrix S has a similar form to H.

For the orthogonal basis, S is simply an unity matrix I. Then from Eq. 6.2, we have









GL GLC GLR

GCL GC GCR

GRL GRC GR

















ε −HL −HLC 0

−HCL ε −HC −HRC

0 −HCR ε −HR









= I, (6.4)

and after some derivations, the GF of the central region is expressed as

GC = (εIC −HC −ΣL −ΣR)
−1. (6.5)

Σ{L,R} are the “self-energies” of the left/right electrodes, and assume the form

Σ{L,R} = H
†
{L,R}C

G{L,R}H{L,R}C, (6.6)

where G{L,R} = [εI{L,R}−H{L,R}]
−1 are the surface GF of the semi-infinite free leads, and

H{L,R}C are coupling Hamiltonians between the conductor and the leads. Therefore, the

self-energies Σ{L,R} can be interpreted as effective potentials which describe the effects of

the semi-infinite leads on the finite conductor.

One can then show that the transmission function is

T = Tr(ΓLGr
CΓRGa

C), (6.7)

where Γ{L,R} = i[Σr
{L,R} − Σa

{L,R}] for describing the coupling of the conductor to the

left/right leads. The localized Hamiltonian in Eq. 6.3 is known and provided by the tight-

binding methodology [82, 83] or localized-orbital DFT like SIESTA. Gr
C and Ga

C can be

obtained from Eq. 6.5 as long as Σ{L,R} have been computed. In other words, the com-

putation of the transmission function is reduced to the calculation of self-energies, which

depend on the surface GF G{L,R} of the semi-infinite electrodes. G{L,R} can be obtained

for any periodic electrode by recursively doubling the period [1, 84, 85].
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Furthermore, a unique feature of the GF is that it has a direct relation to the density

of electronic states (DOS) of the system, as shown below:

D(E) =− 1

π
ImTr (Gr(E)) . (6.8)

Therefore, the local DOS of the conductor and left/right leads are given as − 1

π
ImTr (Gr

C(E))

and − 1

π
ImTr

(

Gr
{L,R}(E)

)

, respectively.

So far we have considered an orthonormal basis. The corresponding extension for

the non-orthogonal case is straightforward. In this scenario we have to modify

(εS−H)G = I (6.9)

to
(

εI −
(

H − ε(S− I)
))

G = (εI −H ′)G = I, (6.10)

and we can take advantage of the tools described above, but now applied to the modified

Hamiltonian H ′ = H − ε(S− I) [1].

6.3 Electronic and transport properties of p-N-GNW heterojunctions

As shown in the blue dashed line of Fig. 6.3(b), the DOS of N2-GNW [Fig. 6.3(a)]

indicates that it has an electronic band gap of 1.58 eV in the energy range (-0.97, 0.61)

eV, which is barely changed compared to the electronic band gap 1.56 eV of the p-GNW

in the energy range (-0.67, 0.89) eV [see the red dashed line in Fig. 6.3(b)]. However,

the gap energy range of the doped GNW is approximately shifted by 0.29 eV to the left

compared to the pure one’s gap energy range, suggesting that nitrogen doping has shifted

down the Fermi level. As a result, the p-N2-GNW heterojunction should present a band

alignment and indeed its DOS shows a smaller electronic gap of 1.28 eV [black solid

line in Fig. 6.3(b)]. We also adopt the NEGF formalism to perform transport calculations

on this heterojunction. As shown in Fig. 6.3(b), in the energy range (-0.9, -0.7) eV, the

p-GNW has non-zero DOS values while DOS of the doped one is zero. Therefore, an

electron in such energy range is allowed in the p-GNW while forbidden in the doped one,

preventing it from transport through the heterojunction. Similarly, in the energy range
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Figure 6.3: (a) Transport device built from a p-N2-GNW heterojunction. The left (right) electrode

is semi-infinite in the left (right) direction. (b) Densities of states of the heterojunction

(black solid line), p-GNW (red dashed line) and N2-GNW (blue dashed line). (c)

Electrical conductance of the heterojunction (black solid line), p-GNW (red dashed

line) and N2-GNW (blue dashed line). Fermi level of the heterojunction is at 0 eV.

(0.6, 0.8) eV, the doped GNW has non-zero DOS values while DOS of the pure one is

zero, indicating that an electron in the same energy range is allowed in the doped GNW

while forbidden in the pure one and hence making it impossible to transfer through the

heterojunction as well. Consequently, as demonstrated in Fig. 6.3(c), the electrical con-

ductance of the heterojunction (black solid line) is zero within both the aforementioned

energy ranges. Non-zero electrical conductance is only for the energies where DOSs of

both the pure and doped GNWs are non-zero, so the transport gap is as large as 2.05

eV. Compared to the electrical conductances of both the pure and doped GNWs [red and

blue dashed lines in Fig. 6.3(c), respectively], the heterojunction has an overall decreased

electrical conductance (due to the nitrogen scattering) and larger transport gap.
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Figure 6.4: (a) Transport device built from p-N4-GNW heterojunction. The left (right) electrode

is semi-infinite in the left (right) direction. (b) Densities of states of the heterojunction

(black solid line), p-GNW (red dashed line) and N4-GNW (blue dashed line). (c)

Electrical conductance of the heterojunction (black solid line), p-GNW (red dashed

line) and N4-GNW (blue dashed line). Fermi level of the heterojunction is at 0 eV.

For the second type of nitrogen doping shown in [Fig. 6.4(a)], Fig. 6.4(b) indicates

that DOS of N4-GNW has an electronic band gap of 1.50 eV in the energy range (-0.96,

0.54) eV while DOS of the p-GNW has an electronic band gap of 1.56 eV in the energy

range (-0.51, 1.05) eV. Again, they have similar electronic band gaps but the gap energy

range of the doped GNW is approximately shifted by 0.48 eV to the left compared to

the pure one’s gap energy range. So N4 nitrogen doping also shifts down the Fermi

level and the heterojunction has a smaller electronic band gap of 1.05 eV [see its DOS

represented by black solid line in Fig. 6.4(b)]. However, for the transport properties of

the heterojunction (black solid line in Fig. 6.4(c)], due to the same argument above, the

Fermi level shift leads to much larger transport gap (2.02 eV).
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Figure 6.6: Three types of band alignments at the interface of semiconductor heterojunctions:

straddling gap (type-I), staggered gap (type-II) or broken gap (type-III).

Clearly, the doping of nitrogen atoms has significant influence on the electronic and

transport properties of GNW heterojunctions. More importantly, as shown in Fig. 6.5,

nitrogen doping in the GNW (9A,6A) leads to the downshift of the Fermi level with little

change of the electronic band gap, thus resulting in a band alignment at the interface of

the heterojunction. Typically, there are three types of band alignments in semiconductor

heterojunctions: straddling gap (type-I), staggered gap (type-II) or broken gap (type-III),

as shown in Fig. 6.6. Therefore, nitrogen doping in the GNW (9A,6A) results in the

second type of band alignment (i.e., type-II staggered band alignment). Furthermore,

both the conduction and valence band offsets (∆Ec and ∆Ev) can be tuned by nitrogen
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doping concentration levels. N4 doping has twice of nitrogen concentration per monomer

as N2 doping, and hence its ∆Ec (0.51 eV) is roughly twice as ∆Ec (0.28 eV) of N2 doping,

as demonstrated in Fig. 6.5. So the highly-controllable nitrogen doping technique from

the bottom-up fabrication approach can not only result in a type-II band alignment in the

heterojunction, but also open a unique route to tailor the interface band offsets.

6.4 Type-II band alignment for solar cell applications

For the p-N-GNW heterojunctions with the type-II band alignments, free electrons

and holes will be spontaneously separated, which is suited for optoelectronics and solar

energy conversion. In the rest of this chapter, we will explore the potential of p-N-GNW

heterojunctions for excitonic solar cell applications.
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Figure 6.7: (a) Schematic diagram of the type-II band alignment with donor band gap (Eg) and

conduction band offset (∆Ec). VBM and CBM stand for valence band maximum and

conduction band minimum, respectively. (b) Power conversion efficiency contour plot

as a function of the donor band gap (Eg) and conduction band offset (∆Ec).

The maximum power conversion efficiency η for an excitonic solar cell can be
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estimated according to the type-II band alignment [86–89].

η =
βFFVocJsc

Psolar

=

0.65(Eg −∆Ec −0.3)
∫ ∞

Eg

Jph(h̄ω)

h̄ω
d(h̄ω)

∫ ∞

0
Jph(h̄ω)d(h̄ω)

, (6.11)

where 0.65 is the fill factor (βFF), Eg is the band gap of the donor, and ∆Ec is the con-

duction band offset [Fig. 6.7(a)]. Voc the maximum open circuit voltage, calculated as the

effective interface gap (Eg −∆Ec) minus 0.3 eV, which accounts for energy conversion

kinetics [86, 89, 90]. Here we employ the standard AM1.5G solar spectrum (available

from the NREL website: http://rredc.nrel.gov/solar/spectra/am1.5) [87, 89], as shown in

Fig. 6.8. So Jph(h̄ω) is the AM1.5G solar energy flux (expressed in W m−2 eV−1) at the

photon energy h̄ω , and
Jph(h̄ω)

h̄ω
is the photon flux at the photon energy h̄ω . The integral

in the numerator is the short circuit current Jsc calculated using a limit external quantum

efficiency (EQE) of 100% ( i.e., one incident photon creating one electron as photocur-

rent), and the denominator Psolar is the integrated solar energy flux, equal to 1000 W m−2

[87]. Since Jph(h̄ω) is known from the solar spectrum, the efficiency η is a function of

Eg and ∆Ec. In Fig. 6.7(b), the maximum power conversion efficiency contour plot as a

function of Eg and ∆Ec is shown, and this chart can guide us for the design of a solar cell.

0 1 2 3 4 50

100

200

300

400

500

600

700

Photon energy ħω (eV)   

So
la

r e
ne

rg
y 

flu
x 
J p

h 
(W

 m
-2

 e
V

-1
)

Standard AM1.5G solar spectrum

0 1000 2000 3000 40000

0.5

1

1.5

2

So
la

r e
ne

rg
y 

flu
x 
J p

h 
(W

 m
-2

 n
m

-1
)

Wavelength (nm)

(a) in the unit of nm (b) in the unit of eV
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In our case, the donor is the pure GNW (9A,6A) with a direct band gap at the Γ

point (Fig. 3.6), and the acceptor is the nitrogen-doped GNW, as shown in Fig. 6.5. For

the p-N2-GNW heterojunction, Eg = 1.56 eV and ∆Ec = 0.28 eV, and hence its power

conversion efficiency is computed as 17.1%. The p-N4-GNW heterojunction has an effi-

ciency of about 13.1% with a ∆Ec = 0.51 eV. However, it is important to point out that

the band alignments obtained in Fig. 6.5 are based on DFT calculations, which tend to

underestimate the band gaps of GNWs, as discussed in Chapter 3 and Chapter 5. For

the p-N2-GNW interface, Eg = 2.80 eV and ∆Ec = 0.32 eV according to experimental

measurements by Bronner et al. [22], so the efficiency is decreased to 4.3%. For the p-

N4-GNW heterojunction, Cai et al. measurement shows Eg =∼ 2.0 eV and ∆Ec =∼ 0.5

eV, and hence its efficiency is computed to be about 11.3% [24]. Currently, for organic or

nanomaterial-based solar cells, the best certified observed efficiency is found for a poly-

mer solar cell (8.62%) [92] as well as nanoparticle-aided polymer solar cell (8.92%) [93],

and η > 10% remain a challenge. Hence, for the experimentally available p-N4-GNW

heterojunction [24], its maximum power conversion efficiency exceeds 10%, demonstrat-

ing its potential for solar cell applications.

6.5 Summary

In this chapter, we have considered two types of experimentally realized nitrogen

doping scheme in the GNW (9A,6A) and studied the corresponding GNW heterojunctions:

the p-N2-GNW and p-N4-GNW heterojunctions. NEGF-DFT computational method has

been used to investigate the electronic and transport properties of heterojunctions. We

find that nitrogen doping in the GNW (9A,6A) tends to shift down the Fermi level without

significantly change the electronic band gap, thus resulting in a type-II band alignment

at the heterojunction interface. The band alignment subsequently reduces the electronic

band gap of the heterojunction and increases its transport gap. More interestingly, as the

nitrogen doping concentration increases, both the conduction and valence band offsets

(∆Ec and ∆Ev) at the interface increase almost linearly. Hence, the highly-controllable (at

the atomic level) nitrogen doping technique not only enables the fabrication of atomically-

precise and defect-free p-N-GNW heterojunctions with type-II band alignments, but also

offers a unique approach to engineer the interface band offsets of heterojunctions. The
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p-N-GNW heterojunctions bear high potential for applications in electronics and photo-

voltaics. In particular, the recently synthesized p-N4-GNW heterojunction is estimated

to have a maximum power conversion efficiency of 11.3% as an excitonic solar cell, and

hence is very promising for photovoltaics.



PART II

Graphene-like materials:

transition metal dichalcogenides

61



7. Background on transition metal dichalcogenides

This chapter provides a short overview of graphene-like materials: transition metal dichalco-

genides, especially MoS2 and WS2. We first discuss their structural, electronic and pho-

toluminescence properties, and then highlight their Raman spectra, which are the focus

of our theoretical study.

7.1 Structural, electronic and photoluminescence properties of TMDs

Figure 7.1: (a) Side view of MoS2 bulk and single layer (analogous for WS2). (b) Top view of

MoS2 (analogous for WS2) with the unit cell delineated. The interaction between

layers is dominated by vdW forces. The hexagonal lattice similar to graphene is clearly

seen in (b). The primitive vectors are ~a = (a,0,0), ~b = (−a/2,
√

3a/2,0), and ~c =
(0,0,c). According to experimental data [94], a = 3.15 and c = 12.3 Å for MoS2;

a = 3.153 and c = 12.323 Å for WS2.

Transition metal dichalcogenides (TMDs) MX2 (M = Mo, W; X = S) are layered

structures stacked by van der Waals (vdW) forces, where one X-M-X layer is a covalently

bonded hexagonal quasi-2D network [96, 97]. As shown in Fig. 7.1, for one layer, a

plane of Mo (or W) atoms is sandwiched covalently between two planes of S atoms in a

trigonal prismatic arrangement [98]. From the top view [Fig. 7.1(b)], a hexagonal lattice

consisting of Mo (or W) and S atoms is clearly seen, similar to graphene and hexagonal

boron nitride (h-BN).
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Figure 7.2: (a) A monolayer MoS2 field-effect transistor (FET) connected to external electrodes.

MoS2 is deposited on a degenerately doped silicon substrate with 270-nm-thick SiO2.

The substrate acts as a back gate. One of the gold electrodes acts as drain and the

other source electrode is grounded. The monolayer is separated from the top gate by

30 nm of ALD-grown HfO2. The top gate width for the device is 4 mm and the top

gate length, source-gate and gate-drain spacings are 500 nm. (b) Room temperature

transfer characteristic for the FET with 10 mV applied bias voltage Vds. Back-gate

voltage Vbg is applied to the substrate and the top gate is disconnected. Inset: Ids-Vds

curve acquired for Vbg values of 0, 1 and 5 V. From Ref. [95].

Bulk MoS2 is an attractive semiconducting material for photovoltaic and photo-

catalyst applications [99]. However, it is the monolayer MoS2 that has been attracting

increasing research attention. Using the similar mechanical exfoliation technique leading

to the fabrication of atomically thin graphene from vdW-bonded graphite [3], monolayer

MoS2 can be obtained from vdW-bonded bulk MoS2 [95]. For pristine graphene, despite

its high electronic mobility, the absence of a band gap makes its use in electronic devices

(transistors) difficult. Although single layers of MoS2 have a large intrinsic band gap of

1.8 eV [100], their mobilities have been reported to be in the 0.5-3 cm2V−1s−1 range
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Figure 7.3: (a) The hexagonal lattice and corresponding 2D Brillouin zone for MoS2 or WS2. (b)

Along the high symmetry lines in the Brillouin zone, DFT calculated electronic band

structures of (b) MoS2 and (c) WS2 from the bulk (bottom panels) to double-layer

(2L, middle panels) to single-layer (1L, top panels). The solid blue arrows indicate the

lowest energy transitions. The Fermi level is set at 0 eV.

[101], too low for practical devices. Recently, by putting a halfnium oxide (HfO2) gate

dielectric on top of monolayer MoS2, a field-effect transistor (FET) based on MoS2 shows

an enhanced room temperature electron mobility close to that of graphene nanoribbons

(at least 200 cm2V−1s−1) and a current on/off ratio up to 108 [95], as shown in Fig. 7.2.

Such breakthrough has spurred tremendous interests in MoS2 and a variety of its family

members such as WS2, MoSe2, WSe2, etc.

In addition to enhanced electron mobilities, MoS2 and WS2 also exhibit interesting

electronic band structures [104]. As shown in Fig. 7.3, from the bulk phase to single-layer

phase, a transition from indirect to direct electronic band gap occurs in both MoS2 and

WS2. The direct band gaps in monolayer systems result in a dramatic enhancement of

photoluminescence (PL) [100, 102]. In Fig. 7.4(a), single-layer MoS2 has been measured
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Figure 7.4: (a) Photoluminescence (PL) spectra normalized by Raman intensity for MoS2 layers

with different thickness, showing a dramatic increase of luminescence efficiency in

MoS2 monolayer. From Ref. [102]. (b) Photoluminescence map of a WS2 triangular

island. The edges of WS2 monolayers exhibit PL signals with extraordinary intensity,

around 25 times stronger than that at the platelets center. From Ref. [103].

to show significantly higher luminescence efficiency [102]. Single-layer WS2 triangular

islands have been also synthesized and found to show intense room temperature PL as-

sociated with specific edges [103], as shown in Fig. 7.4(b). These superior optical and

electronic properties make ultrathin MoS2 and WS2 attractive for numerous applications,

and they have been considered as replacements or complements to graphene in nanoscale

applications.

7.2 Raman spectra of TMDs

Figure 7.5: (a) Schematic of Raman-active modes E1
2g and A1g of bulk MoS2. (b) Raman spectra

of thin (nL) and bulk MoS2 films. (c) Frequencies of E1
2g and A1g (left vertical axis)

and their difference (right vertical axis) as a function of layer thickness. From Ref.

[105].
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Since atomically thick MoS2 and WS2 become increasingly important, their precise

characterization and easy identification are in high demand [98]. Raman spectroscopy is

a powerful nondestructive characterization tool used extensively to study MoS2 [98, 105–

108] and WS2 [96, 109, 110]. Bulk MoS2 shows two main Raman-active peaks, the in-

plane E1
2g mode at ∼382 cm−1 and out-of-plane A1g mode at ∼407 cm−1 [105, 111], as

shown in Fig. 7.5(a) and Fig. 7.5(b). In Fig. 7.5(c), The former red-shifts while the latter

blue-shifts with the number of layers, and thus their frequency difference can be used to

identify the number of layers [105]. A similar thickness dependence of frequencies of E1
2g

and A1g modes has been observed in WS2 [110].

Figure 7.6: Raman spectra of MoS2 films from (a) Ref. [105], (b) Ref. [106] and (c) Ref. [98].

However, it remains unclear how Raman intensities and intensity ratio depend on

the materials’ thickness. As shown in Fig. 7.6(a), Lee et al. [105] reported that, for MoS2

on SiO2/Si substrates with a laser wavelength of 514.5 nm, Raman intensities rise up

from one to four layers and then decrease for thicker samples, while the peak intensity

ratio between E1
2g and A1g is always higher than 1. Yu et al. [106] found that, for MoS2

on SiO2/Si substrates with a laser wavelength of 532 nm, the peak intensity ratio between

E1
2g and A1g remains lower than unity regardless of thickness [Fig. 7.6(b)]. Reporting on

MoS2 deposited on the same substrate with various laser wavelengths, Li et al. [98] found

that Raman intensities and intensity ratio of the E1
2g and A1g peaks vary arbitrarily with

thickness [Fig. 7.6(c)]. Similar conflicting results about Raman intensities and intensity

ratio have been observed in WS2 [96, 109].
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7.3 Overview for the rest of Part II

To further understand Raman spectra of TMDs, for free-standing and defect-free

MoS2 and WS2 up to six-layer-thick, we have carried out first-principles DFT calcula-

tions to simulate their Raman spectra in Chapter 8. We quantitatively analyze the laser

polarization effect on the intensity ratio and reveal the high sensitivity of the intensity ra-

tio to laser polarization. We also study the Raman spectra of MoS2/WS2 heterostructures

up to four layers in Chapter 8 to facilitate their identification.



8. First-principles Raman spectra of MoS2, WS2 and their

heterostructures

In this chapter, Raman spectra of MoS2, WS2, and their heterostructures are studied by

density functional theory. We quantitatively reproduce existing experimental data and

present evidence that the apparent discrepancy between intensity ratios observed exper-

imentally can be explained by the high sensitivity of the Raman-active modes to laser

polarization. MoS2/WS2 heterostructures up to four layers are considered in every pos-

sible combinations and stacking orders. Each heterostructure configuration possesses a

unique Raman spectrum in both frequency and intensity that can be explained by changes

in dielectric screening and interlayer interactions [112].

8.1 Introduction

As mentioned in Chapter 7, MoS2 and WS2 have enjoyed increasing attention due

to their superior electronic and optical properties. Raman spectroscopy is a powerful

nondestructive characterization tool used extensively to study them. However, it remains

unclear how Raman intensities and intensity ratio depend on the materials’ thickness. Nu-

merous factors can contribute to this puzzling result: sample quality, substrate [105, 113],

laser polarization [110], laser wavelength [98, 109], etc. To clarify this issue, in this

chapter, we choose free-standing and defect-free MoS2 and WS2 up to six-layer-thick,

and perform first-principles DFT calculations to simulate their Raman spectra and re-

veal the intrinsic thickness dependence of Raman intensities and intensity ratio of E1
2g

and A1g modes. We quantitatively analyze the laser polarization effect on the inten-

sity ratio and reveal the high sensitivity of the intensity ratio to laser polarization. We

also study the Raman spectra of MoS2/WS2 heterostructures up to four layers to pre-

dict the influence of thickness and stacking orders on the details of the spectra [112].

This chapter previously appeared as: L. Liang and V. Meunier, Nanoscale 6, 5394 (2014).
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8.2 Theoretical methods

Figure 8.1: (a) Side view of MoS2 bulk and single layer (1L in short). (b) Top view of MoS2

with the unit cell delineated (analogous for WS2). (c) Heterostructure consisting of

1L MoS2 and 1L WS2. Electronic band structures of (d) 1L MoS2, (e) 1L WS2 and

(f) the heterostructure shown in (c). The solid blue arrows indicate the lowest energy

transitions. In (f), red circles (green squares) correspond to projected bands of the

MoS2 (WS2) layer with the red (green) dashed arrow showing the layer’s lowest energy

transition. The Fermi level is set at 0 eV.

As shown in Figs. 8.1(a) and 8.1(c), for one layer, a plane of Mo (or W) atoms is

sandwiched covalently between two planes of S atoms in a trigonal prismatic arrangement

[98]. The interaction between layers is dominated by vdW forces. From the top view

[Fig. 8.1(b)], a hexagonal lattice consisting of Mo (or W) and S atoms is clearly seen,

similar to graphene and hexagonal boron nitride (h-BN). Its primitive vectors are ~a =

(a,0,0), ~b = (−a/2,
√

3a/2,0), and ~c = (0,0,c). The symmetry space group of bulk

MoS2 or WS2 is P63/mmc (point group D6h). The space group of MoS2 or WS2 with
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odd number of layers is P6m2 (point group D3h), while systems with even number of

layers belong to P3m1 (point group D3d). All systems exhibit two signature Raman-

active modes: E1
2g and A1g for bulk systems, E′ and A′

1 for systems with odd number of

layers, and Eg and A1g for systems with even number of layers [114, 115]. For simplicity,

the notations of E1
2g and A1g are used for all systems studied below, which is a common

practice in the literature [98, 105].

The calculations of Raman scattering start with the determination of the equilibrium

geometries. Plane-wave DFT calculations were performed using the VASP package [36]

equipped with the projector augmented-wave (PAW) method [116] for electron-ion inter-

actions. Local density approximation (LDA) has been shown to yield excellent descrip-

tion of graphite [117], h-BN [118], graphene/h-BN heterostructures [119] and MoS2 [94].

Hence, LDA was adopted here for the exchange-correlation interaction with the energy

cutoff set at 500 eV. For bulk MoS2 and WS2, both atoms and cell volumes were allowed

to relax until the residual forces were below 0.001 eV/Å. We used a 24 × 24 × 4 k-point

sampling in the Monkhorst-Pack scheme [38]. The optimized lattice parameters of MoS2

are a = 3.130 and c = 12.039 Å (experimental values a = 3.15 and c = 12.3 Å) [94]. For

WS2, a = 3.131 and c = 12.115 Å (experimental data a = 3.153 and c = 12.323 Å) [94].

Obviously, LDA slightly underestimates lattice parameters since it tends to overestimate

covalent binding. Single- and few-layer systems, including MoS2/WS2 heterostructures,

were modeled by a periodic slab geometry using optimized bulk in-plane lattice constants.

A vacuum spacing of 18 Å in the z direction was used to avoid spurious interactions with

replicas. For the 2D slab calculations, all atoms were relaxed until the residual forces

were below 0.001 eV/Å and we used a 24 × 24 × 1 k-point sampling. Since the in-plane

lattice mismatch between MoS2 and WS2 is very small (∼0.1%) [94, 104], the probability

of stacking disorders in MoS2/WS2 heterostructures is expected to be much smaller than

that in graphene/h-BN or MoS2/MoSe2 heterostructures [120]. Hence, for MoS2/WS2

heterostructures, we adapt the in-plane lattice constant of MoS2 and considered no stack-

ing disordering.

We performed non-resonant first-order Raman calculations using the fully relaxed



71

geometries. The Raman intensity of the j-th phonon mode is given by [121–123]

dσ

dΩ
= Nprim

ω4
s

c4Vprim

|gs ·α( j) ·gT
i |2 ×

h̄

2ω j

(n j +1), (8.1)

where ωi and ωs are the frequencies of the incoming and scattered light, respectively; ω j

is the frequency of the j-th phonon mode of the crystal. Energy conservation imposes

ωs = ωi ∓ω j, where the minus (plus) sign applies to the Stokes (anti-Stokes) process.

In the non-resonant Raman scattering, ωi only appears in the prefactor ω4
s . Vprim is the

volume of primitive unit cell, Nprim is the number of primitive unit cells in the sample, and

c is the speed of light. The Bose factor of the j-th phonon mode is n j = (eh̄ω j/kBT −1)−1.

gi and gs are the polarization vectors of the incoming and scattered light.

The Raman susceptibility α( j) is a symmetric (3×3) tensor associated with the j-th

phonon mode. It can be computed as [121, 122]

ααβ ( j) =Vprim

N

∑
µ=1

3

∑
l=1

∂ χαβ

∂ rl(µ)

e
j
l (µ)
√

Mµ
, (8.2)

where χαβ = (εαβ − δαβ )/4π is the electric polarizability tensor related to tensor of

dielectric constant εαβ . rl(µ) is the position of µ-th atom along direction l.
∂ χαβ

∂ rl(µ)
is

the first derivative of the polarizability tensor (essentially the dielectric constant tensor)

over the atomic displacement. e
j
l (µ) is the displacement of µ-th atom along direction

l in the j-th phonon mode, and Mµ is the mass of µ-th atom. Note that e j and ω2
j are

the eigenvectors and eigenvalues of the dynamical matrix at the Brillouin zone center,

respectively [122].

The dynamic matrix at the Brillouin zone center is defined as [94, 121]

Dµl,νk(q=0) =
1

√

MµMν

∂ 2Etot

∂ rl(µ)∂ rk(ν)

=− 1
√

MµMν

∂Fl(µ)

∂ rk(ν)
. (8.3)

To obtain Raman scattering from Eqs. (8.1-8.2), one needs to calculate the dynamic

matrix and derivatives of the dielectric constant tensor. The dynamic matrix was calcu-

lated using the ab initio direct method [124], implemented in the PHONON software
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[123]. In the finite difference scheme [46], the Hellmann-Feynman forces of the supercell

were computed by VASP for both positive and negative atomic displacements (0.03 Å)

and used in PHONON to construct the dynamic matrix, whose diagonalization provides

phonon frequencies ω j and normal vectors e j. The derivatives of the dielectric constant

tensor were also calculated by the finite difference approach. For both positive and neg-

ative atomic displacements in the single unit cell, the dielectric tensors were computed

by VASP using density functional perturbation theory and then imported into PHONON

to generate their derivatives. Then Raman intensity for every phonon mode was obtained

for a given laser polarization set-up (gi, gs) and wavelength to finally yield the Raman

spectrum after Gaussian broadening.

8.3 Electronic and dielectric properties of MoS2 and WS2

The electronic band structures of monolayer (1L) MoS2, WS2 and their bilayer

heterostructure are shown in Figs. 8.1(d-f). Both 1L MoS2 and WS2 exhibit the well-

documented direct band gaps [102, 104]. The heterostructure 1L MoS2/1L WS2 presents

an indirect band gap, as highlighted by the solid blue arrow in Fig. 8.1(f), consistent with

previous theoretical results [125]. Similar indirect band gaps are observed for multilayer

and bulk MoS2 and WS2 [102, 104]. To further verify that the direct band gap is not

preserved in the individual layer component of the heterostructure, we also computed

their projected bands, as shown by red circles and green squares in Fig. 8.1(f). Clearly,

the interlayer coupling between MoS2 and WS2 yields indirect band gaps, as indicated by

the red and green dashed arrows, just as in multilayer homostructures. Interestingly, in

the heterostructure, the lowest energy transition paths [three arrows in Fig. 8.1(f)] of 1L

MoS2, 1L WS2 and the whole system are quite different from one another.

The thickness dependence of band gaps of MoS2 and WS2 was also studied and

shown in Fig. 8.2(a). From 1L to bulk MoS2 (WS2), the band gap decreases monotoni-

cally from 1.84 (1.98) eV to 0.71 (0.82) eV [104]. The noticeable jump of the band gap

from 2L and 1L is another sign of the indirect-to-direct gap transition. For semiconduct-

ing MoS2 and WS2, non-diagonal elements of the dielectric constant tensor ε are zero,

and the in-plane dielectric constants εxx = εyy due to symmetry. We also computed the

thickness dependence of εxx and εzz of MoS2 and WS2, as shown in Fig. 8.2(b). From 1L
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Figure 8.2: DFT calculated thickness dependence of (a) electronic band gaps and (b) dielectric

constants of MoS2 and WS2. For dielectric tensor ε , non-diagonal elements are zero

and εxx = εyy.

to bulk MoS2, εxx (εzz) monotonically increases from 6.269 (1.471) to 15.452 (7.553), in

agreement with previous calculations [94]. Similar trend is also observed for WS2 [lines

with triangles in Fig. 8.2(b)]. A semiconductor with a smaller band gap generally has

larger dielectric constants, and hence the variations of band gaps and dielectric constants

with thickness show opposite trends.

8.4 Raman spectra of MoS2 and WS2

Fig. 8.3(a) shows ab initio Raman spectra of free-standing MoS2 with various thick-

nesses using a 488 nm laser line. The polarization of incident and scattered light are set as

to gi=gs=(1,0,0). The in-plane E1
2g and out-of-plane A1g Raman modes [Fig. 8.3(b)] ex-

hibit the strongest signals among all phonon modes. For single-layer MoS2, the calculated

frequencies of E1
2g and A1g are 391.50 and 411.07 cm−1, respectively. Compared to exper-

imental data ∼384.3 (E1
2g) and ∼403 (A1g) cm−1 [98, 105], our LDA calculations system-

atically overestimate the phonon frequencies by ∼7-8 cm−1, since LDA tends to overbind.

Despite the limits of LDA, it successfully reproduces the experimentally observed con-

tinuous red-shift of E1
2g and blue-shift of A1g with increasing thickness [98, 105], as

shown in solid lines in Fig. 8.3(c). More importantly, it is the frequency difference be-

tween A1g and E1
2g that is an effective indicator of the number of layers. The systematic
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Figure 8.3: (a) Ab initio Raman spectra of free-standing n-layer (nL) and bulk MoS2, with laser

polarization gi=gs=(1,0,0) and wavelength 488 nm. (b) Schematic of Raman-active

modes E1
2g and A1g of bulk MoS2. (c) Frequencies of E1

2g and A1g (left vertical axis)

and their difference (right vertical axis) as a function of layer number. (d) Peak inten-

sities of E1
2g and A1g (left vertical axis) and their intensity ratio (right vertical axis) as

a function of thickness.

overestimation of frequencies by LDA is expected to be largely canceled out for the fre-

quency difference. Indeed, from 1L to bulk MoS2 [red dashed line in Fig. 8.3(c)], the

computed frequency difference monotonically increases from 19.57 (experimental value

∼18.7) cm−1 to 25.44 (experimental value ∼25.5) cm−1, in excellent agreement with

experimental data and confirming the frequency difference as a reliable thickness indi-

cator [105]. As for the mechanisms, the upshift of A1g with increasing thickness is due

to the increasing interlayer interactions which enhance the effective restoring forces act-

ing on the atoms, while the unexpected downshift of E1
2g with increasing thickness has

been attributed to the increasing dielectric screening of the long-range Coulomb forces

which reduces the overall restoring force on the atoms [94, 105]. The interlayer coupling

and dielectric screening are also vital to explain Raman scattering of the heterostructures
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Figure 8.4: (a) Ab initio Raman spectra of free-standing n-layer (nL) and bulk WS2, with laser

polarization gi=gs=(1,0,0) and wavelength 488 nm. (b) Schematic of Raman-active

modes E1
2g and A1g of bulk WS2. (c) Frequencies of E1

2g and A1g (left vertical axis) and

their difference (right vertical axis) as a function of layer number. (d) Peak intensities

of E1
2g and A1g (left vertical axis) and their intensity ratio (right vertical axis) as a

function of layer number.

discussed below.

Ab initio Raman spectra of free-standing WS2 are also presented in Fig. 8.4(a)

with the same laser conditions as those used for MoS2. E1
2g and A1g modes still exhibit

strongest Raman signals. However, the frequencies of WS2 E1
2g mode at any thickness are

softened by more than 30 cm−1 compared to those of MoS2 E1
2g, due to the larger mass

of W atoms. For A1g mode in which only sulfur atoms vibrate [Fig. 8.3(b)], WS2 has

larger frequencies than MoS2 by more than 9 cm−1. For WS2 [solid lines in Fig. 8.4(c)],

our calculations show again the experimentally observed monotonic downshift of E1
2g and

upshift of A1g with increasing thickness [110]. Hence, the frequency difference between

A1g and E1
2g [red dashed line in Fig. 8.4(c)] increases monotonically from 60.31 to 64.82

cm−1, in great agreement with experimental data [110] and confirming the frequency
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difference as a reliable thickness indicator for WS2 too.

Despite that phonon frequencies have been extensively studied [94, 126, 127], little

has been reported regarding a systematic DFT study on Raman intensities of MoS2 and

WS2 [114]. Here we focus on the evolution of Raman peak intensities with thickness. For

free-standing MoS2 and WS2, the peak intensities of E1
2g and A1g increase significantly

from 1L to 2L and then slowly increase until converging to bulk values [solid lines in

Fig. 8.3(d) and Fig. 8.4(d) respectively]. Indicated by Eqs. (8.1-8.2), Raman intensity

is directly related to derivatives of the dielectric tensor. As discussed above, the dielec-

tric tensor increases with thickness, hence contributing to the increase of peak intensity

with thickness. Furthermore, 1L MoS2 has the highest peak intensity ratio between E1
2g

and A1g (1.71). The intensity ratio drops until 4L and then converges to the bulk value

(1.49) [red dashed line in Fig. 8.3(d)]. Similarly, 1L WS2 has the highest intensity ratio

(2.73), while decreases until 4L and then recovers the bulk value (2.30) [red dashed line

in Fig. 8.4(d)].

8.5 Laser polarization effect on Raman spectra

The calculated thickness dependence of peak intensities and intensity ratio is not

consistent with experimental observations. In fact, as mentioned in Chapter 7, there is

also a large discrepancy among different experimental works. For MoS2 on SiO2/Si sub-

strates, Lee et al. reported that Raman intensities rise up to four layers and then decrease

for thicker samples with the peak intensity ratio always higher than 1 [105], and Yu et

al. found that the intensity ratio stays lower than 1 at any thickness [106], while Li et al.

claimed that Raman intensities and intensity ratios vary arbitrarily with thickness [98].

Similar conflicting results have been observed for WS2 [96, 109]. The optical interfer-

ence occurring between incident and scattered laser light, enhanced by SiO2/Si substrates

[105, 113], has been considered as a plausible explanation for the observed puzzling be-

havior of Raman intensities with thickness. Our work on free-standing MoS2 and WS2

without substrate and optical interference effects reveals the intrinsic thickness depen-

dence of Raman intensities, and thus the deviation from experimental observations to

some extent is expected. However, since the substrate and optical interference effects are

expected to similarly affect both E1
2g and A1g modes [105, 113], the discrepancy between
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the computed and measured intensity ratios, and particularly the inconsistency between

measured intensity ratios by different experimental groups, are perplexing. Keys to ad-

dressing this issue can be found by examining Eq. (8.1): this relationship establishes

that Raman intensity depends on the polarization of incident and scattered light gi and gs

(i.e., laser set-up). To quantify the effect of laser polarization on intensity ratios, we now

carefully explore different laser set-ups.

Figure 8.5: Raman spectra of (a) single-layer and (c) bulk MoS2 with laser polarization

gi=gs=(cosθ ,0,sinθ ). Raman spectra of (b) single-layer and (d) bulk MoS2 with laser

polarization gi=(1,0,0) and gs=(cosθ ,sinθ ,0). In (a) and (c), some of Raman spectra

are scaled for comparison purpose. The inset figures show the intensity ratio between

E1
2g and A1g as a function of θ .

The in-plane E1
2g mode is double-degenerated and can vibrate along the x and y

directions. The out-plane A1g mode is non-degenerated. For E1
2g-x, E1

2g-y and A1g modes,
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the Raman tensor α( j) in Eq. (8.2) assume well-defined forms
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respectively. Other terms in the Raman tensors are either zero or negligible due to sym-

metry [121, 122]. From Eq. (8.1), Raman intensity I ∝ |gs ·α( j) ·gT
i |2. Hence, when the

laser polarization is set as gi=gs=(cosθ ,0,sinθ ),

I(A1g) ∝


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(8.4)

and similar matrix operations yield I(E1
2g-x) = 0, I(E1

2g-y)∝ a2 cos4 θ and I(E1
2g) = I(E1

2g-

x)+ I(E1
2g-y) ∝ a2 cos4 θ . Therefore, when θ is tuned from 0◦ to 90◦, I(E1

2g) monotoni-

cally decreases from its maximum to zero for both single-layer and bulk MoS2 [Fig. 8.5(a)

and Fig. 8.5(c)]. For single-layer MoS2, b > c, and hence I(A1g) monotonically reduces

from maximum to minimum with θ tuned from 0◦ to 90◦ [Fig. 8.5(a)]. In contrast, b < c

for bulk MoS2, and thus I(A1g) monotonically increases from minimum to maximum with

θ varied from 0◦ to 90◦ [Fig. 8.5(c)]. For both single-layer and bulk MoS2, with θ tuned

from 0◦ to 90◦, the intensity ratio between E1
2g and A1g monotonically decreases to abso-

lute zero [inset figures in Fig. 8.5(a) and Fig. 8.5(c)]. In another laser set-up gi=(1,0,0) and

gs=(cosθ ,sinθ ,0), following matrix operations in Eq. (8.4), we have I(E1
2g-x) ∝ a2 sin2 θ ,

I(E1
2g-y) ∝ a2 cos2 θ , I(E1

2g) = I(E1
2g-x)+ I(E1

2g-y) ∝ a2, and I(A1g) = b2 cos2 θ . I(E1
2g)

is independent of θ and unchanged when θ is tuned from 0◦ to 90◦, while I(A1g) mono-

tonically decreases from its peak to zero for both single-layer and bulk MoS2 [Fig. 8.5(b)

and Fig. 8.5(d)], in agreement with recent Raman measurements [110, 115]. Hence, the

intensity ratio between E1
2g and A1g monotonically increases to infinity with θ tuned from

0◦ to 90◦ [inset figures in Fig. 8.5(b) and Fig. 8.5(d)]. Similar results are found for WS2

too, as shown in Fig. 8.6.
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Figure 8.6: Raman spectra of (a) single-layer and (c) bulk WS2 with laser polarization

gi=gs=(cosθ ,0,sinθ ). Raman spectra of (b) single-layer and (d) bulk WS2 with laser

polarization gi=(1,0,0) and gs=(cosθ ,sinθ ,0). In (a) and (c), some of Raman spectra

are scaled for comparison purpose. The inset figures show the intensity ratio between

E1
2g and A1g as a function of θ .

For both MoS2 and WS2, our calculations show that the intensity ratio between E1
2g

and A1g is very sensitive to the laser set-up and can be essentially tuned from 0 to infinity,

which could be key to explaining the large discrepancy between measured intensity ratios

by different experimental groups. Even in the same experimental work using the same

laser set-up, the samples with different layers could have different orientations, equivalent

to different polarization set-ups for the samples with the same orientation, which might

lead to the arbitrary evolution of the intensity ratio with thickness observed by Li et al.

[98]. Note that in the non-resonant first-order Raman scattering, the laser frequency ωi

only appears in the prefactor (ωi ∓ω j)
4 in Eq. (8.1), and ωi is typically in the range
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18797-30769 cm−1 (laser wavelength typically in the range 325-532 nm), much larger

than frequencies ω j of E1
2g and A1g modes (between 358 and 423 cm−1). Thus, the

prefactor (ωi ∓ω j)
4 ≈ ω4

i and hence the laser frequency affects both modes identically,

exerting essentially no influence on the intensity ratio.

8.6 Raman scattering of MoS2/WS2 heterostructures

Table 8.1: Frequency differences and intensity ratios for MoS2, WS2 and their heterostructures.

(a) For MoS2 and WS2, ∆ω indicates frequency differences be-

tween A1g and E1
2g modes. Mo (W) means 1L MoS2 (WS2),

MoMo (WW) means 2L MoS2 (WS2), etc.

stacking Mo MoMo MoMoMo MoMoMoMo

∆ω (cm−1) 19.58 22.08 23.10 24.01

stacking W WW WWW WWWW

∆ω (cm−1) 60.31 62.18 63.13 63.50

(b) For heterostructures, ∆ω-Mo (∆ω-W) means frequency dif-

ferences between A1g and E1
2g modes of MoS2 (WS2), and r-

E1
2g (r-A1g) means the intensity ratio between MoS2 and WS2

E1
2g (A1g).

stacking
∆ω-Mo ∆ω-W

r-E1
2g r-A1g(cm−1) (cm−1)

MoW 20.83 61.33 0.96 0.90

MoMoW 22.90 61.53 1.89 2.29

MoWMo 20.94 62.26 1.45 1.02

MoWW 21.04 62.97 0.50 0.46

WMoW 22.06 61.82 0.60 0.51

MoMoMoW 23.98 61.34 2.99 3.63

MoMoWMo 22.37 62.61 1.89 1.64

MoMoWW 23.07 62.80 0.93 1.13

MoWMoW 21.47 62.31 0.89 0.67

MoWWMo 20.58 63.55 0.74 0.70

WMoMoW 23.45 61.31 1.22 1.16

MoWWW 20.41 63.38 0.30 0.31

WMoWW 21.91 62.45 0.41 0.35

For vdW-bonded layered systems such as graphite, h-BN and MX2, layers can

be micromechanically separated and reassembled to form heterostructures, which could
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Figure 8.7: (a) A MoS2/WS2 heterostructure. For simplicity, a MoS2 (WS2) layer is denoted as

Mo (W). So the heterostructure is named as MoWMoW for its stacking pattern. (b)

Ab initio Raman spectra of various MoS2/WS2 heterostructures, with laser polarization

gi=gs=(1,0,0) and wavelength 488 nm. The Raman spectra of single-layer MoS2 (Mo)

and WS2 (W) are also shown for comparison.

show combined functionality of the individual layers, lead to new emergent properties

and thus are very desirable [97, 111]. Here, we carefully examine first-principles Raman

scattering of MoS2/WS2 heterostructures (Fig. 8.7) to establish that their Raman spectra

can be used to identify the stoichiometry and stacking patterns. For simplicity, a MoS2

(WS2) layer is denoted as Mo (W) in Fig. 8.7. Hence, MoW stands for the heterostruc-

ture 1L MoS2/1L WS2, MoMoW for 2L MoS2/1L WS2, and MoMoWW for 2L MoS2/2L
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WS2, etc. From 2L to 4L heterostructures, Raman spectra of all non-equivalent stack-

ing patterns are examined in Fig. 8.7(b). For MoW, its Raman spectrum shows features

of both MoS2 and WS2. Compared to the Raman spectra of Mo and W in Fig. 8.7(b),

the E1
2g peak of MoW corresponding to Mo (E1

2g-Mo) is clearly red-shifted, and the E1
2g

peak of MoW corresponding to W (E1
2g-W) is red-shifted too, while A1g-Mo and A1g-W

peaks of MoW are barely shifted. As mentioned above, red-shift of E1
2g-Mo of MoW is

due to the increased dielectric screening to the Mo layer in the presence of the W layer,

and vice versa [94]. For MoW, its ∆ω-Mo (∆ω-W), the frequency difference between

A1g and E1
2g of MoS2 (WS2) inside the heterostructure, is 20.83 (61.33) cm−1, according

to Table 8.1(b). From Table 8.1(a), ∆ω are 19.58 and 22.08 cm−1 for Mo and MoMo,

respectively. ∆ω are 60.31 and 62.18 cm−1 for W and WW, respectively. Obviously,

∆ω-Mo of MoW is between ∆ω of Mo and MoMo, and its ∆ω-W is between ∆ω of W

and WW. In other words, for MoW, the addition of the W (Mo) layer leads to an increase

of ∆ω of the Mo (W) layer but not as significant as the addition of another Mo (W) layer.

For 3L heterostructures MoMoW in Fig. 8.7(b), compared to MoW, its E1
2g-Mo

peak is red-shifted (due to increased dielectric screening to Mo) while A1g-Mo peak is

blue-shifted (due to increased interlayer interaction to Mo), while its E1
2g-W and A1g-

W peaks are hardly shifted (since little environment change of W). Therefore, ∆ω-Mo

of MoMoW is increased to 22.90 cm−1 [Table 8.1(b)], between ∆ω of MoMo and Mo-

MoMo [Table 8.1(a)]. Similarly, for MoWW in Fig. 8.7(b), compared to MoW, its E1
2g-W

peak is red-shifted (due to increased dielectric screening to W) while A1g-W peak is

blue-shifted (due to increased interlayer interaction to W), while its E1
2g-Mo and A1g-Mo

peaks are hardly shifted (since the environment of Mo is hardly modified). Hence, ∆ω-W

of MoWW is increased to 62.97 cm−1 [Table 8.1(b)], between ∆ω of WW and WWW

[Table 8.1(a)]. Similarly, for MoMoW (MoWW), the addition of the W (Mo) layer in-

creases ∆ω of the Mo (W) layers but not as significant as the addition of another Mo (W)

layer. Another interesting phenomenon is that ∆ω-Mo and ∆ω-W for the heterostruc-

tures are also sensitive to stacking patterns. For MoWMo in Fig. 8.7(b), compared to

MoMoW, the dielectric screening to W is increased since the W layer is now sandwiched

between two Mo layers, while the dielectric screening to Mo is decreased. It follows that

the E1
2g-W peak of MoWMo is clearly red-shifted while its E1

2g-Mo peak is blue-shifted.
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Therefore, in spite of the same stoichiometry of Mo:W, from MoMoW to MoWMo in

Table 8.1(b), ∆ω-W increases from 61.53 to 62.26 cm−1, while ∆ω-Mo decreases from

22.90 to 20.94 cm−1. Conversely, from MoWW to WMoW in Fig. 8.7(b), the dielec-

tric screening to Mo (W) is increased (decreased) and thus the E1
2g-Mo (E1

2g-W) peak is

red-shifted (blue-shifted). Hence in Table 8.1(b), in spite of the same stoichiometry, from

MoWW to WMoW, ∆ω-Mo increases from 21.04 to 22.06 cm−1, while ∆ω-W decreases

from 62.97 to 61.82 cm−1. For 4L heterostructures, similar trends can be observed in

Fig. 8.7 and Table 8.1.

As discussed above, frequency difference ∆ω has been established as a reliable

thickness indicator for pure MoS2 and WS2. For heterostructures, the distinctive de-

pendence of ∆ω-Mo and ∆ω-W on both stoichiometry and stacking patterns revealed in

Table 8.1 can be very valuable to determine both stoichiometry and stacking patterns.

Turning to intensity ratios, we defined r-E1
2g (r-A1g) as the intensity ratio between MoS2

and WS2 E1
2g (A1g) in the heterostructures. They are also found to exhibit unique depen-

dence on both stoichiometry and stacking patterns.

With a laser set-up gi=gs=(1,0,0) in Table 8.1(b), r-E1
2g and r-A1g of MoW are 0.96

and 0.90 respectively, close to the stoichiometry of Mo:W (1:1). For MoMoW, r-E1
2g (r-

A1g) grows to 1.89 (2.29), around the stoichiometry of Mo:W (2:1). For MoWW, r-E1
2g

(r-A1g) drops to 0.50 (0.46), around the stoichiometry of Mo:W (1:2). For MoMoMoW,

r-E1
2g (r-A1g) is 2.99 (3.63), around the stoichiometry of Mo:W (3:1). For MoWWW,

r-E1
2g (r-A1g) is 0.30 (0.31), close to the stoichiometry of Mo:W (1:3). Hence, r-E1

2g and

r-A1g can be an indicator of the stoichiometry of heterostructures. Furthermore, r-E1
2g

and r-A1g are sensitive to the stacking order as well. Based on the same argument applied

for pure MoS2 and WS2 above, from MoMoW to MoWMo, the dielectric screening to W

(Mo) is increased (decreased), the localized band gap of W (Mo) is decreased (increased),

the effective dielectric constant tensor of W (Mo) is slightly increased (decreased), and

thus Raman intensities of W (Mo) should be increased (decreased). Indeed, from Mo-

MoW to MoWMo in Fig. 8.7(b), Raman intensities of E1
2g-W and A1g-W are increased

while those of E1
2g-Mo and A1g-Mo are slightly decreased, and hence r-E1

2g (r-A1g) is

decreased to 1.45 (1.02) in Table 8.1(b). Similarly, from MoMoMoW to MoMoWMo,

the dielectric screening to W (Mo) is increased (decreased), Raman intensities of W (Mo)
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are increased (decreased) [Fig. 8.7(b)], and hence r-E1
2g and r-A1g are decreased [Ta-

ble 8.1(b)]. On the contrary, from MoWW to WMoW, the dielectric screening to Mo

(W) is increased (decreased), eventually leading to the increase of r-E1
2g and r-A1g in

Table 8.1(b). From MoWWW to WMoWW, the dielectric screening to Mo (W) is again

increased (decreased), and thus r-E1
2g and r-A1g are increased.

8.7 Summary

In this chapter, we have performed a comprehensive first-principles study of Raman

scattering of MoS2, WS2 and their heterostructures. For MoS2 and WS2, our calculations

successfully reproduce the experimentally observed continuous downshift of E1
2g mode

and upshift of A1g mode with increasing thickness. The increasing dielectric screening

(interlayer coupling) is found to be responsible for the downshift of E1
2g (upshift of A1g)

with increasing thickness. In MoS2/WS2 heterostructures, the same dielectric screening

and interlayer coupling effects lead to a distinctive dependence of ∆ω-Mo and ∆ω-W on

both the stoichiometry and stacking patterns.

For free-standing MoS2 and WS2, we also report the intrinsic thickness dependence

of Raman intensities and intensity ratio of E1
2g and A1g modes. More importantly, both

Raman intensities and intensity ratio are found to be very sensitive to the laser set-up,

and we reveal how the intensity ratio can be essentially tuned from zero to infinity by

adjusting laser polarization, which might explain the inconsistency in measured intensity

ratios by different experimental groups. For the heterostructures, r-E1
2g and r-A1g shows a

distinctive dependence on both the stoichiometry and stacking patterns as well, in which

the dielectric screening plays a key role. The combination of ∆ω-Mo, ∆ω-W, r-E1
2g and r-

A1g in Table 8.1 is expected to serve as a guideline for experimental characterization of the

heterostructures. Despite that our data cannot be absolutely quantitatively accurate due to

precision limit of theoretical methods, the revealed trends and the underlying mechanisms

(particularly dielectric screening effect) are expected to hold.

Very recently, surface effects have been proposed by Luo et al. as an alternative

mechanism to explain the anomalous downshift of E1
2g with increasing thickness [114].

For MoS2, surface effects refer to the larger Mo-S force constants at the surface of thin

film MoS2, which results from a loss of neighbors in adjacent MoS2 layers. With increas-
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ing thickness, there are more neighbors from adjacent layers and hence surface force con-

stants decrease, resulting in the frequency decrease of E1
2g. It is still under alive debate

whether dielectric screening [94] or surface effects [114] are responsible for the down-

shift of E1
2g with increasing thickness. Nevertheless, surface effects can be also applied

to explain the dependence of the E1
2g-Mo and E1

2g-W peaks on both stoichiometry and

stacking patterns in the heterostructures. For example, from MoMoW to MoWMo in

Figure 8.7(b), the surface force constants of W are decreased since the W layer is now

sandwiched between two Mo layers (more neighbors), while the surface force constants

of Mo are increased (less neighbors). It follows that the E1
2g-W peak of MoWMo is clearly

red-shifted while its E1
2g-Mo peak is blue-shifted. In short, the conclusions made for het-

erostructures hold no matter which mechanism (dielectric screening or surface effects) is

predominant.



PART III

Fe-based superconductors:

spin-dependent surface reconstruction
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9. Spin ordering in the (1×2) surface reconstruction of

Ca(Fe1−xCox)2As2

In the previous chapters, we have focused on theoretical studying of graphene nanowig-

gles and transition metal dichalcogenides. Here, we focus on the experimental collab-

oration project with Prof. Plummer’s group from Louisiana State University: surface

reconstruction of layered Fe-based superconductors CaFe2As2.

Low energy electron diffraction, scanning tunneling microscopy and spectroscopy,

and first-principles spin-dependent density functional theory are utilized to investigate

the geometric, electronic, and magnetic structures of the stripe-ordered (1×2) surface

of Ca(Fe1−xCox)2As2 (x = 0,0.075). The surface is terminated with a 50% Ca layer.

Compared to the bulk, the surface Ca layer has a large inward relaxation (∼0.5 Å), and

the underneath As-Fe2-As layer displays a significant buckling. First-principles calcula-

tions show that the (1×2) phase is stabilized by the bulk anti-ferromagnetic spin ordering

through the spin-charge-lattice coupling. Strikingly, a superconducting gap (∼7 meV at

7.4 K) is observed on such surface (x = 0.075 compound), suggesting the coexistence of

both superconductivity and AFM ordering at the surface [128].

9.1 Introduction

The discovery of high-temperature superconductivity (SC) in layered Fe-based com-

pounds has brought to the attention of the materials community a very interesting class of

materials [129–134]. One of the most intriguing aspects of these materials is the coupling

of structure, magnetism, and superconductivity. There is a concurrent structural and mag-

netic transition in AFe2As2 (or A122 where A = Ba, Sr, Ca) [Fig. 9.1(a)]: from tetragonal

(Tet) - paramagnetic (PM) at high temperatures to orthorhombic (Ort)-anti-ferromagnetic

(AFM) at low temperatures [129, 135]. The coupled transitions split and decrease in

This chapter previously appeared as: G. Li, L. Liang, Q. Li, M. Pan, V. Nascimento,

X. He, A. Karki, V. Meunier, R. Jin, J. Zhang, and E. Plummer, Phys. Rev. Lett. 112,

077205 (2014).
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Figure 9.1: (a) Phase diagram of Ca(Fe1−xCox)2As2. Inset is the schematic view of the orthorhom-

bic unit cell with spin structure; (b) STM topography of stripe-ordered surface on

CaFe2As2 at (Vbias = 1.0 V, It = 200 pA). Inset is the zoom-in image, where the red

rectangle shows the (1×2) unit cell.

temperature with chemical doping [Fig. 9.1(a)] or the application of hydrostatic pres-

sure [136]. Unlike compounds such as SmFeAsO1−xFx [137] and CeFeAsO1−xFx [138],

superconductivity in A122 seems to emerge prior to the complete suppression of AFM

[135]. As shown in [Fig. 9.1(a)], Ca(Fe1−xCox)2As2 has an apparent overlap of super-

conducting and AFM phases in the bulk underdoped region [135].

There is growing evidence that the creation of a surface by cleaving stabilizes the

orthorhombic phase [130, 134] and presumably AFM ordering. For example, the sur-

face of Ba(Fe1−xCox)2As2 exhibits a higher transition temperature than observed in the

bulk [130]. Topographic measurements of BaFe2As2 show that the surface stabilizes its

structure with an enhanced orthorhombicity. The domain structure at BaFe2As2 surface is

further locked by AFM ordering, indicated by the broken mirror symmetry at the domain

boundaries [134]. Interestingly, a superconducting energy gap is observed in such a sur-

face. Recently, scanning tunneling microscopy (STM) studies of K0.73Fe1.67Se2 revealed

that superconductivity is observed at the surface with a charge-modulation resulting from

the block-AFM ordering of the Fe layer [139]. Another STM study on NaFe1−xCoxAs

speculated that a spin density wave (SDW) gap coexists with SC gap at the surface [139].

However, to figure out whether these phenomena are surface properties or associated with

the bulk, it is important to first develop a detailed understanding of the surface structure,
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and then its connection to magnetism and superconductivity.

AFM ordering at the surface is difficult to probe directly, and thus has to be deter-

mined indirectly. Here, we present a study of the (1×2) surface of Ca(Fe1−xCox)2As2

(x = 0,0.075) where we combine low energy electron diffraction (LEED), scanning tun-

neling microscopy and spectroscopy (STM/S), and DFT calculations to address the cou-

pling between spin, charge and lattice at the (1×2) surface of Ca122 [128]. The Ca122

surface was chosen for this study because it is predominantly (1×2) and simpler than its

sister compound Ba122 [131]. We first use LEED intensity (I) versus voltage (V) (I-V)

analysis to determine that the (1×2) reconstructed surface is a half monolayer (50%) Ca

with a large inward relaxation (∼0.5 Å), and with a significant buckling in the underneath

As-Fe2-As layer. Then, spin-dependent DFT calculations are performed to demonstrate

that the surface lattice structure is reproduced if and only if the surface possesses bulk

AFM ordering. A superconducting gap is found at this reconstructed surface by STS,

presumably as the consequence of the proximity to superconductivity in the bulk.

9.2 Experimental and theoretical methods

Single crystals of Ca(Fe1−xCox)2As2 (x = 0,0.075) were grown out of Sn flux

[140]. Magnetic susceptibility and electrical resistivity measurements show the bulk mag-

netic/structural transition temperature is TN/S∼170 K for x = 0. For the x = 0.075 com-

pound, the bulk TN∼90 K while TS∼100 K. Superconductivity occurs at Tc 19 K (bulk).

STM/S measurements were carried out at 85 K, 20 K, 16 K, and 7.4 K with a home-built

variable temperature STM [141] with a tungsten tip at 85 K and Pt/Ir tip at 20 K, 16 K

and 7.4 K. For LEED experiments, the sample position was adjusted to achieve normal

incidence for the primary electron beam. The LEED patterns were recorded at 85 K over

a beam energy range of 40 eV to 400 eV by a CCD camera with a LabView interface.

LEED I-V patterns were collected right after the fresh cleave at 85 K.

Plane-wave DFT calculations were performed using the VASP package [36, 37]

within the generalized gradient approximation using the Perdew-Burke-Ernzerhof xc func-

tion [31]. Projector augmented wave pseudo-potentials were used with a 400 eV energy

cutoff. Sampling in the Brillouin zone was (16×16×8) for the bulk and (8×8×1) for

the (1×2) surface structure within the Monkhorst-Pack scheme [38]. For the bulk, both
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atom positions and cell dimensions were relaxed until the residual forces are all lower

than 0.02 eV/Å. Then two optimized bulk unit cells [see the inset of Fig. 9.1(a)] were

taken along the c-axis direction to model the surface in the repeated slab model with a

vacuum spacing of 14 Å. The surface was relaxed with in-plane lattice parameters fixed

to the bulk ones until all the residual forces are lower than 0.04 eV/Å. For spin-polarized

calculations, both the lattice and magnetic moments were determined self-consistently to

minimize the total energy, starting with a number of different initial spin orderings.

9.3 Results and discussions

Figure 9.2: (a) LEED pattern on the surface of CaFe2As2 (120 eV); (b-g): Six possible structural

models for the stripe (1×2) phase for Ca- or As- termination.

Fig. 9.1(a) shows the phase diagram of Ca(Fe1−xCox)2As2 [135], and the Ort-AFM

structure in the inset. There are two atoms in each Ca and As plane, and four in the Fe

plane in a unit cell. Unfortunately, the symmetric STM images cannot resolve the small

distortion (a 6= b) induced by the bulk orthorhombicity [(a− b)/(a+ b) ∼ 0.5%] [142]

and we therefore used the tetragonal unit cell. The STM image in Fig. 9.1(b) only shows

rows of atoms (stripes) with a spacing of ∼8 Å, which is about twice the tetragonal lattice

constant (∼4 Å). STM performed at 4.2 K has been previously reported to resolve the

atoms in each row [143]. Surface twin domains are observed as perpendicular stripes by
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STM (not shown).

Fig. 9.2(a) shows a typical LEED pattern on the surface of CaFe2As2 obtained at

120 eV. The integer spots [(1,0) and (1,1)], and the fractional spots [(1,1/2) and (1,3/2)]

are indicated by colored circles. Fractional spots are present in both directions because

of twin domains. We find that the fractional spots are fragile and their existence and

sharpness are sensitive to temperature, vacuum, thermal process, and the beam energy, in

similitude to doped Ba122 compounds [144]. Thus, extra care has been taken to record

the best LEED I-V data in a time period as short as possible, following the fresh cleave at

85 K.

When analyzing the surface structure, we assume that the termination layer cannot

be Fe, because of its strong bonding with As. Figs. 9.2(b-g) show six structural models

of Ca- and As-termination. All of these six models have the same (1×2) unit cell, as

seen by LEED and STM. Nine (1×2) fractional I-V beams with a total energy range

1224 eV are used to determine the optimal structure. The Pendry Rp factor is used to

quantify the goodness of the fit between the calculated and measured I-V curves [145].

The Rp values achieved on the optimized structures and Debye temperatures for the six

different models of the surface of CaFe2As2 are: 0.8 for a full-As dimer [Fig. 9.2(e)], 0.6

for a full-As rumple [Fig. 9.2(f)], 0.8 for a half-As [Fig. 9.2(g)], 0.8 for full-Ca dimer

[Fig. 9.2(b)], 0.6 for full-Ca rumple [Fig. 9.2(c)], and 0.23 for half-Ca [Fig. 9.2(d)]).

The half-monolayer-Ca model is therefore the only acceptable one. Table 9.1 lists the

experimentally determined displacements, and our LEED I-V structure analysis on x =

0.075 compound for comparison.

The preference for half-monolayer Ca terminated model is not surprising: it is the

most intuitive model and also has the lowest DFT energy [146]. What is surprising is

the consequence of the surface reconstruction: Ca atoms at the surface are pulled down

(inward relaxation) by ∼0.5 Å as shown in Fig. 9.3(a). Even more startling is the rippling

in the As-Fe2-As triple layer just below the surface Ca plane: the Fe atoms (Fe1) between

the Ca rows move up by ∼0.1 Å compared to the position of this plane for the bulk

structure or the position of Fe3 atoms. The displacements of other surface Fe atoms

(Fe2 & Fe3) are less than 0.05 Å, which is comparable to the experimental error bar (see

Table 9.1). The Rp value is very sensitive to the vertical motion of Ca and Fe1 atoms,
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Figure 9.3: (a) Surface structure determined by LEED I-V analysis; (b) DFT calculated structure

with AFM ordering identical to bulk; (c) Bader charge difference between surface

and bulk atoms both with AFM ordering. The yellow arrows represent spins while

the black arrows indicate the distortion with respect to the bulk; (d) Bader charge

difference of surface atoms with (W) and without (W/O) AFM ordering.

yielding small error bars. The rippling in the Fe plane seems to be accompanied by similar

distortion in the As planes (see Table 9.1). The Fe and As atoms are labeled according to

their respective planes, with Fe1 and As1 in plane I, Fe2 and As2 in plane II, and Fe3 and

As3 in plane III as shown in Figs. 9.3(a) and 9.3(b).

To examine the origin of this reconstruction, we perform spin-dependent DFT cal-

culations and found that the surface with the bulk AFM ordering [spins ferromagneti-

cally (FM) coupled along b axis and anti-ferromagnetically coupled along a & c axes

in Fig. 9.1(a)] has the lowest energy and reproduces the structure as determined by ex-

periment. Here are four important findings. First, if no spin ordering is included, the

surface has only a 0.38 Å inward relaxation. Second, when FM ordering is considered,

the self-consistent magnetic moment goes to zero, and the structure becomes the col-

lapsed tetragonal phase. Third, among six different AFM orders, we can produce a 0.47
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Table 9.1: Details of stripe (1×2) surface structures of Ca122 and 7.5% Co-doped Ca122.

Labels

Ca(Fe1-xCox)2As2(x = 0.0, 0.075) (Å)

Bulk

Exp.

Bulk

DFT

Surface

LEED

x = 0

Surface

LEED

x = 0.075

Surface

DFT

Ca 0.0000 0.000 +0.49 (±0.04) +0.54 (±0.03) +0.474

-0.118

-0.073

-0.043

+0.004

-0.072

-0.008

+0.000

As2 1.5583 1.538 -0.16 (±0.26) -0.04 (±0.23)
Fe1 2.9160 2.851 -0.10 (±0.05) -0.07 (±0.04)
Fe2 2.9160 2.851 -0.01(±0.10) +0.08 (±0.13)
Fe3 2.9160 2.851 +0.04 (±0.06) +0.11 (±0.05)
As1 4.2737 4.160 -0.11 (±0.10) -0.04 (±0.06)
As3 4.2737 4.160 +0.10 (±0.10) +0.11 (±0.05)

Ca 5.8320 5.698 0.00 0.00

Å surface relaxation if and only if the surface has the same AFM ordering as the bulk

[Fig. 9.3(b)]. Within error bar, this is identical to the experimental inward motion of ∼0.5

Å [Fig. 9.3(a)]. Finally, theory reproduces the buckling of the center Fe1 atom. These

results confirm that the topmost Fe layer in the (1×2) orthorhombic CaFe2As2 surface

structure has an AFM ordering similar to the bulk. In other words, the striped (1×2)

surface structure with top Ca layer ∼0.5 Å relaxation is the signature of a specific AFM

ordering.

Since the spin-dependent DFT calculations reproduce the observed surface structure

with bulk AFM ordering, they can be used to further understand the interplay between

spin, charge, and lattice associated with the surface relaxation. The formal valences in

Ca122 are Ca2+, Fe2+, and As3−. Fig. 9.3(c) and Table 9.2 show the calculated change

in the atomic Bader charge [147] on the surface compared to the equivalent atoms in

the bulk. Overall, the surface becomes more neutral (i.e., less ionic) than the bulk. For

example, the surface Ca atoms, which are pulled down ∼0.5 Å, become 8% less positively

charged (+1.43e in the bulk to +1.31e at the surface), and the Fe3 atom becomes ∼58%

less positive (+0.31e in the bulk to +0.13e at the surface). On average, the charge on

the Fe layer (the third layer) is ∼34% less positive than its bulk counterpart. The charge

rearrangement is also present in the second and forth As layers, all becoming 13%-15%
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less negative. These changes in the charge distribution are the obvious manifestations of

the surface reconstruction. We also calculated the effect of spin ordering on the charge

distribution by setting magnetic moment to zero (NM) and keeping the orthorhombic

structure. Fig. 9.3(d) and Table 9.2 show that there is significant charge redistribution on

the Ort-NM surface compared to the Ort-AFM case. The negatively charged As atoms

become less negative and the positively charged Fe atoms become less positive. The

removal of spin ordering reduces electronic charge transfer from Fe atoms to As atoms.

As Table 9.2 shows, this charge redistribution is more dramatic in the bulk than at the

surface. Such charge redistribution driven by the loss of spin ordering is what drives the

system into the collapsed tetragonal phase in the bulk.

Table 9.2: Bader charges for orthorhombic Ca122 surface and bulk with or without including the

AFM spin ordering. See Ref. [147] for details regarding Bader charges.

DFT Ca1 As2 Fe1 Fe2 Fe3 As1 As3

Ort-AFM
Bulk +1.43 -0.99 +0.31 +0.31 +0.31 -1.06 -1.05

Surface +1.31 -0.86 +0.28 +0.2 +0.13 -0.92 -0.89

Diff. Surface-Bulk -0.12 +0.13 -0.03 -0.11 -0.18 +0.14 +0.16

Ort-NM
Bulk +1.39 -0.79 +0.14 +0.14 +0.14 -0.88 -0.88

Surface +1.31 -0.79 +0.21 +0.12 +0.06 -0.84 -0.79

Diff. NM-AFM at bulk -0.04 +0.2 -0.17 -0.17 -0.17 +0.18 +0.17

Diff. NM-AFM at surf. 0.00 +0.07 -0.07 -0.08 -0.07 +0.08 +0.10

It was previously observed that the surface reconstruction could suppress super-

conductivity, making STS unable to probe the superconducting gap [148]. However, the

surface reconstruction of Ca122 does not result in a similar consequence, and we see the

signature of a SC gap below Tc of Ca(Fe0.925Co0.075)2As2. Fig. 9.4(a) shows the averaged

STS taken from the clean (1×2) surface [Figs. 9.4(b) and 9.4(c)] of Ca(Fe0.925Co0.075)2As2

at 20 K, 16 K and 7.4 K, respectively. There is no gap feature down to 16 K, indicating that

the transition temperature at the surface is lower than that in the bulk. However, double

coherence peaks are seen at 7.4 K, due to the SC gap ∆ ∼ 7.5 meV. The obvious inter-

pretation that superconductivity coexists with anti-ferromagnetic ordering at the (1×2)

surface presents two glaring issues. First, our structural determination is performed at 80

K, and could be different at temperatures below Tc. Second, there is a large zero-bias
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Figure 9.4: (a) Averaged STS taken from the clean stripe (1×2) surface of Ca(Fe0.925Co0.075)2As2

at the indicated temperatures; (b) & (c) STM topographic images taken at 20 K and

7.4 K, respectively (Vbias = 1.0 V, It = 200 pA). The profiles along indicated lines in

(b) and (c) are shown in (d).

conductance, nearly half of that at the coherence peak.

To resolve the first issue, we need to understand what happens in the bulk. Accord-

ing to neutron scattering measurements, there is no structural or magnetic moment change

when crossing Tc of Ca122 [149]. At the surface, our STM topographies taken with the

same tip and the same tunneling junction show no change of the atomic corrugation and

surface adatom (bright protrusion) height above and below Tc [Figs. 9.4(b-d)]. As demon-

strated in Fig. 9.3, any change in lattice structure and/or magnetic ordering would result

in large charge redistribution. The unchanged atomic corrugation in STM images across

Tc is consistent with neutron scattering results, confirming the absence of lattice structure

and spin ordering below Tc.

Zero-bias conductance was previously observed on the (1×2) surface of Ca122

with superconductivity induced by partial substitution of Ca using La [150]. If the tun-

neling spectra shown in Fig. 9.4(a) were from a tunnel junction measurement, the in-

terpretation would be obvious: superconducting region (with gap) coexisting with non-

superconducting region (with finite zero-bias conductance). However, the STS measure-
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ment is spatially resolved (in plane) on a scale much smaller than the coherence length

or the domain size. If the measurement is sampling an inhomogeneous material, it has

to be in the direction perpendicular to the surface. For Ca122, STS may have contribu-

tion from the reconstructed surface that tends to be a normal metal and the bulk which is

superconducting. The latter penetrates to the surface via the proximity effect, thus reveal-

ing superconducting gap feature (e.g. coherence peaks in STS). This is consistent with

our observation that the gap feature in STS disappears at 16 K [Fig. 9.4(a)], lower than

the bulk Tc, very similar to STM/S observation of the proximity effect on heterogeneous

superconducting thin films on metallic substrates [151]. This can explain the observed

variation of the zero-bias conductance for different reconstructed phases of A122 system.

9.4 Summary

In this chapter, our experimental collaborators have carried out LEED I-V anal-

ysis to identify the stripe-ordered phase seen at the surface of Ca(Fe1−xCox)2As2 (x =

0,0.075). The surface consists of half-Ca layer with a (1×2) structure. These surface Ca

atoms move inward ∼0.5 Å and the surface As-Fe2-As layer is buckled. DFT calculations

show that the (1×2) phase is stabilized by the bulk anti-ferromagnetic ordering through

the spin-charge-lattice coupling. Furthermore, STS measurements show the presence of

a superconducting gap on the ordered (1×2) surface, while the spectra always have a

finite zero-bias conductance. These observations result from a combination of the recon-

structed surface, which tends to be both AFM ordered and superconducting due to the

proximity to the superconducting bulk. The surface-stabilized coexistence of supercon-

ductivity and AFM ordering raises the prospect of growing artificial structured materials

with this property.



10. Conclusions and perspectives

10.1 Conclusions

The thesis is concluded here by presenting a summary of the findings made during

the course of the graduate research. After listing the computational methods used and

developed in this thesis (Chapter 1), we begin to present our results, which are divided

into three parts: graphene nanowiggles, transition metal dichalcogenides and Fe-based

superconductors.

In Part I, low-dimensional carbon-based nanomaterials, graphene and graphene

nanoribbons (GNRs), have attracted much attention due to their extraordinary electrical,

optical, thermal and mechanical properties (Chapter 2). The rich properties of graphene

have made it one of the most promising candidates to replace silicon technology. How-

ever, the gapless feature of pristine graphene limits its applicability in semiconductors

industry. A band gap can be opened for GNRs due to quantum confinement effects, of-

fering a solution for graphene-based applications. To have a band gap comparable to

conventional semiconductors like silicon, GNRs are required to have a width less than

3 nm with clean edges, which remains a great experimental challenge. Recently, ma-

jor experimental advance was made with an atomically precise bottom-up approach to

chemically assemble small aromatic molecules into high-quality subnanometer ribbons

including the novel graphene nanowiggles (GNWs).

Then Chapter 3 is dedicated to a thorough study on electronic and magnetic prop-

erties of a variety of GNWs in a combination of first-principles density functional theory

(DFT) and many-body Green’s function approach within the GW approximation. Our

study reveals their unusual electro-magnetic properties that are absent in their constitu-

tive GNRs, such as tunable band gaps and versatile magnetic states. The emergence of

these properties is the result of the interplay between the properties of the GNR con-

stituents, the symmetry of the atomic structure, and the bipartition of the graphene lattice.

The relationship between the band gap and the geometry is dictated by the armchair or

zigzag characters of the corresponding parallel and oblique sectors, enabling GNWs to

offer a broader set of geometrical parameters to tune the electronic structures compared

97
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to GNRs. All GNWs with at least one zigzag sector have an AFM ground state. More im-

portantly, a number of new metastable spin distributions are found due to GNWs’ unique

wiggle-like edges. For instance, the existence of versatile magnetic states in the AZ GNW

(7A,4Z) enables its quasiparticle band gap to be tuned from 0.56 to 1.46 eV, the ideal band

gap range for semiconductor devices, thereby demonstrating GNWs’ potential for nano-

electronic and spintronic applications. Finally, we have developed a less computational

demanding tight-binding+Hubbard (TBU) model that can capture the most relevant phys-

ical aspects of electronic and magnetic properties of GNWs. A systematic study was

performed using TBU, showing that each achiral GNW type has a specific map for the

band gap as a function of the widths of both parallel and oblique sectors.

In Chapter 4, GNWs are also found by DFT calculations to possess significantly en-

hanced thermoelectric performance compared to their straight GNRs counterparts. Such

improvement originates from the combination of (i) reduced phonon thermal conductance

due to phonon scattering by wiggle-like edges and the mismatch of phonon modes in the

parallel and oblique sectors, and (ii) the electron resonant tunneling effect between these

sectors which guarantee good electronic conduction. In general, peak ZT values of AA

GNWs are more than triple those of straight AGNRs of the same width. For many GNWs

with at least one zigzag sector, the interplay between parallel and oblique sectors opens

a band gap, leading to larger thermopower and consequently to higher ZT while peak

ZT values of straight ZGNRs are almost zero due to their metallicity. A larger propor-

tion of AA systems possess ZT higher than 0.5 in comparison to the other three types of

achiral GNWs, leading to the conclusion that the experimentally available AA GNWs are

the most promising candidates for thermoelectric applications. We also used a combina-

tion of TBU and density-functional based tight binding method (DFTB+) to conduct a

systematic study to show the relationship of peak ZT and structural parameters for each

GNW type. The highest ZT at room temperature for pristine GNWs is found to be 0.79.

However, for practical thermoelectric applications, a system should have ZT higher than

1. Our DFT calculations show that a certain pattern of structural dislocation in the exper-

imentally available GNW (9A,6A) can make ZT exceed 1 at room temperature by further

reducing the thermal conductance of the GNW.

Note that the aforementioned electronic, magnetic and thermal properties are found
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for free-standing GNWs. In reality, however, these structures are synthesized on a gold

substrate. Thus, Chapter 5 is devoted to an investigation of the influence of the gold sub-

strate on electronic properties of the experimentally fabricated GNR (AGNR-7) and GNW

(9A,6A). DFT calculations found that both GNR and GNW are weakly adsorbed on the

Au(111) surface by the van der Waals (vdW) force with separation distances larger than

3.0 Å. There is a small net charge transfer from GNW (GNR) to the substrate, resulting

in a p-type doping of GNW (GNR). Such charge transfer gives rise to an electric dipole

at the interface, leading to substrate polarization and subsequently a band gap reduction

of the adsorbed GNW (GNR). A semi-empirical image charge model was developed to

give satisfactory estimation of band gap reductions, consistent with experimental values.

Since the gold substrate can have significant influence on electronic properties of GNWs,

it is essential to find out how the substrate affects their magnetic properties. In Chapter 5,

to verify the robustness of spin states of GNWs on the gold substrate, we choose the AZ

GNW (7A,4Z) supported on the Au(111) surface as a case study. Our spin-polarized DFT

calculations indicate that the gold substrate only interacts with (7A,4Z) by weak physi-

cal forces. Subsequently, the spin orderings of (7A,4Z) do not significantly vary in the

presence of the gold substrate.

Now, we have studied pure GNWs. Recently, nitrogen atoms have been doped to

GNWs and heterojunctions consisting of pure and nitrogen-doped GNWs (p-GNWs and

N-GNWs) have been synthesized. In the final chapter of Part I (i.e., Chapter 6), we have

considered two types of experimentally realized nitrogen doping in the GNW (9A,6A)

and denoted them as N2 and N4. The corresponding GNW heterojunctions are then

labeled as the p-N2-GNW and p-N4-GNW heterojunctions, respectively. NEGF-DFT

computational method has been used to investigate their electronic and transport proper-

ties. Nitrogen doping in the GNW (9A,6A) is found to shift down the Fermi level without

significantly change the electronic band gap, thus resulting in a type-II band alignment

at the heterojunction interface. The band alignment subsequently reduces the electronic

band gap of the heterojunction while increases its transport gap. More interestingly, as

the nitrogen doping concentration increases, both the conduction and valence band offsets

(∆Ec and ∆Ev) at the interface increase almost linearly. Hence, the highly-controllable (at

the atomic level) nitrogen doping technique not only enables the fabrication of atomic-
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precise and defect-free p-N-GNW heterojunctions with type-II band alignments, but also

offers a unique approach to engineer the interface band offsets of heterojunctions. The

recently synthesized p-N4-GNW heterojunction is estimated to have a maximum power

conversion efficiency of 11.3% as an excitonic solar cell, and hence is very promising for

future solar cell applications.

In Part II, we turn our attention to graphene-like materials: transition metal dichalco-

genides MX2 (M = Mo, W; X = S). Similar to graphite and h-BN, they are also layered

structures stacked by weak vdW forces. Single-layer MoS2 and WS2 have been syn-

thesized and found to show enhanced carrier charge mobilities and strong photolumi-

nescence with direct band gaps, and thus they have been considered as replacements or

complements to graphene for future applications. Raman spectroscopy is a very powerful

nondestructive characterization tool used extensively to study them. Despite the extensive

experimental Raman study on MoS2 and WS2, it remains unclear how Raman intensities

and especially intensity ratio of Raman modes E1
2g and A1g depend on the materials thick-

ness, due to the large spectrum of seemingly contradictory findings (Chapter 7).

To clarify such issues, in Chapter 8, we perform a comprehensive first-principles

study of Raman scattering of both MoS2 and WS2. Our calculations successfully repro-

duce the experimentally observed continuous downshift of E1
2g mode and upshift of A1g

mode with increasing thickness. The increasing dielectric screening (interlayer coupling)

is found to be responsible for downshift of E1
2g (upshift of A1g) with increasing thickness.

Our calculations also reveal the intrinsic thickness dependence of Raman intensities and

intensity ratio. More importantly, we quantitatively analyze the laser polarization effect

on the intensity ratio and reveal the high sensitivity of the intensity ratio to laser polar-

ization. The intensity ratio can be essentially tuned from 0 to infinity by adjusting laser

polarization, which could be the key to explaining the large discrepancy between mea-

sured intensity ratios by different experimental groups where different laser polarization

set-ups might be used.

In Chapter 8, we also study ab initio Raman spectra of MoS2/WS2 heterostructures

up to four layers in every possible combinations and stacking orders. Each heterostructure

configuration is found to possess a unique Raman spectrum in both frequency and inten-

sity that can be explained by changes in dielectric screening and interlayer interactions.
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The results establish a set of guidelines that can be used for the practical experimental

identification of heterostructure configurations.

In the final part of the thesis, Part III, we highlight the experimental collaboration

project with Prof. Plummer’s group from Louisiana State University: surface recon-

struction of layered Fe-based superconductors CaFe2As2. In Chapter 9, our experimental

collaborators have carried out low energy electron diffraction (LEED) I-V analysis to

identify the stripe-ordered phase seen at the surface of Ca(Fe1−xCox)2As2 (x = 0,0.075).

The surface consists of half-Ca layer with a (1×2) structure. These surface Ca atoms

move inward ∼0.5 Å and the surface As-Fe2-As layer is buckled. Spin-dependent DFT

calculations show that the (1×2) phase is stabilized by the bulk anti-ferromagnetic or-

dering through the spin-charge-lattice coupling. Furthermore, scanning tunneling spec-

troscopy (STS) measurements show the presence of a superconducting gap on the ordered

(1×2) surface, while the spectra always have a finite zero-bias conductance. These ob-

servations result from a combination of the reconstructed surface, which tends to be both

AFM ordered and superconducting due to the proximity to the superconducting bulk. The

surface-stabilized coexistence of superconductivity and AFM ordering raises the prospect

of growing artificial structured materials with this property.

10.2 Perspectives

While we have a good collection of promising results in this thesis, there are still a

lot of interesting problems to be explored in the future. A non-exhaustive list of ongoing

projects are presented below.

As mentioned in Chapter 6 of Part I, two types of nitrogen doping have been exper-

imentally realized in the GNW (9A,6A): N2 and N4. We have investigated the electronic

and transport properties of p-N2-GNW and p-N4-GNW heterojunctions, which show the

type-II band alignments for excitonic solar cell applications. To further explore doping ef-

fects in GNWs, we currently use both DFT and more accurate many-body GW approach

to systematically study both boron and nitrogen doping with various concentrations in

four armchair-armchair GNWs. The GNWs under investigation include (9A,6A), (8A,6A),

(8A,5A) and (6A,5A). The doping concentrations considered include N1-N5 and B1-B5.

For all four GNWs, the increasing B/N doping concentrations affect little the magnitude
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of band gaps but almost linearly shift up/down them, leading to type-II staggered band

alignments in GNWs heterojunctions with tunable band gaps and band offsets. More

importantly, the proposed (8A,5A) p-B1-GNW heterojunction is predicted to have max-

imum power conversion efficiencies 22.0% as an excitonic solar cell. These interesting

results are expected to stimulate further efforts to realize GNWs with a variety of sizes

and doping concentrations for applications in photovoltaics and electronics.

In Chapter 8 of Part II, a theoretical model of non-resonant first-order Raman scat-

tering is developed and adopted to study Raman spectra of MoS2, WS2 and their het-

erostructures. The possession of such Raman tool enables us to explore in a barely

touched ground. In the near future, we plan to further study defect and stain effects

on Raman scattering of MoS2 and WS2. Or we can study other transition metal dichalco-

genides such as MoSe2, MoTe2, WSe2, etc. Recently, two-dimensional Si and Ge with

graphene-like hexagonal lattices, so called silicene and germanene, have been extensively

studied. Their hydrogenated and fluorinated products are also very interesting. Raman

spectroscopy can be used to monitor their hydrogenation and fluorination, and hence we

are currently working on theoretical Raman scattering of hydrogenated and fluorinated

graphene, silicene and germanene in attempt to guide the experimental characterization

of them.

In Chapter 9 of Part III, spin-dependent surface reconstruction of layered Fe-based

superconductors CaFe2As2 has been probed. Now, we are studying another supercon-

ductor BaFe2As2, which also shows similar spin-dependent surface reconstruction. The

(1×2) surface phase of BaFe2As2 is also stabilized by the bulk anti-ferromagnetic order-

ing through the spin-charge-lattice coupling. Moreover, we have calculated work func-

tions for a variety of surfaces of CaFe2As2 such as the orthorhombic/tetragonal surfaces

with 1 ML, 1/2 ML and 0 ML Ca to help experimental identification of these surfaces.

We will start the computation of work functions for various surfaces of BaFe2As2 soon.
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