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Energy and momentum in accelerators is usually expressed in units 
of “electron Volts”:

1 eV = 1.602 x 10-19 Joules

We will use energy units: 
keV  = 103 eV
MeV = 106 eV
GeV  = 109 eV

Similarly, the units of momentum, p, are eV/c.
And finally, for mass, the units are eV/c2. For instance

mp = mass proton = 938 MeV/c2

me = mass electron = 511 keV/c2

Units
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In most accelerators, particles move at relativistic speeds, and
therefore we need to use relativistic mechanics to describe particle 
motion and fields.  

Einstein’s Special Theory of Relativity:

1) The laws of physics apply in all inertial (non-accelerating) 
reference frames. 

2) The speed of light in vacuum is the same for all inertial 
observers.

Notice that (1) does not mean that the answer to a physics 
calculation is the same in all inertial reference frames.  It only 
means that the physics law’s governing the calculation are the same. 

Relativity
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The factors γ and β are 
commonplace in most 
relativistic equations:

In fact, the total energy of a 
particle (sum of kinetic and 
rest energy), is given by: 

For accelerators, it is often 
convenient to find γ using the 
kinetic energy, T, of a particle: 
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The β factor is commonly used as a measure of the speed of a particle.  
As a particle is accelerated, β increases asymptotically towards 1 
(speed of light), but never gets there:

• Heavy particles become relativistic at higher energies 
• No particle with finite mass can travel at the speed of light in

vacuum (β=1)
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In accelerators, we typically use electric fields to accelerate 
particles and magnetic fields to focus particles.  The standard 
equations used to describe the fields are Maxwell’s equations:
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The Lorentz Force Equation

For a charged particle passing through an E or B field the force is 
governed by the Lorentz Force Equation:

)( BvEqF ×+=

Force from 
the electric 
field is in the 
direction of E

Force from the magnetic field 
is perpendicular to the 
direction of v and B, as given 
by the “Right Hand Rule”

Right Hand Rule for a = b x c : Point your right fingers in the 
direction of b, and curl your fingers toward the direction of c. Your 
thumb will point in the direction of a.

dt
pdamF
r

rr
==

A force is the 
change in momentum 
with respect to time.
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Accelerator Coordinate Systems

In general, the accelerator will be designed (shaped) to give a 
“reference trajectory” for particle travel.  This reference trajectory 
usually includes a number of bends: 

In beam physics, we are generally interested in deviations from the 
reference trajectory. Therefore it is most convenient to place the 
coordinate system origin on the reference trajectory, and align one axis 
of the axes with the reference trajectory.  

One axis points in the  
direction of the reference 
trajectory at any point 
(tangent to the reference 
path). 

ρ
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Accelerator Coordinate Systems (cont.)

In this curvilinear coordinate system, the direction of all axes change 
along the reference path. 

Of the two remaining axes, we choose the horizontal axis to go in the 
plane of the reference trajectory, and the vertical axis to be 
perpendicular to this plane.  This is convenient since most accelerators 
are laid out entirely in a horizontal plane. 

y

sx

reference trajectory

plane of 
accelerator

As we look in the 
direction of s,
positive x is to the left;
and positive y is up (right 
handed coordinate 
system)
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In transverse particle dynamics, we are concerned with the effect 
of an external magnetic field on the phase space coordinates of a 
particle or beam.  The phase space coordinates are called (u, u’), 
where (u, u’) can be either (x, x’) or (y, y’).

Coordinates and units:
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What does the phase space path of harmonic oscillator look like?
(Mass on a pendulum, child on a swing, etc)?

Particle with positive 
position and 
momentum.

s distance on reference trajectory, [m], 
(“time” coordinate)

Phase Space and Units
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Hill’s equation

• For linear beam optics (dipoles, quadrupoles, and 
drifts), the motion of a particle about the reference 
trajectory can be described by Hill’s equation:
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Solution to 
Hill’s equation

Note: the β(s) on this slide is not the relativistic β factor! There is  
unfortunate clash in terms in accelerator physics, and you just have 
to get used to it! Context determines the correct interpretation.
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Hill’s equation (cont.)

Reference trajectory

Hill’s equation shows oscillatory motion 
about the reference trajectory
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A Closer Look at Hill’s Equation

0)(" =+ usKu
What does it tell us?  Look at the form in general. 

Particle motion about the reference trajectory is caused by dipoles 
and quadrupoles, whose strength varies with s.

If ko and ρ are constant with s (or vary slowly), the motion is 
harmonic.  Therefore we won’t be surprised later to find that the motion 
has a “frequency”… The total motion, with s-dependence, is “quasi-
harmonic”.

The equation acts like a spring with “spring constant” or restoring 
force, K(s), which changes over the length of the accelerator.

u
u
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The variable Kx(s) complicates the normal solution to the harmonic 
oscillator equation. To make life a little easier, lets consider the 
transfer matrix for only one piece of the accelerator. 

We can approximate that relatively short piece of the accelerator by 
K(s) = K, a constant:

K(s) ≅ K

This is a good approximation 
as long as we pick small 
enough pieces (<= 1 lattice 
element)

0" =+KuuHill’s equation becomes:
And this is a problem we 
know how to solve!

Hill’s equation (cont.)
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So, solve the piece-wise constant Hill’s equation with appropriate 
initial conditions:

Solve: 0" =+Kuu with initial conditions: ')0('  ;)0( oo uuuu ==

')()()( oo usSusCsu +=The solution is: 
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Hill’s equation (cont.)
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Matrix Representation of Motion
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It is convenient to write the transport equation as a matrix:  

M
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Quick Review of Matrix Multiplication
Suppose we multiply two matrices, M1 and M2.  The (row m, column n) 
element of the final matrix is the vector dot product of the m row from 
M1 and the n column from m2:

Mn,m=(row n from M1) x (column m from M2)
Example: M11=(row 1 from M1) x (column 1 from M2)

M21=(row 2 from M1) x (column 1 from M2)
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In general, matrix multiplication is not commutative: M1 x M2 ≠ M2 x M1  .
The order of multiplication is very important!
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Piece-wise Constant Transport: Two Elements

The matrix representation is very convenient.  For instance, what if we 
had two consecutive elements, with strengths K1 and K2?  What is the 
final equation of transport for a particle through both elements?

M1

(uo, u’o) (u1, u1’)

reference trajectory
M2 (u2, u2’)
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Piece-wise Constant Transport: N Elements

from s0 to s1
from s0 to s2

from s0 to s3

from s0 to sn

…
S0

S1 S2 S3 Sn-1
Sn

For an arbitrary number of transport elements, each with a 
constant, but different Kn, we have:

Thus by breaking up the parameter K(s) into piece-wise constant 
chunks, K(s)={K1, K2, … Kn}, we have found a useful method for 
finding the particle transport equation through a long piece of beam 
line with many elements.
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Transport through a Drift
In a drift space, with no B-fields, we take the limit of M as K-> 0.
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Transport through a Quadrupole
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In the case of a pure quadrupole, there is no bending so the only 
remaining term is the quad strength term. 

Focusing:

Defocusing:

A
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Finite length quad transport (cont.)

0 L s

The quadrupole has finite length, l. The angle is 
changed through the length, and the position as well.  
For instance, for k>0: 
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Real space (s, x): Phase space (x, x’):
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Thin Lens Approximation for a Quadrupole

0 f

x’

x

x’
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0 f

In the “thin lens approximation”, we let the length of the quadrupole approach 
zero while holding the focal length constant: l→0 as 1/f=kl=constant.
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In this approximation, the position remains fixed, but the angle changes:

Focusing:
(slope diminishes)

Defocusing:
(slope increases)

*
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Example: A Quadrupole Focusing Doublet 

Let’s consider a horizontally focusing quadrupole doublet sequence 
– FOF - separated by a drift L, in the thin lens approximation: 

Answer:
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Why don’t we use sequences of …FOFOFOFO… magnets to create 
lattices in an accelerator?

is the total focal length of the system.

s
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Focusing in a Sector Dipole

The axis of a sector dipole usually corresponds to the reference
trajectory.  In the plane of the bend, off-axis particles are focused 
by the dipole, and the thus the 1/ρ2 term which shows up in Hill’s 
equation: K=k+1/ρ2

θ

L

A particle on an exterior 
path w.r.t. reference 
undergoes more bending.

A particle on an interior 
path w.r.t. reference 
undergoes less bending.
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Transport in Pure Sector Dipole 
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Here we take the quad strength k, to be zero, k=0.  In the 
deflecting plane, i.e, the plane of the bend (usually horizontal), we 
have: 

And in the non-deflecting plane, ρ→0, and we are left with a drift:
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Transport in Rectangular Dipoles

In a rectangular dipole, the particle path in the horizontal direction is the 
same for all trajectories, so there is no focusing in the horizontal 
direction.
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In the horizontal direction the magnet transform like a drift with 
length equal to ρ sin θ

θ
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The Problem of Real Beam Distributions

So far we have learned how to write the transport equations for a 
single particle in a beam line.

The problem: In a real machine, we rarely have any information 
about a single particle!

What we do know is some information about the entire beam, i.e.,
the ensemble of all of the particles.  We could do separate 
transport equations for each particle in the bunch (PIC simulations 
do something like this)...  Very impractical for analytic work!

Solution:
We parameterize the entire particle distribution, and write the 
transport equations for the parameters.  Thus we can write 
transport equations for the whole beam, not just one particle!
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Real Beam Distributions

In reality, real beam distributions are not uniform in phase space, and 
actually, in practice it can be difficult to locate the beam edge.  

“KV” “Waterbag” Gaussian
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RMS Quantities

Most often, we will deal with RMS quantities.  The RMS beam size with 
N particles is defined as:

∑ −=
N

i
i uu

N
u 2

aveRMS )(1

For a Gaussian beam, the rms beam size is just the “sigma” of the 
beam. To include the tails of the beam we often talk about apertures 
that are “five sigma”, or “seven sigma”, etc.

For most common distributions, the RMS represents a % which lies
inside this bound.  For example, for a 1D Gaussian, 68.3% of particles 
lie within ±1 RMS.
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A good approximation for the 
beam shape in phase space is an 
ellipse.  Any ellipse can be defined 
by specifying:

Area
Shape
Orientation

We choose 4 parameters –
3 independent, 1 dependent:

α - related to beam tilt
β - related to beam shape, width
ε - related to beam area
γ - dependent on the other 3.

These are the “Twiss Parameters”
(or “Courant-Snyder Parameters”)

u’

u

Beam Ellipse in Phase Space:

The beam ellipse Twiss parameters
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Transverse Beam “Emittance”
The equation for the beam ellipse, 
with our Twiss parameterization 
can be written as:

u’

u

Beam Ellipse in Phase Space:
22 ''2 xxxx βαγε ++=

∫ = πεdxdx'

And the ellipse has area: 

emittance beam=ε

The beam emittance is the phase space 
area of the beam (to within π).  
Emittance is a parameter used to gauge 
beam quality. 
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RMS Quantities

We can relate our Twiss Parameters 
for the beam to RMS quantities, as 
well:
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Beam Ellipse in Phase Space:
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RMS beam size

mm 6)rad m106.3)(m 10(    

mrad mm  3.6    
m 10    
:Example

6
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=
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Beam Ellipse in Phase Space:

Note: for the conventions used in 
this course, leave off the π in the 
emittance number when calculating 
beam parameters
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The Beam Ellipse in a Drift 

How does this “beam ellipse” transform through a drift space?

u’

u

u’

u

Drift…

u’

u

s

Analogous with a single particle, u is increasing while u’ remains fixed.  
Observation: Without focusing, any beam would spread out…

This beam is “divergent”

Drift: u=uo+uo’l
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The Beam Ellipse in a Quadrupole

Recall that for a (focusing) quadrupole, the force of 
the kick is opposite to the sign of the particle’s 
position, and proportional to the distance from the 
axis. So for a distribution of particles: 

u’

u

Diverging… Converging… Beam Waist Diverging…

Quad…s Drift…

The quadrupole causes a diverging beam to converge.   In reality, the 
scenario is more complicated because we focus in one plane while defocusing
in the other.

u’

u
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Transporting Twiss Parameters

According to Louiville’s Theorem, the phase space area of the beam 
does not change under linear transformations (i.e. just dipoles and 
quadrupoles).  This means the beam emittance is conserved in a linear 
transport system.

For our homogenous Hill’s equation, the emittance between two points 
is conserved, regardless of the change in beam shape and orientation.  

With this fact, we find that for a piece-wise constant lattice, the 
Twiss parameters transform as: 
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Twiss Parameters through a Drift
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We will attach more physical meaning to these parameters soon!

Recall that          is a measure of 
beam size.  So clearly, the beam size 
always eventually grows in the 
absence of focusing.

βε

*
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Some more propagation matrices
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Summary

Recap:
We found the equation of motion, w.r.t. the reference 
trajectory

We solved the equation of motion for the case of K=constant.

We learned how to represent the solution in matrix form.

We learned how to transport a particle through an arbitrarily 
long piece-wise constant lattice, by multiplying the individual 
transport matrices in the right order. 

We parameterized the entire distribution of particles using 
Twiss parameters. 

We learned how to transport the Twiss parameters – and 
therefore the shape and orientation of the beam - through a 
piece-wise constant lattice.
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• Extra slides
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Stability Condition

Most of the time we deal with lattices where the arrangements of
magnets repeat themselves, i.e., periodic systems.  

Q: How do we know if our lattice produces stable particle motion?
A: After finding the composite transport Matrix, M, of the lattice, 
we can find a “stability condition” on this matrix: 

1221Lattice ... MMMMMM nnn −−=

2)( <N
LatticeMTr

If:

Stability condition:

Where “Tr(M)” means the “Trace” of the matrix, which is the sum of 
the diagonal elements.  And for N repititions of this lattice 
sequence, we generalize to:

2)( Lattice <MTr

What is the stability 
condition for a 
FODO lattice?
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Stability Condition for a FODO Lattice (f1=-f2) 
The stability condition for a FODO lattice is found by taking the 
trace and applying the stability condition.  So, for the thin lens 
approximation of a FODO cell with equal focal length quadrupoles:

   10 <<
f
L

242)( 2

2

<−=
f
LMTr FODO

⎟
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⎟
⎟

⎠

⎞

⎜
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⎜
⎜

⎝

⎛

−

−
=

2

2

2

2
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21...

...21

f
L

f
L

M

For a thin lens FODO lattice, 
the focal length should be 
greater than the distance 
between magnets.

Transfer matrix:

Stability condition: 

Result for FODO:       
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Stability Condition for a FODO Lattice (general) 
For the general FODO cell with unequal focal lengths, the condition 
is more complicated.  We have:

10
2121

<−+<
ff

L
f
L

f
L

1

1
f

2

1
f

The allowed magnitudes 
are given by the 
“Necktie Diagram”
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RMS beam size

For a Gaussian beam, the rms beam size is 
just the “sigma” of the beam. To include the 
tails of the beam we often talk about 
apertures that are “five sigma”, or “seven 
sigma”, etc.

(Image is from Wikipedia)

rms beam size
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Example: FODO Channel

• Consider a defocusing quadrupole “sandwiched”
by two focusing quadrupoles with focal lengths f.

• The symmetric transfer matrix is from center to 
center of focusing quads (thus one full focus and 
one full defocus quad)

L L

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

dc
ba

M halffirst 

QF HalfDriftQDDriftQF HalfFODO MMMMMM =
This arrangement is 
very common in beam 
transport lines.
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bdbcad

MMM
2

2
halffirst half secondFull

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ac
bd

M half second

For a symmetric lattice sequence, we have the special property:

If , then automatically, 

and finally, multiplying the two:
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Example: FODO Channel
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This arrangement is 
very common in beam 
transport lines.

The general expression for a FODO lattice with focal lengths f1 and f2, 
separated by a distance L is:

And the special case where f1=-f2=f is:
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