
A Discrete EVent system Simulator

Jim Nutaro

Copyright 2008

ii

Contents

1 Building and Installing 1

2 Modeling and simulation with Adevs 3

3 Atomic Models 17

4 Network Models 29
4.1 Parts of a Network Model . 29
4.2 Simulating a Network Model . 32
4.3 Building a Network Model . 32
4.4 Digraph Models . 35
4.5 Cell Space Models . 41

5 Variable Structure Models 47
5.1 Building and Simulating Variable Structure Models . 47
5.2 A Variable Structure Example . 48

6 Continuous Models 57
6.1 Using the Runge-Kutte Integration Modules . 57
6.2 Building Numerical Integration Blocks for Adevs . 61

7 The Simulator Class 67

8 Models with Many Input/Output Types 69

9 Random Numbers 73

10 Interpolation 75

iii

iv

Chapter 1

Building and Installing

The Adevs package is organized into the following directory structure:

adevs-x.y.z

+->docs

+->examples

+->include

+->src

+->test

+->util

Everything except the random number generators are implemented as template classes, and so are contained
entirely in the header files that are located in the include directory. If you do not want to use the random
number generators, its sufficient to include adevs.h in your source code, and to make sure that your compiler
can find the include directory.

If you do want to use the random number generators, then enter the the src directory and run ‘make’.
This will build the library libadevs.a that can be linked with your executable.

If you want to run the test suite, then first you need to build the library file and install Tcl (the test
scripts need Tcl to run; if you can run ‘tclsh’ then you already have a working copy of Tcl). After that, go
the the test directory and run ‘make check’. This will automatically build and execute all of the test cases.
If the test suite is run to completion, then everything works fine. If something goes wrong, then make will
exit and report an error. Use ’make clean’ to cleanup afterward.

1

2

Chapter 2

Modeling and simulation with Adevs

Adevs is a simulator for models described in terms of the Discrete Event System Specification (DEVS)1 The
key feature of models described in DEVS (and implemented in Adevs) is that their dynamic behavior is
defined by events. An event can be any kind of change that is significant within the contex of the model
being developed.

Modeling of discrete event system modeling can be most easily introduced with an example. Suppose
that we want to model the checkout line at a convenience store. There is a single clerk who serves customers
in a first come-first serve fashion. Each customer has a different number of items, and so they require more
or less time for the clerk to ring up their bill. We are interested in determining the average and maximum
amount of time that customers spend waiting in line.

Figure 2.1: Customers waiting in line at BusyMart.

To simulate this system, we will need an object to represent each customer in the line. A Customer
class is created for this purpose. Customer objects have three attributes. One attribute is the time needed
to ring up the customer’s bill. Since we want to be able to determine how long a customer has been waiting
in line, we will also include two attributes that record the time at which the customer entered the queue
and the time that the customer left the queue. The difference of these times is the amount of time that the
customer spent waiting in line. Here is the customer class, from which we will create customer objects as
needed. The class is coded in a single header file, Customer.h.

#include "adevs.h"

/// A Busy-Mart customer.

struct Customer

{

/// Time needed for the clerk to process the customer

double twait;

1A comprehensive introduction to the Discrete Event System Specification can be found in “Theory of Modeling and
Simulation, 2nd Edition” by Bernard Zeigler et. al., published by Academic Press in 2000.

3

/// Time that the customer entered and left the queue

double tenter, tleave;

};

/// Create an abbreviation for the Clerk’s input/output type.

typedef adevs::PortValue<Customer*> IO_Type;

The model of the clerk is our first example of an atomic model. Fortunately, the clerk’s behavior is very
simple. The clerk has a line of people waiting at her counter. When a customer arrives at the clerk’s counter,
that person is placed at the end of the line. If the clerk is not busy and somebody is waiting in line then
the clerk rings up that customer’s bill and sends the customer on his way. The clerk then looks for another
customer waiting in line. If there is a customer, the clerk proceeds as before. Otherwise, the clerk sits idly
at her counter waiting for more customers.

The DEVS model of the clerk is described in a particular way. First, we need to specify the type of object
that the clerk can consume and produce. For this model, we use PortValue objects. The PortValue class
is part of the Digraph model class, which will be introduced later. The PortValue class describes a
port/value pair. Suppose that customers arrive in line via an “arrive” port and leave via a “depart” port
and the value objects are instances of the Customer class.

The second thing that we need to determine are the state variables that describe the clerk. In this case,
we need to know which customers are in line. This can be described with a list of customers; we can use a
list from the C++ Standard Template Library.

To complete the model of the clerk, we must implement four methods that model the clerk’s behavior.
First, let’s construct the header file for the clerk. Then we can proceed to fill in the details.

#include "adevs.h"

#include "Customer.h"

#include <list>

/**

* The Clerk class is derived from the adevs Atomic class.

* The Clerk’s input/output type is specified using the template

* parameter of the base class.

*/

class Clerk: public adevs::Atomic<IO_Type>

{

public:

/// Constructor.

Clerk();

/// Internal transition function.

void delta_int();

/// External transition function.

void delta_ext(double e, const adevs::Bag<IO_Type>& xb);

/// Confluent transition function.

void delta_conf(const adevs::Bag<IO_Type>& xb);

/// Output function.

void output_func(adevs::Bag<IO_Type>& yb);

/// Time advance function.

double ta();

/// Output value garbage collection.

void gc_output(adevs::Bag<IO_Type>& g);

/// Destructor.

~Clerk();

/// Model input port.

static const int arrive;

/// Model output port.

4

static const int depart;

private:

/// The clerk’s clock

double t;

/// List of waiting customers.

std::list<Customer*> line;

/// Time spent so far on the customer at the front of the line

double t_spent;

};

This header file is a template for almost any atomic model that we want to create. The Clerk class is
derived from the Adevs Atomic class, and it defines the virtual state transition, output, time advance, and
garbage collection methods that are required by the Atomic base class. The Clerk also includes a set of
static, constant port variables that correspond to the Clerk’s input (customer arrival) and output (customer
departure) ports.

The constructor for the Clerk class invokes the constructor of the Atomic base class. The template
argument of the base class is used to define the Clerk’s input/output type. The Clerk state variables
are defined as private class attributes. The variables arrive and depart are assigned integer values that are
unique within the scope of the Clerk class. Typically, the ports for a model are numbered in a way that
corresponds with the order in which they are listed; for example,

// Assign locally unique identifiers to the ports

const int Clerk::arrive = 0;

const int Clerk::depart = 1;

The Clerk constructor places the Clerk into its initial state. For our experiment, this state is an empty
line and the Clerk’s clock is initialized to zero.

Clerk::Clerk():

Atomic<IO_Type>(), // Initialize the parent Atomic model

t(0.0), // Set the clock to zero

t_spent(0.0) // No time spent on a customer so far

{

}

Because the clerk has an empty line at first, the only interesting thing that can happen is for a customer
arrive. Customer arrivals are events that appear on the clerk’s “arrive” input port. The arrival of a customer
will cause the clerk’s external transition method to be activated. The arguments to the method are the time
that has elapsed since the clerk last changed state and a bag of PortValue objects.

The clerk’s local clock is updated by adding the elapsed time to the current value of the clock. Next, the
time spent working on the current customer’s order is updated by adding the elapsed time to the time spent
so far. After doing this, the input events are processed. Each PortValue object has two fields. The first is
the port field; it contains the number of the port that the event arrived on. The second is the Customer
that arrived. The arrival time of every arriving customer is recorded and then the customer is placed at the
back of the line.

void Clerk::delta_ext(double e, const Bag<IO_Type>& xb)

{

// Print a notice of the external transition

cout << "Clerk: Computed the external transition function at t = " << t+e << endl;

// Update the clock

t += e;

// Update the time spent on the customer at the front of the line

if (!line.empty())

5

{

t_spent += e;

}

// Add the new customers to the back of the line.

Bag<IO_Type>::const_iterator i = xb.begin();

for (; i != xb.end(); i++)

{

// Copy the incoming Customer and place it at the back of the line.

line.push_back(new Customer(*((*i).value)));

// Record the time at which the customer entered the line.

line.back()->tenter = t;

}

// Summarize the model state

cout << "Clerk: There are " << line.size() << " customers waiting." << endl;

cout << "Clerk: The next customer will leave at t = " << t+ta() << "." << endl;

}

The time advance function gives the time at which the clerk will finish processing its current customer.
The time advance function describes the amount of time that should elapsed before the clerk’s next internal
(or self) event, barring an input that arrives in the interim. The clerk’s time advance function is very simple.
If there are no customers in line, then the clerk will not do anything in the abscence of input, and so the time
advance function returns infinity (here, represented by DBL MAX). Otherwise, the clerk will wait until the
first customer has been rung up; i.e., until the difference of the Customer’s twait and t spent has elapsed.

double Clerk::ta()

{

// If the list is empty, then next event is at inf

if (line.empty()) return DBL_MAX;

// Otherwise, return the time remaining to process the current customer

return line.front()->twait-t_spent;

}

Eventually, the clerk will be done ringing up the customer. At this time, the clerk sends the customer
on his way and looks for a new customer in the line. If there is another customer waiting in line, the clerk
will begin ringing that customer up in the same fashion as before. This will all occur when the simulation
clock reaches the clerk’s time of next event; i.e., the time of the clerk’s last event plus the time advance.

Two things happen when the time advance expires. First, the Clerk’s output method is called. When this
happens, the Clerk places the departing customer on its “depart” output port. Next, the Clerk’s internal
transition method is activated. The Clerk’s internal transition method changes the state of the Clerk by
removing the departed customer from the line. The output function and internal transition function are
shown below.

void Clerk::delta_int()

{

// Print a notice of the internal transition

cout << "Clerk: Computed the internal transition function at t = " << t+ta() << endl;

// Update the clock

t += ta();

// Reset the spent time

t_spent = 0.0;

// Remove the departing customer from the front of the line.

line.pop_front();

// Summarize the model state

cout << "Clerk: There are " << line.size() << " customers waiting." << endl;

6

Enter checkout line Time to process order
1 1
2 4
3 4
5 2
7 10
8 20
10 2
11 1

Table 2.1: Customer arrival times and time to process customer orders.

cout << "Clerk: The next customer will leave at t = " << t+ta() << "." << endl;

}

void Clerk::output_func(Bag<IO_Type>& yb)

{

// Get the departing customer

Customer* leaving = line.front();

// Set the departure time

leaving->tleave = t + ta();

// Eject the customer

IO_Type y(depart,leaving);

yb.insert(y);

// Print a notice of the departure

cout << "Clerk: Computed the output function at t = " << t+ta() << endl;

cout << "Clerk: A customer just departed!" << endl;

}

At this point we have almost completely defined the behavior of the model clerk; only one thing remains
to be done. Suppose that a customer arrives at the clerk’s line at the same time that the clerk has finished
ringing up a customer. In this case we have a conflict because the internal transition function and external
transition function must both be activated to handle these two events (i.e., the simultaneous arriving customer
and departing customer). These types of conflicts are resolved by the confluent transition function. For the
clerk model, the confluent transition function is computed using the internal transition function first (to
remove the newly departed customer from the list) followed by the external transition function (to add new
customers to the end of the list and begin ringing up the first customer). Below is the implementation of
the clerk’s confluent transition function.

void Clerk::delta_conf(const Bag<IO_Type>& xb)

{

delta_int();

delta_ext(0.0,xb);

}

To see how this model behaves, suppose we had customers arrive according to the schedule shown in
the table below. In this example, the first customer appears on the clerk’s “arrive” port at time 1, the
next customer appears on the “arrive” port at time 2, and so on. The print statements in the Clerk’s
internal, external, and output functions let us watch the evolution of the clerk’s line. Here is the output
trace produced by the above sequence of inputs.

Clerk: Computed the external transition function at t = 1

Clerk: There are 1 customers waiting.

7

Clerk: The next customer will leave at t = 2.

Clerk: Computed the output function at t = 2

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 2

Clerk: There are 0 customers waiting.

Clerk: The next customer will leave at t = 1.79769e+308.

Clerk: Computed the external transition function at t = 2

Clerk: There are 1 customers waiting.

Clerk: The next customer will leave at t = 6.

Clerk: Computed the external transition function at t = 3

Clerk: There are 2 customers waiting.

Clerk: The next customer will leave at t = 6.

Clerk: Computed the external transition function at t = 5

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 6.

Clerk: Computed the output function at t = 6

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 6

Clerk: There are 2 customers waiting.

Clerk: The next customer will leave at t = 10.

Clerk: Computed the external transition function at t = 7

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 10.

Clerk: Computed the external transition function at t = 8

Clerk: There are 4 customers waiting.

Clerk: The next customer will leave at t = 10.

Clerk: Computed the output function at t = 10

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 10

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 12.

Clerk: Computed the external transition function at t = 10

Clerk: There are 4 customers waiting.

Clerk: The next customer will leave at t = 12.

Clerk: Computed the external transition function at t = 11

Clerk: There are 5 customers waiting.

Clerk: The next customer will leave at t = 12.

Clerk: Computed the output function at t = 12

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 12

Clerk: There are 4 customers waiting.

Clerk: The next customer will leave at t = 22.

Clerk: Computed the output function at t = 22

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 22

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 42.

Clerk: Computed the output function at t = 42

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 42

Clerk: There are 2 customers waiting.

Clerk: The next customer will leave at t = 44.

8

Clerk: Computed the output function at t = 44

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 44

Clerk: There are 1 customers waiting.

Clerk: The next customer will leave at t = 45.

Clerk: Computed the output function at t = 45

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 45

Clerk: There are 0 customers waiting.

Clerk: The next customer will leave at t = 1.79769e+308.

The basic simulation algorithm is illustrated by this example. Notice that the external transition function
is always activated when an input (in this case, a customer) arrives on an input port. This is because the
external transition function describes the response of the model to input events.

The internal transition function is always activated when the simulation clock has reached the model’s
time of next event. The internal transition function describes the autonomous behavior of the system (i.e.,
how the system responds to events that it has scheduled for itself). Internal transitions are scheduled with
the time advance function.

The internal transition function is always immediately preceded by the output function. Consequently,
a model can only produce outputs by scheduling an event for itself. The value of the output is computed
using the current state of the model.

To complete our simulation of the convenience store, we need two other Atomic models. The first model
produce customers for the Clerk to serve. The customer arrival rate could be modeled using a random
variable with appropriate statistics, or it could be driven by a table of values such as the one used in the
previous example. In either case, we hope that the customer arrival process accurately reflects what happens
in a typical day at the convenience store. For this example, we will use a table to drive the customer arrival
process. Data for this table could come directly from observing customers at the store, or it might be
produced by a statistical model in another tool (e.g., a spreadsheet program).

We will use an Atomic model called a Generator to create customer arrival events. The input file format
is identical to that used in the previous example. The input file contains a line for each customer that arrives.
Each line has the customer arrival time first, followed by the customer service time. The Generator is an
input free Atomic model since all of its events are scripted in the input file. The Generator will need a
single output port, which we will call “arrive”, through which is can export arriving customers. The model
state is the list of Customers that will arrive at the store. Here is the header file for the Generator.

#include "adevs.h"

#include "Customer.h"

#include <list>

/**

* This class produces Customers according to the provided schedule.

*/

class Generator: public adevs::Atomic<IO_Type>

{

public:

/// Constructor.

Generator(const char* data_file);

/// Internal transition function.

void delta_int();

/// External transition function.

void delta_ext(double e, const adevs::Bag<IO_Type>& xb);

/// Confluent transition function.

void delta_conf(const adevs::Bag<IO_Type>& xb);

/// Output function.

9

void output_func(adevs::Bag<IO_Type>& yb);

/// Time advance function.

double ta();

/// Output value garbage collection.

void gc_output(adevs::Bag<IO_Type>& g);

/// Destructor.

~Generator();

/// Model output port.

static const int arrive;

private:

/// List of arriving customers.

std::list<Customer*> arrivals;

};

The dynamic behavior of this model is very simple. The constructor opens the file containing the customer
data and uses it to create a list of Customer objects. The inter-arrival times of the customers are stored
in their tenter fields. Here is the constuctor that initializes the model.

// Assign a locally unique number to the arrival port

const int Generator::arrive = 0;

Generator::Generator(const char* sched_file):

Atomic<IO_Type>()

{

// Open the file containing the schedule

fstream input_strm(sched_file);

// Store the arrivals in a list

double next_arrival_time = 0.0;

double last_arrival_time = 0.0;

while (true)

{

Customer* customer = new Customer;

input_strm >> next_arrival_time >> customer->twait;

// Check for end of file

if (input_strm.eof())

{

delete customer;

break;

}

// The entry time holds the inter arrival times, not the

// absolute entry time.

customer->tenter = next_arrival_time-last_arrival_time;

// Put the customer at the back of the line

arrivals.push_back(customer);

last_arrival_time = next_arrival_time;

}

}

Because the generator is input free, the external transition function is empty. Similarly, the confluent
transition function merely calls the internal transition function.

void Generator::delta_ext(double e, const Bag<IO_Type>& xb)

{

10

/// The generator is input free, and so it ignores external events.

}

void Generator::delta_conf(const Bag<IO_Type>& xb)

{

/// The generator is input free, and so it ignores input.

delta_int();

}

The effect of an internal event (i.e., an event scheduled for the generator by itself) is to first place the
arriving Customer onto the Generator’s “arrive” output port. This is done by the output function.

void Generator::output_func(Bag<IO_Type>& yb)

{

// First customer in the list is produced as output

IO_Type output(arrive,arrivals.front());

yb.insert(output);

}

After the generator has produced this output event, its internal transition function removes the newly arrived
customer from the arrival list.

void Generator::delta_int()

{

// Remove the first customer. Because it was used as the

// output object, it will be deleted during the gc_output()

// method call at the end of the simulation cycle.

arrivals.pop_front();

}

Internal events are scheduled with the time advance function. The Generator’s time advance function
returns the time remaining until the next Customer arrives at the store. Remember that the tarrival field
contains Customer’s the inter-arrival times, not the absolute arrival times.

double Generator::ta()

{

// If there are not more customers, next event time is infinity

if (arrivals.empty()) return DBL_MAX;

// Otherwise, wait until the next arrival

return arrivals.front()->tenter;

}

To conduct the simulation experiment, the Generator output is coupled to the Clerk input. By
doing this, Customer objects apprearing on the Generator’s “arrive” output port cause a corresponding
appearance of a Customer on the Clerk’s “arrive” input port. This input event, in turn, causes the Clerk’s
external transition function to be activated. The relationship between input and output events can be best
understood by viewing the whole model as two distinct components, the Generator and the Clerk, that
are connected via their input and output ports. This view of the model is depicted in Figure 2.2.

Figure 2.2: The combined Generator and Clerk model.

11

As Figure 2.2 suggests, output events produced by the Generator on its “arrive” port, via the output
function, will appear as input events on the Clerk’s “arrive” port when the Clerk’s external transition
function is evaluated. The component models and their interconnections constitute a coupled (or network)
model. To create the coupled model depicted above, we need to create an instance of a Digraph model that
has the Generator and Clerk as component models. Shown below is the code snippet that creates this two
component model.

int main(int argc, char** argv)

{

...

// Create a digraph model whose components use PortValue<Customer*>

// objects as input and output objects.

adevs::Digraph<Customer*> store;

// Create and add the component models

Clerk* clrk = new Clerk();

Generator* genr = new Generator(argv[1]);

store.add(clrk);

store.add(genr);

// Couple the components

store.couple(genr,genr->arrive,clrk,clrk->arrive);

...

This code snippet first creates the components models and then adds them to the Digraph. Next, the
components are interconnected by coupling the “arrive” output port of the Generator to the “arrive” input
port of the Clerk.

Having created a coupled model which represents the store, all that remains is to perform the simulation.
Here is the code necessary to simulate our model.

adevs::Simulator<IO_Type> sim(&store);

while (sim.nextEventTime() < DBL_MAX)

{

sim.execNextEvent();

}

Putting this all of this together gives the main routine for the simulation program that will generate the
execution traces that are shown in the above examples.

#include "Clerk.h"

#include "Generator.h"

#include "Observer.h"

#include <iostream>

using namespace std;

int main(int argc, char** argv)

{

if (argc != 3)

{

cout << "Need input and output files!" << endl;

return 1;

}

// Create a digraph model whose components use PortValue<Customer*>

// objects as input and output objects.

adevs::Digraph<Customer*> store;

// Create and add the component models

12

Clerk* clrk = new Clerk();

Generator* genr = new Generator(argv[1]);

Observer* obsrv = new Observer(argv[2]);

store.add(clrk);

store.add(genr);

store.add(obsrv);

// Couple the components

store.couple(genr,genr->arrive,clrk,clrk->arrive);

store.couple(clrk,clrk->depart,obsrv,obsrv->departed);

// Create a simulator and run until its done

adevs::Simulator<IO_Type> sim(&store);

while (sim.nextEventTime() < DBL_MAX)

{

sim.execNextEvent();

}

// Done, component models are deleted when the Digraph is

// deleted.

return 0;

}

We have completed our first Adevs simulation program! However, a few details have been glossed over.
The first question, an essential one for a programming language without garbage collection, is what happens
to the objects that we created in the Generator and Clerk output functions?

The answer is that each model has a garbage collection method that is called at the end of every simulation
cycle. The argument to the garbage collection method is the bag of objects created as output in the current
simulation cycle. In our store example, the Atomic models simply delete the customer pointed to by each
PortValue object in the garbage list. The implementation of the garbage collection method is shown below.
This listing is for the Generator model; the Clerk’s gc output() method is identical.

void Generator::gc_output(Bag<IO_Type>& g)

{

// Delete the customer that was produced as output

Bag<IO_Type>::iterator i;

for (i = g.begin(); i != g.end(); i++)

{

delete (*i).value;

}

}

A second issue that has been overlooked is how to collect the statistics that were our original objective.
One approach is to modify the Clerk so that it writes waiting times to a file as Customers are processed.
While this could work, it has the unfortunate effect of cluttering up the Clerk with experiment specific code.

A better approach is to have an Observer that is coupled to the Clerk’s “depart” output port. The
Observer can record the desired statistics as it receives Customers on its “depart” input port. The
advantage of this approach is that we can modify the Clerk model to perform the same experiment on
different queueing strategies (e.g., we could add a priority to each customer and have the clerk process
customers with a high priority first) without changing the experimental setup (i.e., customer generation and
data collection). We can also change the experiment (i.e., customer generation and data collection) without
changing the clerk.

Below is a listing of the Observer class. The model is driven solely by external events. The effect of an
external event is simply to have the model record the time that the Customer departed the Clerk’s queue
(i.e., the current simulation time) and the amount of time that the Customer waited in line. Here is the
Observer header file.

13

#include "adevs.h"

#include "Customer.h"

#include <fstream>

/**

* The Observer records performance statistics for a Clerk model

* based on its observable output.

*/

class Observer: public adevs::Atomic<IO_Type>

{

public:

/// Input port for receiving customers that leave the store.

static const int departed;

/// Constructor. Results are written to the specified file.

Observer(const char* results_file);

/// Internal transition function.

void delta_int();

/// External transition function.

void delta_ext(double e, const adevs::Bag<IO_Type>& xb);

/// Confluent transition function.

void delta_conf(const adevs::Bag<IO_Type>& xb);

/// Time advance function.

double ta();

/// Output function.

void output_func(adevs::Bag<IO_Type>& yb);

/// Output value garbage collection.

void gc_output(adevs::Bag<IO_Type>& g);

/// Destructor.

~Observer();

private:

/// File for storing information about departing customers.

std::ofstream output_strm;

};

Below is the Observer source file.

#include "Observer.h"

using namespace std;

using namespace adevs;

// Assign a locally unique number to the input port

const int Observer::departed = 0;

Observer::Observer(const char* output_file):

Atomic<IO_Type>(),

output_strm(output_file)

{

// Write a header describing the data fields

output_strm << "# Col 1: Time customer enters the line" << endl;

output_strm << "# Col 2: Time required for customer checkout" << endl;

output_strm << "# Col 3: Time customer leaves the store" << endl;

output_strm << "# Col 4: Time spent waiting in line" << endl;

}

14

double Observer::ta()

{

// The Observer has no autonomous behavior, so its next event

// time is always infinity.

return DBL_MAX;

}

void Observer::delta_int()

{

// The Observer has no autonomous behavior, so do nothing

}

void Observer::delta_ext(double e, const Bag<IO_Type>& xb)

{

// Record the times at which the customer left the line and the

// time spent in it.

Bag<IO_Type>::const_iterator i;

for (i = xb.begin(); i != xb.end(); i++)

{

const Customer* c = (*i).value;

// Compute the time spent waiting in line

double waiting_time = (c->tleave-c->tenter)-c->twait;

// Dump stats to a file

output_strm << c->tenter << " " << c->twait << " " << c->tleave << " " << waiting_time << endl;

}

}

void Observer::delta_conf(const Bag<IO_Type>& xb)

{

// The Observer has no autonomous behavior, so do nothing

}

void Observer::output_func(Bag<IO_Type>& yb)

{

// The Observer produces no output, so do nothing

}

void Observer::gc_output(Bag<IO_Type>& g)

{

// The Observer produces no output, so do nothing

}

Observer::~Observer()

{

// Close the statistics file

output_strm.close();

}

This model is coupled to the Clerk’s “depart” output port in the same manner as before. The resulting
coupled model is illustrated in Figure 2.3; now we have three components instead of just two.

Given the customer arrival data in Table 2.1, the corresponding customer depature and waiting times
are shown in Table 2.2. Given this output, we could use a spreadsheet or some other suitable software to

15

Figure 2.3: The Generator, Clerk, and Observer model.

Time that the customer leaves the store Time spent waiting in line
2 0
6 0
10 3
12 5
22 5
42 14
44 32
45 33

Table 2.2: Customer departure times and wait times.

find the maximum and average customer wait times.
Again, notice that the customer depature times correspond exactly with the production of customer

depature events by the Clerk model. These customer depature events are delivered to the Observer via
the Clerk to Observer coupling shown in Figure 2.3. Each entry in Table 2.2 is the result of executing the
Observer’s external transition function. Also notice that the Observer’s internal and confluent transition
functions will never be executed. This is because the Observer’s ta() method always returns infinity.

This section has demonstrated the most common parts of a simulation program that is built with Adevs.
The remainder of the manual covers Atomic and Network models in greater detail, demonstrates the
construction of variable structure models, and shows how continuous models can be added to your discrete
event simulation.

16

Chapter 3

Atomic Models

Atomic models are the basic building blocks of a DEVS model. The behavior of an atomic model is described
by its state transition functions (internal, external, and confluent), its output function, and its time advance
function. Within Adevs, these aspects of an atomic model are implemented by sub-classing the Atomic
class and implementing the pure virtual methods that correspond to the internal, external, confluent, output,
and time advance functions.

The state of an atomic model is represented by the attributes of the class that implements the model.
The internal transition function describes how the state evolves in the absence of input. The time advance
function is used to schedule internal changes of state, and the output function gives the model output when
these internal events occur. The external transition function describes how the system state changes in
response to input. The confluent transition function handles the simultaneous occurrence of an internal and
external event. The types of objects that can be accepted as input and output are specified with a template
argument to the Atomic base class.

The Clerk described in Section 2 demonstrates all of the aspects of an Atomic model. We’ll use it to
demonstrate how an every Atomic model generates output, processes input events, and schedules self-events.
Here is the Clerk’s class definition:

include "adevs.h"

#include "Customer.h"

#include <list>

class Clerk: public adevs::Atomic<IO_Type>

{

public:

/// Constructor.

Clerk();

/// Internal transition function.

void delta_int();

/// External transition function.

void delta_ext(double e, const adevs::Bag<IO_Type>& xb);

/// Confluent transition function.

void delta_conf(const adevs::Bag<IO_Type>& xb);

/// Output function.

void output_func(adevs::Bag<IO_Type>& yb);

/// Time advance function.

double ta();

/// Output value garbage collection.

void gc_output(adevs::Bag<IO_Type>& g);

/// Destructor.

17

~Clerk();

/// Model input port.

static const int arrive;

/// Model output port.

static const int depart;

private:

/// The clerk’s clock

double t;

/// List of waiting customers.

std::list<Customer*> line;

/// Time spent so far on the customer at the front of the line

double t_spent;

};

and here its implementation

#include "Clerk.h"

#include <iostream>

using namespace std;

using namespace adevs;

// Assign locally unique identifiers to the ports

const int Clerk::arrive = 0;

const int Clerk::depart = 1;

Clerk::Clerk():

Atomic<IO_Type>(), // Initialize the parent Atomic model

t(0.0), // Set the clock to zero

t_spent(0.0) // No time spent on a customer so far

{

}

void Clerk::delta_ext(double e, const Bag<IO_Type>& xb)

{

// Print a notice of the external transition

cout << "Clerk: Computed the external transition function at t = " << t+e << endl;

// Update the clock

t += e;

// Update the time spent on the customer at the front of the line

if (!line.empty())

{

t_spent += e;

}

// Add the new customers to the back of the line.

Bag<IO_Type>::const_iterator i = xb.begin();

for (; i != xb.end(); i++)

{

// Copy the incoming Customer and place it at the back of the line.

line.push_back(new Customer(*((*i).value)));

// Record the time at which the customer entered the line.

line.back()->tenter = t;

}

18

// Summarize the model state

cout << "Clerk: There are " << line.size() << " customers waiting." << endl;

cout << "Clerk: The next customer will leave at t = " << t+ta() << "." << endl;

}

void Clerk::delta_int()

{

// Print a notice of the internal transition

cout << "Clerk: Computed the internal transition function at t = " << t+ta() << endl;

// Update the clock

t += ta();

// Reset the spent time

t_spent = 0.0;

// Remove the departing customer from the front of the line.

line.pop_front();

// Summarize the model state

cout << "Clerk: There are " << line.size() << " customers waiting." << endl;

cout << "Clerk: The next customer will leave at t = " << t+ta() << "." << endl;

}

void Clerk::delta_conf(const Bag<IO_Type>& xb)

{

delta_int();

delta_ext(0.0,xb);

}

void Clerk::output_func(Bag<IO_Type>& yb)

{

// Get the departing customer

Customer* leaving = line.front();

// Set the departure time

leaving->tleave = t + ta();

// Eject the customer

IO_Type y(depart,leaving);

yb.insert(y);

// Print a notice of the departure

cout << "Clerk: Computed the output function at t = " << t+ta() << endl;

cout << "Clerk: A customer just departed!" << endl;

}

double Clerk::ta()

{

// If the list is empty, then next event is at inf

if (line.empty()) return DBL_MAX;

// Otherwise, return the time remaining to process the current customer

return line.front()->twait-t_spent;

}

void Clerk::gc_output(Bag<IO_Type>& g)

{

// Delete the outgoing customer objects

Bag<IO_Type>::iterator i;

19

Enter checkout line Time to process order
1 1
2 4
3 4
5 2
7 10
8 20
10 2
11 1

Table 3.1: Customer arrival times and time to process customer orders.

for (i = g.begin(); i != g.end(); i++)

{

delete (*i).value;

}

}

Clerk::~Clerk()

{

// Delete anything remaining in the customer queue

list<Customer*>::iterator i;

for (i = line.begin(); i != line.end(); i++)

{

delete *i;

}

}

Consider a simulation of the store with the same sequence of customer arrivals that were used in Section
2 (i.e., listed in Table 2.1); I’ve listed the data again here:

Table 3.1 describes an input sequence that is fed to the Clerk model. The algorithm for processing this,
or any other, input sequence is listed below. The Atomic model that is being simulated is called ‘model’,
t is the current simulation time (i.e., the last event time), and t input is the time stamp of the smallest
unprocessed event in the input sequence.

1. Set the next event time tN to the smaller of the next internal event time t self = t + model.ta() and
the next input event time t input.

2. If t self = tN and t input ¡ tN then produce an output event at time t self by calling model.output func()
and then compute the next state by calling model.delta int().

3. If t self = t input = tN then produce an output event at time t self by calling model.output func() and
compute the next state by calling model.delta conf(x) where x contains the input events scheduled at
time t input.

4. If t self ¡ tN and t input = tN then compute the next state by calling model.delta ext(t input-t,x),
where x contains the input events schedule at time t input.

5. Set t equal to tN.

6. Repeat if there are more input or self events to process.

The simulation runs until there are no internal or external events to process. The first step of the
algorithm computes the next event time by taking the smaller of the next input event time and the next

20

self event time. If the next self event happens first, then the model produces an output and its next state
is computed with the internal transition function. If the next input event happens first, then the next state
of the model is computed with the external transition function; no output event is produces in this case.
The elapsed time argument to the external transition function is the amount of time that has passed since
the previous event at that model. If the next input and self event happen at the same time, then the
model produces an output and the next model state is computed with the confluent transition function. The
simulation clock is then advanced to the event time and these steps are repeated.

The execution trace resulting from the customer arrival sequence in Table 3.1 is shown below. It has
been broken up to show where each simulation cycle begins and ends and the type of event occurring in each
cycle.

-External event--

Clerk: Computed the external transition function at t = 1

Clerk: There are 1 customers waiting.

Clerk: The next customer will leave at t = 2.

-Confluent event--

Clerk: Computed the output function at t = 2

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 2

Clerk: There are 0 customers waiting.

Clerk: The next customer will leave at t = 1.79769e+308.

Clerk: Computed the external transition function at t = 2

Clerk: There are 1 customers waiting.

Clerk: The next customer will leave at t = 6.

-External event--

Clerk: Computed the external transition function at t = 3

Clerk: There are 2 customers waiting.

Clerk: The next customer will leave at t = 6.

-External event--

Clerk: Computed the external transition function at t = 5

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 6.

-Internal event--

Clerk: Computed the output function at t = 6

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 6

Clerk: There are 2 customers waiting.

Clerk: The next customer will leave at t = 10.

-External event--

Clerk: Computed the external transition function at t = 7

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 10.

-External event--

Clerk: Computed the external transition function at t = 8

Clerk: There are 4 customers waiting.

Clerk: The next customer will leave at t = 10.

-Confluent event--

Clerk: Computed the output function at t = 10

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 10

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 12.

21

Clerk: Computed the external transition function at t = 10

Clerk: There are 4 customers waiting.

Clerk: The next customer will leave at t = 12.

-External event--

Clerk: Computed the external transition function at t = 11

Clerk: There are 5 customers waiting.

Clerk: The next customer will leave at t = 12.

-Internal event--

Clerk: Computed the output function at t = 12

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 12

Clerk: There are 4 customers waiting.

Clerk: The next customer will leave at t = 22.

-Internal event--

Clerk: Computed the output function at t = 22

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 22

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 42.

-Internal Event--

Clerk: Computed the output function at t = 42

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 42

Clerk: There are 2 customers waiting.

Clerk: The next customer will leave at t = 44.

-Internal event--

Clerk: Computed the output function at t = 44

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 44

Clerk: There are 1 customers waiting.

Clerk: The next customer will leave at t = 45.

-Internal event--

Clerk: Computed the output function at t = 45

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 45

Clerk: There are 0 customers waiting.

Clerk: The next customer will leave at t = 1.79769e+308.

Now let’s define a more complicated clerk model that will interrupt the checkout of one customer in order
to more quickly serve customers with very small orders. This new clerk operates as follows. If a customer is
being served and another customer arrives whose order can be processed very quickly, then the clerk stops
serving the current customer and begins serving the new customer. The clerk, however, will only do this
occasionally. To be precise, let’s say that a small order is one that requires no more than a single unit of
time to process. Moreover, the clerk will not interrupt the processing of an order more often than every 10
units of time.

The new clerk model has two state variables. The first state variable records the amount of time that
must elapsed before the clerk is willing to preempt the processing of one customer to serve a customer with
a small order. The second is the list of customers waiting to be served. Here is the header file for the new
clerk model, which we will call Clerk2.

#include "adevs.h"

#include "Customer.h"

#include <list>

22

class Clerk2: public adevs::Atomic<IO_Type>

{

public:

/// Constructor.

Clerk2();

/// Internal transition function.

void delta_int();

/// External transition function.

void delta_ext(double e, const adevs::Bag<IO_Type>& xb);

/// Confluent transition function.

void delta_conf(const adevs::Bag<IO_Type>& xb);

/// Time advance function.

double ta();

/// Output function.

void output_func(adevs::Bag<IO_Type>& yb);

/// Output value garbage collection.

void gc_output(adevs::Bag<IO_Type>& g);

/// Destructor.

~Clerk2();

/// Model input port.

static const int arrive;

/// Model output port.

static const int depart;

private:

/// Structure for storing information about customers in the line

struct customer_info_t

{

// The customer

Customer* customer;

// Time remaining to process the customer order

double t_left;

};

/// List of waiting customers.

std::list<customer_info_t> line;

//// Time before we can preempt another customer

double preempt;

/// The clerk’s clock

double t;

/// Threshold correspond to a ’small’ order processing time

static const double SMALL_ORDER;

/// Minimum time between preemptions.

static const double PREEMPT_TIME;

};

The Clerk2 constructor sets the clerk’s clock and preemption timer to zero.

Clerk2::Clerk2():

Atomic<IO_Type>(),

preempt(0.0),

t(0.0)

{

}

23

The output function of the Clerk2 model sets the exit time of the departing customer and then ejects the
customer via its “depart” port.

void Clerk2::output_func(Bag<IO_Type>& yb)

{

/// Set the exit time of the departing customer

line.front().customer->tleave = t+ta();

/// Place the customer at the front of the line onto the depart port.

IO_Type y(depart,line.front().customer);

yb.insert(y);

// Report the departure

cout << "Clerk: A customer departed at t = " << t+ta() << endl;

}

The Clerk2’s external transition function is significantly different its predecessor. When a new customer
arrives, the first thing that the clerk does is reduce the checkout time of the customer that is currently
being processed. This reduction reflects the amount of time that has already been spent on the customer’s
order, which is the time elapsed since the Clerk2’s last state transition. Next, the preemption wait time
is reduced and the clock is incremented by the same amount. The Clerk2 records the time at which each
arriving customer enters the line; this time is the value of the clock. If any of the arriving customers has a
small checkout time and the preemption wait time has expired, then that customer goes to the front of the
line. Notice that this preempts the current customer, who now has the second place in line, and causes the
preempt wait time to be reset. Otherwise, the new customer simply goes to the back of the line.

void Clerk2::delta_ext(double e, const Bag<IO_Type>& xb)

{

/// Update the clock

t += e;

/// Update the time spent working on the current order

if (!line.empty())

{

line.front().t_left -= e;

}

/// Reduce the preempt time

preempt -= e;

/// Place new customers into the line

Bag<IO_Type>::const_iterator iter = xb.begin();

for (; iter != xb.end(); iter++)

{

cout << "Clerk: A new customer arrived at t = " << t << endl;

/// Create a copy of the incoming customer and set the entry time

customer_info_t c;

c.customer = new Customer(*((*iter).value));

c.t_left = c.customer->twait;

/// Record the time at which the customer enters the line

c.customer->tenter = t;

/// If the customer has a small order

if (preempt <= 0.0 && c.t_left <= SMALL_ORDER)

{

cout << "Clerk: The new customer has preempted the current one!" << endl;

/// We won’t preempt another customer for at least this long

preempt = PREEMPT_TIME;

/// Put the new customer at the front of the line

24

line.push_front(c);

}

/// otherwise just put the customer at the end of the line

else

{

cout << "Clerk: The new customer is at the back of the line" << endl;

line.push_back(c);

}

}

}

The internal transition function is similar, in many respects, to the external transition function. It begins
by decrementing the preempt wait time and incrementing the clock by the amount of time that has elapsed
since the last state transition. The customer that just departed the store via the output function is then
removed from the front of the queue. If the line is empty then there is nothing else to do and the clerk sits
idly behind her counter. If the preemption wait time has expired then the clerk scans the line for the first
customer with a small order. If such a customer can be found, that customer moves to the front of the line.
Finally, the clerk starts ringing up the first customer in her line. Here is the internal transition function for
the Clerk2 model.

void Clerk2::delta_int()

{

// Update the clerk’s clock

t += ta();

// Update the preemption timer

preempt -= ta();

// Remove the departing customer from the front of the line.

// The departing customer will be deleted later by our garbage

// collection method.

line.pop_front();

// Check to see if any customers are waiting.

if (line.empty())

{

cout << "Clerk: The line is empty at t = " << t << endl;

return;

}

// If the preemption time has passed, then look for a small

// order that can be promoted to the front of the line.

list<customer_info_t>::iterator i;

for (i = line.begin(); i != line.end() && preempt <= 0.0; i++)

{

if ((*i).t_left <= SMALL_ORDER)

{

cout << "Clerk: A queued customer has a small order at time " << t << endl;

customer_info_t small_order = *i;

line.erase(i);

line.push_front(small_order);

preempt = PREEMPT_TIME;

break;

}

}

}

The time advance function returns the time remaining to process the customer that is at the front of the

25

line, or infinity (DBL MAX) if there are no customers to process.

double Clerk2::ta()

{

// If the line is empty, then there is nothing to do

if (line.empty()) return DBL_MAX;

// Otherwise, wait until the first customer will leave

else return line.front().t_left;

}

The last function to implement is the confluent transition function. The Clerk2 model has the same
confluent transition as the Clerk that is described in section 2:

void Clerk2::delta_conf(const Bag<IO_Type>& xb)

{

delta_int();

delta_ext(0.0,xb);

}

The behavior of the Clerk2 model is significantly more complex than that of the Clerk model. To
exercise the Clerk2, we replace the Clerk model in the example from section 2 the Clerk2 model and
perform the same experiment. Here is the execution output trace for the Clerk2 model in response to the
input sequence shown in Table 3.1. This trace was generated by the print statements shown in the source
code listings for the Clerk2 model.

Clerk: A new customer arrived at t = 1

Clerk: The new customer has preempted the current one!

Clerk: A customer departed at t = 2

Clerk: The line is empty at t = 2

Clerk: A new customer arrived at t = 2

Clerk: The new customer is at the back of the line

Clerk: A new customer arrived at t = 3

Clerk: The new customer is at the back of the line

Clerk: A new customer arrived at t = 5

Clerk: The new customer is at the back of the line

Clerk: A customer departed at t = 6

Clerk: A new customer arrived at t = 7

Clerk: The new customer is at the back of the line

Clerk: A new customer arrived at t = 8

Clerk: The new customer is at the back of the line

Clerk: A customer departed at t = 10

Clerk: A new customer arrived at t = 10

Clerk: The new customer is at the back of the line

Clerk: A new customer arrived at t = 11

Clerk: The new customer has preempted the current one!

Clerk: A customer departed at t = 12

Clerk: A customer departed at t = 13

Clerk: A customer departed at t = 23

Clerk: A customer departed at t = 43

Clerk: A customer departed at t = 45

Clerk: The line is empty at t = 45

The evolution of the Clerk2 line is depicted in Fig. 3.1. Until time 11, the line evolves just as it did
with the Clerk model. At time 11, the Clerk2 changes the course of the simulation by moving a customer
with a small order to the front of the line.

26

Figure 3.1: The evolution of the Clerk2 line in response to the customer arrival sequence listed in Table
3.1. 27

28

Chapter 4

Network Models

A network model is a set of atomic models and other network models that are interconnected. Network
models are used to model large systems that have many interacting parts. Because network models can be
components of other network models, it is possible to build models of very large multi-level systems in an
organized fashion.

Unlike atomic models, network models do not directly define new dynamic behavior. The dynamics of
a network model are determined by the dynamics of its component parts and their interactions. Atomic
models define basic dynamic behavior and network models define structure. Separating a model into dynamic
behavior and structure greatly aids the task of simulating large systems with many kinds of interacting parts.

4.1 Parts of a Network Model

Adevs network models are derived from the abstract Network class. This class has two abstract methods:
route and getComponents. The route method implements connections between the components of the
Network model and between the input/output interface of the Network model and its components. The
getComponents method provides a list of components that constitute the Network model.

The route method is the real workhorse of any Network model. It describes three things. The first
is how components of the Network model are connected to each other. The second is how input to the
Network model is converted into input for the component models. The third is how output from the
component models become output from the Network model.

The signature of the route method is

void route(const X& value, Devs<X>* model, Bag<Event<X> >& r)

where the value argument is the event being routed, the model argument is the Network or Atomic model
that originated the event, and the r argument is a bag to be filled with the event targets. Each target is
described by an Event object that has the target model and the value to be delivered to it. The simulator
uses the route method to convert output events produced by Atomic models to, ultimately, input events for
other Atomic models. This conversion is done by a somewhat indirect process in which the route method
plays a central role.

An example is the easiest way to understand how the simulator uses the route method. The simplest
example is converting the output from one Atomic component of the Network into an input for another
Atomic component in the same Network. Figure 4.1 illustrates this case.

The simulator begins by invoking the output func method of Atomic model A. Next, the simulator
iterates through the elements of A’s output bag and calls the Network’s route method for each one. The
arguments passed to route at each call are

1. the output object itself, which becomes the value argument,

29

Figure 4.1: Two connected Atomic components in a single Network.

2. a pointer to A, which is the model argument, and

3. an empty Bag.

Two things must be done by the route method for Atomic model B to receive the output object. An Event
object must be created that contains the output object and a pointer to B and then the Event object must
be inserted into the Bag r. If we suppose, for the sake of illustration, that input and output objects have
type int, then the route method is

void route(const int& value, Devs<int>* model, Bag<Event<int> >& r) {

if (model == A) {

Event<int> e(B,value);

r.insert(e);

}

}

where A and B are pointers to the respective components. This route method implements the network
shown in Fig. 4.1.

It is also possible for the Network model itself to receive input. This can happen when the network is a
component in another Network model. Suppose that input to our example Network model becomes input
to Atomic model A. Figure 4.2 extends Fig. 4.1 to include this connection.

Figure 4.2: Two connected Atomic components with external input coupling to component A.

When an event appears at the input of the network, the simulator calls the Network’s route method
with the following arguments:

1. the input object itself, which becomes the value argument,

2. a pointer to the Network that is receiving the event, and

3. an empty Bag.

As before, the route method must create an Event object that indicates the receiving model and the event
value. This Event is put into the Bag r. The code below implements the network shown in Fig. 4.2; the
C++ this pointer points to the Network itself.

30

void route(const int& value, Devs<int>* model, Bag<Event<int> >& r) {

if (model == A) {

Event<int> e(B,value);

r.insert(e);

}

else if (model == this) {

Event<int> e(A,value);

r.insert(e);

}

}

Figure 4.3: A two component network model with external input, external output, and internal coupling.

To complete the example, let’s extend the network shown in Fig. 4.2 to include two more connections:
a connection from the output of model B to the output of the network and a feedback connection from B

to A. This configuration is shown in Fig. 4.3. The only new part of the route method is that output from
model B requires creating an Event whose target is the Network itself. This event will become output
from the Network itself. Here is the implementation.

void route(const int& value, Devs<int>* model, Bag<Event<int> >& r) {

if (model == A) {

Event<int> e(B,value);

r.insert(e);

}

else if (model == this) {

Event<int> e(A,value);

r.insert(e);

}

else if (model == B) {

Event<int> e1(this,value);

Event<int> e2(A,value);

r.insert(e1);

r.insert(e2);

}

}

The getComponents method is the only other method that must be implemented by a Network
subclass. The simulator passes to this method an empty Set of model pointers which must be filled with
pointers to the network’s components. The getComponents method signature is

void getComponents(Set<Devs<X>*>& c)

where c is the set to be filled. There isn’t much else to say about this method. The code below shows how
it is implemented for the two component network shown in Fig. 4.3; this code, of course, also works for the
networks shown in Figs. 4.2 and 4.1.

31

void getComponents(Set<Devs<int>*>& c) {

c.insert(A);

c.insert(B);

}

There are just three other items to mention in relation to Network models. First, components should
not be connected to themselves. This means that direct feedback loops and direct throughs in a network
model must be avoided. These two cases are illustrated in Fig. 4.4. Second, direct coupling can only occur
between components belonging to the same network, and every component must belong to, at most, one
network. Third, you’ll notice that it is possible for the route method to modify the value of an output
before sending it along. This is permitted and can be useful in some cases.

Figure 4.4: Illegal coupling in a Network model.

4.2 Simulating a Network Model

Each iteration of a network model simulation has four phases: advance the simulation clock to the next
event time, compute model output events and convert the output events to input events, calculate the next
state of each model with events to process, and cleanup garbage events. These four phase are repeated until
the next event time is at infinity (i.e., DBL MAX) or you decide to stop the simulation.

Conveniently, there are no special rules for simulating networks of network models. The simulator
considers the entire collection of atomic models when determining the next event time, output events from
atomic models are recursively routed to atomic destinations, and state transitions and garbage collection
are performed over the complete set of active atomic components. Hierarchies of network models are a
convenient organizing tool for the modeler, but the simulator ultimately treats a multi-level network as a
flat structure.

Algorithm 1 is a sketch of the network model simulation procedure. The atomic model simulation
algorithm from section 3 is embedded in the network simulation algorithm. The rules for atomic models do
not change in any way; each atomic model sees a sequence of input events and produces a sequence of output
events just as before. The only difference here is that the input events are created by other atomic models,
and so the input sequence for each atomic model is constructed as the simulation progresses.

4.3 Building a Network Model

Network models are derived from the abstract Network class. Every network model must implement the
two methods described above: getComponents and route. Usually, member variables for storing the
network structure and methods for initializing the structure are also needed.

I’ll use the Adevs SimpleDigraph class to illustrate the construction process. The SimpleDigraph
models a network of components whose connections are represented with a directed graph. If, for example,
component A is connected to component B, then all output events generated by A become input events to

32

Algorithm 1 The simulation procedure for a network model.

Initialize the state of every Atomic model
Set the last event time tl,i of every Atomic model i to 0
Set the simulation time t to 0
while The smallest Atomic model next event time < DBL MAX do

Set t to the smallest Atomic model next event time
Find the set of Atomic models whose next event time is equal to t. These are the imminent models.
Get the output of each imminent model by calling its output func
Convert imminent model output to input using the Network model route method (do this recursively
if the model has more than one level)
for each Atomic model i that is imminent or has input do

if i is an imminent model and it does not have input then
Compute the next model state with delta int()

else if i is an imminent and it has input then
Compute the next model state with delta conf(xb), where xb is the model input

else if i is not an imminent model and it has input then
Compute the next model state with delta ext(t− tl,i,xb), where xb is the model input

end if
Set tl,i to t

end for
end while

B. The SimpleDigraph has two methods for building a network. The add method takes an Atomic or
Network model and adds it to the component set. The couple method accepts a pair of component models
and connects the output of the first to the input of the second. Below is the class definition for the model;
note that is has a template parameter for setting the input/output type. The Network, Devs, Bag, and
Set are in the adevs namespace, and adevs:: must precede them unless the SimpleDigraph is in the adevs
namespace (which it is).

template <class VALUE> class SimpleDigraph: public Network<VALUE> {

public:

/// A component of the SimpleDigraph model

typedef Devs<VALUE> Component;

/// Construct a network with no components

SimpleDigraph():Network<VALUE>(){}

/// Add a model to the network.

void add(Component* model);

/// Couple the source model to the destination model

void couple(Component* src, Component* dst);

/// Assigns the model component set to c

void getComponents(Set<Component*>& c);

/// Use the coupling information to route an event

void route(const VALUE& x, Component* model, Bag<Event<VALUE> >& r);

/// The destructor destroys all of the component models

~SimpleDigraph();

private:

// Component model set

Set<Component*> models;

// Coupling information

33

std::map<Component*,Bag<Component*> > graph;

};

The SimpleDigraph has two member variables. Pointers to components of the network are stored in the
Set models. The components can be Atomic objects, Network objects, or both. The SimpleDigraph
components are the nodes of the directed graph. The links, or edges, are stored in the map graph.

The add method does three things. First, it checks that the network is not being added to itself; this is
illegal and would cause no end of trouble for the simulator. Next, it adds the component to its component set.
Last, the SimpleNetwork sets the component’s parent. The last step is needed so that the simulator can
climb up and down the model tree. If it is omitted then event routing is likely fail. Here is the implementation
of the add method.

template <class VALUE>

void SimpleDigraph<VALUE>::add(Component* model) {

assert(model != this);

models.insert(model);

model->setParent(this);

}

The couple method does two things, but one of them is somewhat superfluous. First, it adds the source
(src) and destination (dst) models to the component set. We could simply have required that the user call
the add method before using the couple method, but adding the components here doesn’t hurt and might
prevent a few headaches. The second step is essential; the method adds the src → dst link to the graph.
Notice that the SimpleDigraph itself is a node in the network (but it is not in the component set!). Com-
ponents that are connected to the network create network outputs. A network connection to a component
means that the component will receive network inputs. Here is the couple method implementation.

template <class VALUE>

void SimpleDigraph<VALUE>::couple(Component* src, Component* dst) {

if (src != this) add(src);

if (dst != this) add(dst);

graph[src].insert(dst);

}

Of the two required methods, route is the more complicated. The arguments to the method are an
input event, the network element (i.e., either the SimpleDigraph or one of its components) that is the
event source, and the Bag that must be filled with Event objects that indicate the event receivers. The
method begins by finding the collection of components that are connected to the event source. Next we
iterate through this collection and for each receiver add an Event to the event receiver Bag. When this is
done the method returns. The implementation is below.

template <class VALUE>

void SimpleDigraph<VALUE>::route(const VALUE& x, Component* model,Bag<Event<VALUE> >& r) {

// Find the list of target models and ports

typename std::map<Component*,Bag<Component*> >::iterator graph_iter;

graph_iter = graph.find(model);

// If no target, just return

if (graph_iter == graph.end()) return;

// Otherwise, add the targets to the event bag

Event<VALUE> event;

typename Bag<Component*>::iterator node_iter;

for (node_iter = (*graph_iter).second.begin();

node_iter != (*graph_iter).second.end(); node_iter++) {

event.model = *node_iter;

34

event.value = x;

r.insert(event);

}

}

The second required method, getComponents, is trivial. If we had used some collection other than
an Adevs Set to store the components, then the method would have needed to explicitly insert every
component model into the Set c. But because models and c are both Set objects, and the Set has an
assignment operator, a simple call to that operator is sufficient.

template <class VALUE>

void SimpleDigraph<VALUE>::getComponents(Set<Component*>& c) {

c = models;

}

The constructor and the destructor complete the class. The constructor implementation appears in the
class definition; it only calls the superclass constructor. The destructor deletes the component models. Its
implementation is shown below.

template <class VALUE>

SimpleDigraph<VALUE>::~SimpleDigraph() {

typename Set<Component*>::iterator i;

for (i = models.begin(); i != models.end(); i++) {

delete *i;

}

}

4.4 Digraph Models

This section introduces Digraph model as a tool for building block diagram, or directed graph, multi-
component models. The model of the convenience store, developed in section 2 , is our first example of a
Digraph model. The code used to construct the convenience store model (without the Observer) is shown
below. The block diagram that corresponds to this code snippet is shown in Fig. 4.5.

// Create a digraph model whose components use PortValue<Customer*>

// objects as input and output objects.

adevs::Digraph<Customer*> store;

// Create and add the component models

Clerk* clrk = new Clerk();

Generator* genr = new Generator(argv[1]);

store.add(clrk);

store.add(genr);

// Couple the components

store.couple(genr,genr->arrive,clrk,clrk->arrive);

Figure 4.5: A Digraph model with two components.

35

The Digraph model is part of the Adevs simulation library. Models that are part of a Digraph must
use the adevs::PortValue objects as their input and output type. The Digraph class is a template class
with two template parameters. The first is the type of object that will be used as a value in a PortValue
object. The second parameter is the type of object that will be used as a port in the PortValue object.
The port parameter is of type ’int’ by default.

The Digraph class has two primary methods. The add() method is used to add component models to
the block diagram model. The couple() method is used to connect components of the Digraph model. The
first two arguments to the couple method are the source model and source port. The second two arguments
are the destination model and the destination port.

The effect of coupling a source model to a destination model is that output produced by the source
model on the source port appear as input to the destination model on the destination port. To illustrate
this, consider the output function of the Generator model shown in Fig. 4.5.

void Generator::output_func(Bag<IO_Type>& yb)

{

// First customer in the list is produced as output

IO_Type output(arrive,arrivals.front());

yb.insert(output);

}

This places an output value of type ¡Customer*¿ on the “arrive” output port of the Generator. A
corresponding PortValue object appears in the input bag of the Clerk. The value of this PortValue
object points to the Customer* object created by the Generator and the port is the Clerk’s “arrive”
port.

In addition to coupling Atomic models, the Digraph class can also have other Network models as
its components. Suppose that we want to model a convenience store that has two checkout clerks. When
customers are ready to pay their bill, they look for the line with the smallest number of people and enter
that line. We can reuse the Clerk, Generator, and Observer models that were introduced in section 2 to
build this new model.

The header and source code for the model of the customer’s line-selection process is shown below. The
model has two output ports, one for each line. There are three input ports. One of these accepts new
customers. The others are used to keep track of the number of customers in the each line. The state
transition and output functions are self explanatory. Here is the class definition

#include "adevs.h"

#include "Customer.h"

#include <list>

// Number of lines to consider.

#define NUM_LINES 2

class Decision: public adevs::Atomic<IO_Type>

{

public:

/// Constructor.

Decision();

/// Internal transition function.

void delta_int();

/// External transition function.

void delta_ext(double e, const adevs::Bag<IO_Type>& x);

/// Confluent transition function.

void delta_conf(const adevs::Bag<IO_Type>& x);

/// Output function.

36

void output_func(adevs::Bag<IO_Type>& y);

/// Time advance function.

double ta();

/// Output value garbage collection.

void gc_output(adevs::Bag<IO_Type>& g);

/// Destructor.

~Decision();

/// Input port that receives new customers

static const int decide;

/// Input ports that receive customers leaving the two lines

static const int departures[NUM_LINES];

/// Output ports that produce customers for the two lines

static const int arrive[NUM_LINES];

private:

/// Lengths of the two lines

int line_length[NUM_LINES];

/// List of deciding customers and their decision.

std::list<std::pair<int,Customer*> > deciding;

/// Delete all waiting customers and clear the list.

void clear_deciders();

/// Returns the arrive port associated with the shortest line

int find_shortest_line();

};

and here is the implementation

#include "Decision.h"

#include <iostream>

using namespace std;

using namespace adevs;

// Assign identifiers to ports. Assumes NUM_LINES = 2.

// The numbers are selected to allow indexing into the

// line length and port number arrays.

const int Decision::departures[NUM_LINES] = { 0, 1 };

const int Decision::arrive[NUM_LINES] = { 0, 1 };

// Inport port for arriving customer that need to make a decision

const int Decision::decide = NUM_LINES;

Decision::Decision():

Atomic<IO_Type>()

{

// Set the initial line lengths to zero

for (int i = 0; i < NUM_LINES; i++)

{

line_length[i] = 0;

}

}

void Decision::delta_int()

{

// Move out all of the deciders

37

deciding.clear();

}

void Decision::delta_ext(double e, const Bag<IO_Type>& x)

{

// Assign new arrivals to a line and update the line length

Bag<IO_Type>::const_iterator iter = x.begin();

for (; iter != x.end(); iter++)

{

if ((*iter).port == decide)

{

int line_choice = find_shortest_line();

Customer* customer = new Customer(*((*iter).value));

pair<int,Customer*> p(line_choice,customer);

deciding.push_back(p);

line_length[p.first]++;

}

}

// Decrement the length of lines that had customers leave

for (int i = 0; i < NUM_LINES; i++)

{

iter = x.begin();

for (; iter != x.end(); iter++)

{

if ((*iter).port < NUM_LINES)

{

line_length[(*iter).port]--;

}

}

}

}

void Decision::delta_conf(const Bag<IO_Type>& x)

{

delta_int();

delta_ext(0.0,x);

}

double Decision::ta()

{

// If there are customers getting into line, then produce output

// immediately.

if (!deciding.empty())

{

return 0.0;

}

// Otherwise, wait for another customer

else

{

return DBL_MAX;

}

}

38

void Decision::output_func(Bag<IO_Type>& y)

{

// Send all customers to their lines

list<pair<int,Customer*> >::iterator i = deciding.begin();

for (; i != deciding.end(); i++)

{

IO_Type event((*i).first,(*i).second);

y.insert(event);

}

}

void Decision::gc_output(Bag<IO_Type>& g)

{

Bag<IO_Type>::iterator iter = g.begin();

for (; iter != g.end(); iter++)

{

delete (*iter).value;

}

}

Decision::~Decision()

{

clear_deciders();

}

void Decision::clear_deciders()

{

list<pair<int,Customer*> >::iterator i = deciding.begin();

for (; i != deciding.end(); i++)

{

delete (*i).second;

}

deciding.clear();

}

int Decision::find_shortest_line()

{

int shortest = 0;

for (int i = 0; i < NUM_LINES; i++)

{

if (line_length[shortest] > line_length[i])

{

shortest = i;

}

}

return shortest;

}

The block diagram model of the store with multiple clerks is shown in Fig. 4.6. The external interface
for this block diagram model is identical to the previous clerk models (i.e., the Clerk and Clerk2 models),
and we can use the generator and observer models to conduct the same experiments as before. The external

39

“arrive” input of the multi-clerk model is connected to the “decide” input of the Decision model. The
“depart” output ports of each of the Clerk models is connected to the external “arrive” output port of the
multi-clerk model. The Decision model has two output ports, each one producing customers for a distinct
clerk. These output ports are coupled to the “arrive” port of the appropriate clerk model. The Clerk’s
“depart” output ports are then coupled to the appropriate “departure” port of the decision model.

Figure 4.6: Component models and their interconnections in the multi-clerk convenience store model.

The multi-clerk model is implemented by deriving a new class from the Digraph class. The constructor
of the new class creates and adds the component models and establishes their interconnections. Here is the
header file for the new multi-clerk model.

#include "adevs.h"

#include "Clerk.h"

#include "Decision.h"

/**

A model of a store with multiple clerks and a "shortest line"

decision process for customers.

*/

class MultiClerk: public adevs::Digraph<Customer*>

{

public:

// Model input port

static const int arrive;

// Model output port

static const int depart;

// Constructor.

MultiClerk();

// Destructor.

~MultiClerk();

};

And here is the source file

#include "MultiClerk.h"

using namespace std;

using namespace adevs;

// Assign identifiers to I/O ports

const int MultiClerk::arrive = 0;

const int MultiClerk::depart = 1;

40

MultiClerk::MultiClerk():

Digraph<Customer*>()

{

// Create and add component models

Decision* d = new Decision();

add(d);

Clerk* c[NUM_LINES];

for (int i = 0; i < NUM_LINES; i++)

{

c[i] = new Clerk();

add(c[i]);

}

// Create model connections

couple(this,this->arrive,d,d->decide);

for (int i = 0; i < NUM_LINES; i++)

{

couple(d,d->arrive[i],c[i],c[i]->arrive);

couple(c[i],c[i]->depart,d,d->departures[i]);

couple(c[i],c[i]->depart,this,this->depart);

}

}

MultiClerk::~MultiClerk()

{

}

Notice that the MultiClerk destructor does not delete the component models. This is because the com-
ponent models are adopted by the base class when they are added to the Digraph. Consequently, the
component models are deleted by the base class destructor, rather than the destructor of the derived class.

4.5 Cell Space Models

A cell space model is a collection of atomic and network models arrange in a regular grid and each model
communicates with some arrangement of its neighboring models. Conway’s Game of Life is a classic example
of a cell space model, and that model can be described very nicely as a discrete event system. The game
is played on a flat board that is divided into regular cells. Each cell has a neighborhood that consists of
the eight adjacent cells: above, below, left, right, and the four corners. A cell can be dead or alive, and the
switch from dead to alive and vice versa occurs according to two rules:

1. If a cell is alive and it has less than two or more than three living neighbors then the cell dies.

2. If a cell is dead and it has three three living neighbors then the cell is reborn.

Our implementation of the Game of Life has two parts: the atomic models that implement the individual
cells and the CellSpace model that contains the cells and routes their output events. The CellSpace is a
type of Network. The components of a CellSpace exchange CellEvent objects that have four fields: the
x, y, and z coordinates of the target cell and a value to deliver. The CellEvent class is a template class
whose template argument sets the value type. The size of the CellSpace is determined when the CellSpace
object is created, and it has methods for adding and retrieving cells by their location.

The Atomic components in our Game of Life implementation have two state variables: the dead or alive
status of the cell and the number of living neighbors. Two methods are implemented to test the death and
rebirth rules, and the cell sets its time advance to 1 whenever a rule is satisfied. The cell output is its new
dead or alive state. External events update the cell’s living neighbor count. In order to produce properly

41

targeted CellEvents, each cell also keeps track of its own location in the cell space. In the example code,
the cell space is rendered graphically using OpenGL, but I’ll omit that part. Here is the header file for our
Game of Life cell.

/// Possible cell phases

typedef enum { Dead, Alive } Phase;

/// IO type for a cell

typedef adevs::CellEvent<Phase> CellEvent;

/// A cell in the Game of Life.

class Cell: public adevs::Atomic<CellEvent> {

public:

/**

Create a cell and set the initial state.

The width and height fields are used to determine if a

cell is an edge cell. The last phase pointer is used to

visualize the cell space.

*/

Cell(long int x, long int y, long int width, long int height,

Phase phase, short int nalive, Phase* vis_phase = NULL);

... Required Adevs methods and destructor ...

private:

// location of the cell in the 2D space

long int x, y;

// dimensions of the 2D space

static long int w, h;

// Current cell phase

Phase phase;

// number of living neighbors.

short int nalive;

// Output variable for visualization

Phase* vis_phase;

// Returns true if the cell will be born

bool check_born_rule() const {

return (phase == Dead && nalive == 3);

}

// Return true if the cell will die

bool check_death_rule() const {

return (phase == Alive && (nalive < 2 || nalive > 3));

}

};

The template argument supplied to the base Atomic class is a CellEvent whose value field has the type
Phase. The check born rule method tests the rebirth condition and check death rule method tests
the death condition. The appropriate rule, as determined by the cell’s dead or alive status, is used in the
time advance, output, and internal transition methods. The number of living cells is updated by the cell’s
delta ext method whenever neighboring cells report a change in their health. Here are the Cell ’s method
implementations.

Cell::Cell(long int x, long int y, long int w, long int h,

42

Phase phase, short int nalive, Phase* vis_phase):

adevs::Atomic<CellEvent>(),x(x),y(y),phase(phase),nalive(nalive),vis_phase(vis_phase) {

// Set the global cellspace dimensions

Cell::w = w; Cell::h = h;

// Set the initial visualization value

if (vis_phase != NULL) *vis_phase = phase;

}

double Cell::ta() {

// If a phase change should occur then change state

if (check_death_rule() || check_born_rule()) return 1.0;

// Otherwise, do nothing

return DBL_MAX;

}

void Cell::delta_int() {

// Change the cell state if necessary

if (check_death_rule()) phase = Dead;

else if (check_born_rule()) phase = Alive;

}

void Cell::delta_ext(double e, const adevs::Bag<CellEvent>& xb) {

// Update the living neighbor count

adevs::Bag<CellEvent>::const_iterator iter;

for (iter = xb.begin(); iter != xb.end(); iter++) {

if ((*iter).value == Dead) nalive--;

else nalive++;

}

}

void Cell::delta_conf(const adevs::Bag<CellEvent>& xb) {

delta_int();

delta_ext(0.0,xb);

}

void Cell::output_func(adevs::Bag<CellEvent>& yb) {

CellEvent e;

// Assume we are dying

e.value = Dead;

// Check in case this in not true

if (check_born_rule()) e.value = Alive;

// Set the visualization value

if (vis_phase != NULL) *vis_phase = e.value;

// Generate an event for each neighbor

for (long int dx = -1; dx <= 1; dx++) {

for (long int dy = -1; dy <= 1; dy++) {

e.x = (x+dx)%w;

e.y = (y+dy)%h;

if (e.x < 0) e.x = w-1;

if (e.y < 0) e.y = h-1;

// Don’t send to self

if (e.x != x || e.y != y)

43

yb.insert(e);

}

}

}

The output func method shows how a cell sends messages to its neighbors. The double for loop creates a
CellEvent targeted at each adjacent cell. The location of the target cell is written to the x, y, and z fields of
the CellEvent object. Just like arrays, the location values can range from zero to the cell space size minus
one. The CellSpace will do the actual routing of the CellEvents to their targets. Note however that if the
target of the CellEvent is outside of the cell space, then the CellSpace itself will produce the CellEvent
as an output.

The remainder of the simulation program looks very much like the other simulation programs that we’ve
seen so far (except for some OpenGL specific code, omitted here, that is used to display the cell space). A
CellSpace object is created and we add each cell to it. Then a Simulator object is create and a pointer to
the CellSpace is passed to the Simulator’s constructor. Last, we execute events until our stopping criteria
is met. The execution part is already familiar, so let’s just focus on creating the CellSpace. Here is the
code snippet that performs the construction.

// Create the cellspace model

cell_space = new adevs::CellSpace<Phase>(WIDTH,HEIGHT);

for (int x = 0; x < WIDTH; x++) {

for (int y = 0; y < HEIGHT; y++) {

// Count the living neighbors

short int nalive = count_living_cells(x,y);

// The 2D phase array contains the initial Dead/Alive state of each cell

cell_space->add(

new Cell(x,y,WIDTH,HEIGHT,phase[x][y],nalive,&(phase[x][y])),x,y);

}

}

Just as with the Digraph class, the CellSpace template argument determines the value type for the
CellEvents that are used as input and output by the CellSpace components. The CellSpace constructor
sets the dimensions of the space. Every CellSpace is three dimensional, and the constructor accepts three
arguments that set the x, y, and z dimensions; omitted arguments default to 1. The constructor signature is

CellSpace(long int width, long int height = 1, long int depth = 1)

Components are added to the cellspace with the add method. This method places a component at a
specific (x,y,z) location. Its signature is

void add(Cell* model, long int x, long int y = 0, long int z = 0)

where Cell is a Devs (atomic or network) by the type definition

typedef Devs<CellEvent<X> > Cell;

The CellSpace deletes its components when it is deleted. The CellSpace class has five other methods for
retrieving cells and getting the dimensionality of the cell space. These are more or less self-explanatory; the
signatures are shown below.

const Cell* getModel(long int x, long int y = 0, long int z = 0) const;

Cell* getModel(long int x, long int y = 0, long int z = 0);

long int getWidth() const;

long int getHeight() const;

long int getDepth() const;

44

The Game of Life produces a surprising number of clearly recognizable patterns. Some of these patterns
are fixed and unchanging; others oscillate, cycling through a set of patterns that always repeats itself;
others seem to crawl or fly. One familiar static pattern is the Block shown in Fig. 4.7. Our discrete event
implementation of the Game of Life doesn’t do any work when simulating a Block. None of the cells in a
Block change in any way; their phases are constant and so are their neighbor counts. The Blinker shown in

Figure 4.7: The Block.

Figure 4.8: The Blinker. The input, output, and state transitions for the cell marked with a * are shown in
Table 4.1. The address of each cell is shown in its upper left corner. Living cells are indicated with a $.

Fig. 4.8 is more interesting. This oscillating pattern has just two stages: a vertical and a horizontal. Table
4.1 shows the input, output, and state transitions that are computed for the cell marked with * in Fig. 4.8.
Just like the pattern it is a part of, the cell oscillates between two different states.

Time State Input Output to all neighbors
0 (dead,3) No input No Output
1 (alive,1) (dead,2,1,0) (dead,2,3,0) alive
2 (dead,1) (alive,2,1,0) (alive,2,3,0) dead

Table 4.1: State, input, and output trajectory for the cell marked with * in Fig. 4.8.

The confluent transition function plays a major role in the Blinker simulation. Most of the rows in Table
4.1 (all but the first row, in fact) have both an input and an output, which means that an internal and
external event coincide and so the next state is determined by the delta conf method. It is also important
that the input and output bags carry multiple values. The external transition function (which is used in
defining the confluent transition function) must be able to compute the number of living neighbors before
determining its next state. If input events were provided one at a time (e.g., if the input bag were replaced
by a single input event), then our discrete event Game of Life would be much more difficult to implement.

45

46

Chapter 5

Variable Structure Models

The composition of a variable structure model changes through time. New components are added as machin-
ery is installed in a factory, organisms reproduce, or shells are fired from a cannon. Existing components are
removed as machines break, organisms dies, or shells in flight find their targets. Components are rearranged
as parts move through a manufacturing process, organisms migrate, or a command and control network loses
communication lines. But structure change can not occur willy nilly if we want our simulation to produce
well defined, repeatable outcomes. For this reason, Adevs provides a simple but effective mechanism for
coordinating structure changes with model state transitions1.

5.1 Building and Simulating Variable Structure Models

Every Adevs model, Network and Atomic, has an abstract method called model transition . This method
is inherited from the Devs class that is at the top of the Adevs class hierarchy. The signature of the
model transition method is

bool model_transition()

and its default implementation simply returns false.
At the end of every simulation cycle the simulator invokes the model transition method of every

Atomic model that changed in that cycle. When the model transition method is invoked the Atomic
model can do almost anything it likes except alter the component set of a Network model. If the
model transition method returns true, then the simulator will also call the model’s parent. The parent is,
of course, a Network model; its model transition method may add, remove, and rearrange components.
But it must not delete components! The simulator will automatically delete removed components when the
structure change calculations are finished. As before, if the Network’s model transition method returns
true then the simulator will invoke the model transition method of the Network’s parent.

After invoking every eligible model’s model transition method, the simulator performs a somewhat
complicated cleanup process. This process requires that simulator construct two sets. The first set contains
all of the components that belonged to all of the Network models whose model transition method was
invoked and all of the components belonging to components that are in this set. The second set is defined in
the same way, but it is computed using component sets as they exist after the model transition methods
have been invoked. The simulator deletes every model that has actually been removed; these are the models in
the first set but not in the second. The simulator initializes every model that is genuinely new by computing
its next event time (i.e., its creation time plus its time advance) and putting it into the event schedule; these
are the models in the second second set but not in the first. The simulator leaves all other models alone.
This confusing procedure is illustrated in Fig. 5.1.

1The dynamic structure features in Adevs are based on the Dynamic DEVS modeling formalism described in A.M. Uhrma-
cher’s paper “Dynamic structures in modeling and simulation: a reflective approach”, ACM Transactions on Modeling and
Computer Simulation (TOMACS), Volume 11, Issue 2, pgs. 202-232, April 2001.

47

Figure 5.1: The black models’ model transition methods returned true. The set of components considered
before and after the structure change are shown in the before (left) and after (right) trees. The set of deleted
components is {c, D, d, e, f}− {e, g, d} = {c, D, f}. The set of new components is {e, g, d}− {c, D, d, e, f} =
{g}.

The model transition method can break the strict hierarchy and modularity that is usual observed
when building Atomic and Network models. Any Network model can modify the component set of any
other model regardless of proximity or hierarchy. The potential for anarchy is great; the design of a variable
structure model should be carefully considered. There are two approaches that are simple and, in many
cases, entirely adequate.

The first approach is to allow only Network models to effect structure changes and to restrict those
changes to the Network’s immediate sub-components. With this approach, an Atomic model initiates
a structure change by posting a structure change request for its parent Network. The Atomic model’s
model transition method then returns true causing its parent’s model transition method to be invoked.
The parent Network model then retrieves and acts on the posted structure change request. The Network
repeats this process if it wants to effect structure changes involving models other than its immediate children.

The second approach allows arbitrary structure changes by forcing the model at the very top of the
hierarchy to invoke its model transition method. This causes the simulator to consider every model in the
aftermath of a structure change. As in the first approach, an Atomic model that wants to effect a structure
change uses its model transition method to post a change request for its parent. This is percolated up the
model hierarchy by the Network models whose model transition methods always return true.

The first approach trades flexibility for execution time; the second approach trades execution time for
flexibility. With the first approach, structure changes that involve a small number of components require
a small amount of work by the simulator. With the second approach, every structure change requires the
simulator to include every part of the model in its set calculations regardless of the structure change’s actual
extent, but the scope of a structure change is unlimited.

5.2 A Variable Structure Example

The Custom Widget Company is expanding its operations. Plans are being drawn for a new factory that will
make custom gizmos (and the company name will be changed to The Custom Widget and Gizmo Company).
The factory machines are expensive to operate. To keep costs down, the factory will operate just enough
machinery to fill outstanding gizmo orders in sufficient time. The factory must have enough machinery to
meet peak demand, but much of the machinery will be idle much of the time. The factory engineers want
to answer two questions: how many machines are needed and how much will it costs to operate the them.

We are going to use a variable structure model to answer these two questions. The model will have three

48

components: a generator that creates factory orders, a model of a single machine, and a model of the factory
which contains the machine models and activates and deactivates machines as required to satisfy demand.
The complete factory model is illustrated in Fig. 5.2.

Figure 5.2: Block diagram of the variable structure factory model. The broken lines indicate structural
elements that are subject to dynamic changes.

The generator creates new orders for the factory. Each order is identified with its own integer label, and
the generator produces orders at the rate anticipated by the factory planners. The order arrival rate and,
consequently, the time advance of the generator are not constants. Demand at the factory is expected to
be fairly steady with a new order arriving every 1/2 to 2 days; demand is modeled with a random variable
uniformly distributed in the range [0.5,2]. Here is the generator code:

#include "adevs.h"

// The Genr models factory demand. It creates new orders every 0.5 to 2 days.

class Genr: public adevs::Atomic<int>

{

public:

/**

* The generator requires a seed for the random number that determines

* the time between new orders.

*/

Genr(unsigned long seed):adevs::Atomic<int>(),next(1),u(seed){ set_time_to_order(); }

// Internal transition updates the order counter and determines the next arrival time

void delta_int() { next++; set_time_to_order(); }

// Output function produces the next order

void output_func(adevs::Bag<int>& yb) { yb.insert(next); }

// Time advance returns the time until the next order

double ta() { return time_to_order; }

// Model is input free, so these methods are empty

void delta_ext(double,const adevs::Bag<int>&){}

void delta_conf(const adevs::Bag<int>&){}

// No explicit memory management is needed

void gc_output(adevs::Bag<int>&){}

private:

// Next order ID

int next;

// Time until that order arrives

49

double time_to_order;

// Random variable for producing order arrival times

adevs::rv u;

// Method to set the order time

void set_time_to_order() { time_to_order = u.uniform(0.5,2.0); }

};

The machine model is similar to the Clerk model that appeared in section 2. Each machine requires
3 days make a gizmo and orders are processed first come first serve. The Machine’s model transition
method is inherited from the Atomic class, which inherited it from the Devs class (the inheritance hierarchy
is Devs ← Atomic Machine). I’ll discuss the role of the model transition method after introducing the
Factory class; here is the Machine model code.

#include "adevs.h"

#include <cassert>

#include <deque>

/**

* This class models a machine as a fifo queue and server with fixed service time.

* The model_transition method is used, in conjunction with the Factory model_transition

* method, to add and remove machines as needed to satisfy a 6 day turnaround time

* for orders.

*/

class Machine: public adevs::Atomic<int>

{

public:

Machine():adevs::Atomic<int>(),tleft(DBL_MAX){}

void delta_int()

{

q.pop_front(); // Remove the completed job

if (q.empty()) tleft = DBL_MAX; // Is the Machine idle?

else tleft = 3.0; // Or is it still working?

}

void delta_ext(double e, const adevs::Bag<int>& xb)

{

// Update the remaining time if the machine is working

if (!q.empty()) tleft -= e;

// Put new orders into the queue

adevs::Bag<int>::const_iterator iter = xb.begin();

for (; iter != xb.end(); iter++)

{

// If the machine is idle then set the service time

if (q.empty()) tleft = 3.0;

// Put the order into the back of the queue

q.push_back(*iter);

}

}

void delta_conf(const adevs::Bag<int>& xb)

{

delta_int();

delta_ext(0.0,xb);

}

void output_func(adevs::Bag<int>& yb)

{

50

// Expel the completed order

yb.insert(q.front());

}

double ta()

{

return tleft;

}

// The model transition function returns true if another order can not

// be accommodated or if the machine is idle.

bool model_transition()

{

// Check that the queue size is legal

assert(q.size() <= 2);

// Return the idle or full status

return (q.size() == 0 || q.size() == 2);

}

// Get the number of orders in the queue

unsigned int getQueueSize() const { return q.size(); }

// No garbage collection

void gc_output(adevs::Bag<int>&){}

private:

// Queue for orders that are waiting to be processed

std::deque<int> q;

// Time remaining on the order at the front of the queue

double tleft;

};

The number of Machine models in the Factory any time is determined by the current demand for
gizmos. The real factory, of course, will have a set number of physical machines on the factory floor, but
the planners do not yet know how many machines are needed. A variable structure model that creates and
destroys machines as needed is a good way to accommodate this uncertainty (a design decision similar to
using a linked list in place of a fixed size array).

The Custom Widget and Gizmo Company has built its reputation on a guaranteed service time, from
order to delivery, of 15 days. This leaves only 6 days for the manufacturing process (the remaining time
being consumed by order processing, delivery, etc.). A single machine can meet this schedule if it has at
most one order waiting in its queue. But it costs a dollar a day to operate a machine and so the factory
engineers want to minimize the number of machines working at any particular time. With this goal, the
factory operating policy has two rules:

1. assign incoming orders to the active machine that can provide the shortest turn around time and

2. keep just enough active machines to have capacity for one additional order.

The Factory model implements this policy in the following way. When a Machine becomes idle or its
queue is full (i.e., the machine is working on one order and has another order waiting in its queue) then
its model transition method returns true. This causes the Factory’s model transition method to be
invoked. The Factory first looks for and removes machines that have no work and then examines each
remaining machine to determine if the required one unit of additional capacity is available. If the required
unit of additional capacity is not available then the Factory creates a new machine.

This is an example of the first approach to building a variable structure model. With this design, the
set calculations that are done when the Factory’s model transition method is invoked are limited to
instances where Machine models are likely to be created or destroyed. Our design, however, is complicated
somewhat by the need for Machine and Factory objects to communicate (i.e., the Machines must watch
their own status and inform the Factory when there is a potential capacity shortage). If we had used the

51

second approached to build our variable structure model, then the Machines’ model transition methods
could have merely returned true; no need for a status check. The Factory would have iterated through its
list of Machines, adding and deleting Machines as needed. This is more computationally expensive; the
simulator would look for changes in the Factory’s component set at the end of every simulation cycle. But
the software design is simpler, albeit only marginally so in this instance.

The Factory is a Network model, and we need to implement all of the Network’s virtual methods:
route, getComponents, and model transition . The route method is responsible for assigning orders to
the proper Machine. When an order arrives, it is sent to the machine with the shortest total service time.
The getComponents method puts the current machine set into the output Set c. The model transition
method examines the status of each machine, deleting idle machines and adding a new machine if it is needed
to maintain reserve capacity. The complete Factory implementation is shown below.

#include "adevs.h"

#include "Machine.h"

#include <list>

class Factory: public adevs::Network<int> {

public:

Factory();

void getComponents(adevs::Set<adevs::Devs<int>*>& c);

void route(const int& order, adevs::Devs<int>* src,

adevs::Bag<adevs::Event<int> >& r);

bool model_transition();

~Factory();

// Get the number of machines

int getMachineCount();

private:

// This is the machine set

std::list<Machine*> machines;

// Method for adding a machine to the factory

void add_machine();

// Compute time needed for a machine to finish a new job

double compute_service_time(Machine* m);

};

#include "Factory.h"

using namespace adevs;

using namespace std;

Factory::Factory():

Network<int>() { // call the parent constructor

add_machine(); // Add the first machine the the machine set

}

void Factory::getComponents(Set<Devs<int>*>& c) {

// Copy the machine set to c

list<Machine*>::iterator iter;

for (iter = machines.begin(); iter != machines.end(); iter++)

c.insert(*iter);

}

void Factory::route(const int& order, Devs<int>* src, Bag<Event<int> >& r) {

// If this is a machine output, then it leaves the factory

52

if (src != this) {

r.insert(Event<int>(this,order));

return;

}

// Otherwise, use the machine that can most quickly fill the order

Machine* pick = NULL; // No machine

double pick_time = DBL_MAX; // Infinite time for service

list<Machine*>::iterator iter;

for (iter = machines.begin(); iter != machines.end(); iter++) {

// If the machine is available

if ((*iter)->getQueueSize() <= 1) {

double candidate_time = compute_service_time(*iter);

// If the candidate service time is smaller than the pick service time

if (candidate_time < pick_time) {

pick_time = candidate_time;

pick = *iter;

}

}

}

// Make sure we found a machine with a small enough service time

assert(pick != NULL && pick_time <= 6.0);

// Use this machine to process the order

r.insert(Event<int>(pick,order));

}

bool Factory::model_transition() {

// Remove idle machines

list<Machine*>::iterator iter = machines.begin();

while (iter != machines.end()) {

if ((*iter)->getQueueSize() == 0) iter = machines.erase(iter);

else iter++;

}

// Add the new machine if we need it

int spare_cap = 0;

for (iter = machines.begin(); iter != machines.end(); iter++)

spare_cap += 2 - (*iter)->getQueueSize();

if (spare_cap == 0) add_machine();

return false;

}

void Factory::add_machine() {

machines.push_back(new Machine());

machines.back()->setParent(this);

}

double Factory::compute_service_time(Machine* m) {

// If the machine is already working

if (m->ta() < DBL_MAX) return 3.0+(m->getQueueSize()-1)*3.0+m->ta();

// Otherwise it is idle

else return 3.0;

}

53

int Factory::getMachineCount() {

return machines.size();

}

Factory::~Factory() {

// Delete all of the machines

list<Machine*>::iterator iter;

for (iter = machines.begin(); iter != machines.end(); iter++)

delete *iter;

}

To illustrate how the model transition method is used, let’s manually simulate the processing of a few
orders: the first order arrives at day zero, the second order at day one, and the third order at day three. At
the start of day zero there is one idle Machine. When the first order arrives the Factory’s route method
is invoked and it sends the order to the idle Machine. The Machine’s delta ext method is invoked next
and the Machine begins processing the order. Then the Machine’s model transition method is invoked,
discovers that the Machine is working and has space in its queue, and returns false.

When the second order arrives on day one, the Factory’s route method is called again. There is only
one Machine and it has space in its queue so the order is routed to that Machine. The Machine’s
delta ext method is invoked next, and the second order is queued. The Machine’s model transition
method is now invoked; the queue is full and so the method returns true. This causes the the Factory’s
model transition method to be invoked; it examines the Machine’s status, sees that it overloaded, and
creates a new Machine. At this time, the working Machine needs two more days to finish the first order
and needs a total of five days to complete its second order.

There is a great deal of activity when the third order arrives on day three. First, the working Machine’s
output func method is called and it spits out the completed order (the order begun on day zero). Then the
Factory’s route method is called twice. First it converts the Machine output into a Factory output, and
then it routes the new order to the idle Machine (the order of these route calls could have been switched).
Next the state transition methods for the two Machines are invoked. The working Machine’s delta int
method is called and it starts work on its queued order. The idle Machine’s delta ext method is called and
it begins processing the new order. Finally, the model transition methods of both Machines are invoked;
both Machine’s have room in their queue and so both methods return false.

For the sake of illustration, suppose no orders arrive in the next three days (this is impossible when orders
arrive every one half to two days, but bear with me). At day six, both machines will finish their orders.
The Machines’ output func methods will be invoked, producing the finished orders which are sent to the
Factory output via the Factory’s route method. Next, the Machines’ delta int methods will be called
and both Machines will become idle. Then the Machines’ model transition methods will be invoked
and these will return true. This will cause the Factory’s model transition method to be called. It will
examine the status of each Machine, see that they are idle, and delete both of them. Then the Factory
will compute its available capacity, which is now zero, and create a new machine. Incidentally, this returns
the Factory to its initial state of having one idle Machine.

The factory engineers have two questions: how many machines are needed and what is the factory’s
annual operating cost. These questions can be answered with a plot of the active machine count versus time.
The required number of machines is the maximum value of the active machine count. Each machine costs a
dollar per day to operate, and so the operating cost is just the one year time integral of the active machine
count.

A plot of the active machine count versus time is shown in Fig. 5.3. The maximum active machine count
in this plot is 4 and the annual operating cost is $944 (this plot is from the first simulation run listed in
Table 5.1). The arrival rate is a random number, and so the annual operating cost and maximum machine
count are themselves random numbers. Consequently, data from several simulation runs is needed to make
an informed decision. Somewhat arbitrarily, I have listed ten simulation runs; each run uses a different
random number generator seed and produces a different outcome (i.e., another sample of the maximum

54

active machine count and annual operating cost). The maximum active machine count and annual operating
cost generated by each run is shown in Table 5.1. From this data, the factory engineers conclude that 4
machines are required and the average annual operating cost will be $961.

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300 350

m
ac

hi
ne

 c
ou

nt

time (days)

Figure 5.3: Active machine count over one year.

Seed Maximum machine count Annual operating cost
1 4 $944.05
234 4 $968.58
15667 4 $980.96
999 3 $933.13
9090133 4 $961.65
6113 4 $977.33

Table 5.1: Outcomes of ten factory simulation runs.

55

56

Chapter 6

Continuous Models

A complicated system is likely to have parts that are best modeled with continuous equations. Where con-
tinuous models interact with discrete event models, these interactions are necessarily discrete. For example,
a digital thermometer reports temperature in discrete increments, circuit breakers and electrical switches
are either open or closed, a threshold sensor is either tripped or it is not. If, on the other hand, two systems
interact continuously, then the both systems are probably best modeled with continuous mathematics. In
this case, accurate calculations are greatly facilitated by lumping the two systems into a single assembly; in
Adevs this assembly is an Atomic model that encapsulates the system’s continuous dynamics.

There are three possibly outcomes if we follow this lumping process to its conclusion. One possibility is
that we end up with a single assembly; in this case our model is essentially continuous and we are probably
better off using a simulation tool for continuous systems. At the other extreme, we find that the continuous
parts of our model are relatively simple; they yield to analytical techniques and can be be easily transformed
into discrete event models. Between these two extremes are models with continuous dynamics that are not
simple but which do not dominate the modeling problem. The continuous system simulation part of Adevs
is aimed at this third type of model.1

6.1 Using the Runge-Kutte Integration Modules

Adevs has two pre-built Atomic models that can be used to simulation continuous systems. These two
models are essentially the same; one uses a fixed step size, fourth order Runge-Kutte integration scheme
to solve a set of ordinary differential equations and the other uses a variable step size, fourth/fifth order
Runge-Kutte scheme to do the same thing. In general, you will probably prefer to use the variable step size
scheme because it, unlike the fixed step size scheme, has a built in error control mechanism. Both models
are used in exactly the same way, differing only in the parameters that are passed to their constructors.

The Adevs RK models are abstract classes with seven abstract methods that must be implemented by
your derived class. The RK models are derived from the Atomic class, but you will not be implementing
the five familiar methods delta int , delta ext , delta conf , ta , and output func. But you will implement
the familiar gc output method. It performs the same function in this new context, differing only in that
it operates on objects produced by the new discrete output method. The remaining six new methods are
used to describe the continuous dynamics of your model, to describe how your model generates and responds
to discrete events, and to record the model’s continuous trajectory. The methods are

void der_func(const double* q, double* dq)

1The method used here for adding continuous models to a discrete event simulation is described and illustrated in the
following papers: James Nutaro, Teja Kuruganti, and Mallikarjun Shankar. Seamless Simulation of Hybrid Systems with
Discrete Event Software Packages. In the Proceedings of the 40th Annual Simulation Symposium, pp. 81-87, March 2007 and
James Nutaro, Phani Teja Kuruganti, Laurie Miller, Sara Mullen and Mallikarjun Shankar. Integrated Hybrid-Simulation of
Electric Power and Communications Systems. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting,
pp. 1-8, June 2007.

57

void state_event_func(const double* q, double* z)

double time_event_func(const double* q)

void discrete_action(double* q, const Bag<X>& xb)

void discrete_output(const double* q, Bag<X>& yb)

void state_changed(const double* q)

which are used, as the names suggest, to implement the state variable derivative functions and state event
conditions, to schedule time events, to implement discrete state changes, to generate discrete outputs, and
to take an action (usually recording the state trajectory in a file) when the integration scheme changes a
state variable.

I’ll use a simple, if contrived, example to introduce the parts of a continuous model and the corresponding
use of the RK model methods. A cherry bomb2 is dropped from a height of 1 meter and bounces until it
either explodes or is doused with water. We’ll assume that the cherry bomb only bounces up and down
and that it is perfectly elastic. The cherry bomb will explode 2 seconds from the time it is lit and dropped.
Dousing the cherry bomb will put out the fuse3. Dousing is an input event and the cherry bomb will produce
an output event if it explodes.

This model has two continuous state variables: the height and velocity of the cherry bomb. Between
events, these variables are governed by the pair of differential equations

v̇ = −9.8 (6.1)

ḣ = v (6.2)

where 9.8 is acceleration due to gravity, v is velocity, and h is height. In this example, it will also be useful
to know the current time. We can keep track of this by adding one more differential equation

ṫ = 1 (6.3)

whose solution is t0 + t or just t if we set t0 = 0. The ball bounces when it hits the floor; the effect of a
bounce is to instantaneously reverse the cherry bomb’s velocity; specifically

h = 0 & v < 0 =⇒ v ← −v (6.4)

where =⇒ is logical implication and ← indicates an assignment.
Equations 6.1 and 6.2 (and 6.3) are the state variable derivatives and our cherry bomb class implements

them in its der func method. The q parameter is a state variable array that contains, in our case, the
values of h and v (and t), and the dq parameter is the state variable derivative array. The method computes
the values of ḣ and q̇ (and ṫ) and store then in the dq array. Equation 6.4 is a state event condition and
it is implemented in two parts. The state event func method implements the ‘if’ part (left hand side) of
the condition. Again, the supplied q array contains the current state variable values, h and v (and t) in this
case. These are use to evaluate the state event condition and store the result in the z array. The simulator
detects state events by looking for changes in the sign of the z array entries (i.e., from -1 to 0, 0 to 1, -1 to 1,
and vice versa). The ‘then’ part (right hand side) is implemented with the discrete action method, which
the simulator invokes when the state event condition is true.

The cherry bomb has one discrete state variable with three possible values: the fuse is lit, the fuse is not
lit, and the bomb is exploded. This variable changes in response to two events. The first event is when the
bomb explodes; this is a time event that we know will occur 2 seconds from the time that the fuse it lit. Time
time event func method is used to schedule the explosion by returning the time remaining until the fuse
burns out. The time event func is similar to the familiar ta method; it is used to schedule autonomous
events based on the current value of the model’s state variables. The second event is an external event; this
event is the fuse being doused with water. External events, of course, are not scheduled; they occur when
and if the input event arrives.

2A cherry bomb is a small red firecracker. They are dangerous and illegal in the United States. None the less, every school
seems to have at least one obnoxious kid who likes to put them into toilets.

3Cherry bomb fuses are frequently water proofed.

58

The discrete action method implements the response of the cherry bomb to explosion and douse events
in addition to the bounce event (i.e., the right hand side of Equation 6.4). The array q contains the values of
the continuous state variables at the event time. The bounce and explosion events are both internal events
and the input bag xb will be empty. The douse event is an input and it will appear in the input bag xb if
the event occurs.

The cherry bomb model produces an output event when it explodes. The discrete output method is
used to implement the model’s output behavior. As with the other methods, the q array contains the current
value of the continuous state variables. The method fills the output bag yb with the model’s output events
(just as with the familiar output func). Because the cherry bomb is derived from the Atomic class, its
output method is always invoked immediately prior to an internal event; internal events occur when the
time event func duration expires or the state event func indicates that a state event condition is true.

The cherry bomb model can be implemented in two ways: as a sub-class of the rk4 class or as a sub-class
of the rk45 class. The rk4 class uses a fixed step size, fourth order Runge-Kutte integration scheme to
solve the differential equations that describe a model’s continuous dynamics; the rk45 is an adaptive step
size variant of the same scheme. Both schemes use a very simple interval bisection technique to locate state
events4 The only out difference between the rk4 and rk45 class is in their constructors; the rk45 class
requires one extra parameter that defines the error tolerance of the integration scheme.

The rk45 derived cherry bomb model called CherryBomb is shown below. The base class constructor
specifies five things: the number of continuous state variables (i.e., the size of the q and dq arrays), the
largest integration time step that you will allow, the absolute error permitted at each integration step5, the
number of state event conditions (i.e., the size of the z array), and the time error tolerance for the event
detection scheme (the default value is 10−12)6 The CherryBomb constructor sets the initial value of its
continuous variables h and v (and t) by using the rk45’s init method; its signature is

void init(int i, double q0)

The first parameter is the index (start from zero) of the continuous state variable and the second parameter
is the variable’s initial value. In this example, the initial height is 1 meter and the initial velocity is zero.
The remainder of the CherryBomb implementation is just as described in the previous paragraphs.

#include "adevs.h"

#include <iostream>

using namespace std;

using namespace adevs;

// Array indices for the CherryBomb state variables

#define H 0

#define V 1

#define T 2

// Discrete variable enumeration for the CherryBomb

typedef enum { FUSE_LIT, DOUSE, EXPLODE } Phase;

class CherryBomb: public rk45<string> {

public:

CherryBomb():rk45<string>(

3, // three state variables including time

4This state event detection in not particular robust; it can fail to detect a state event in some circumstances. You should
be careful when employing it. Nonetheless, the scheme is sufficient in many cases.

5The error at each integration step is estimated by the integration algorithm and the step size is adjusted in an effort to
keep the error at this tolerance. Beware that the actual error could be larger than your specified tolerance! As a rule of thumb
I often set the error tolerance to one tenth of the value I actually want. For example, if I want errors less than 0.01, I’ll use an
error tolerance of 0.001.

6If this value is too small, then the simulator can get stuck.The default is 10−12 because that seems to be the smallest robust
value when time is represented with a double precision floating point number.

59

0.01, // maximum time step

0.001, // error tolerance for one integration step

1 // 1 state event condition

) {

init(H,1.0); // Initial height

init(V,0.0); // Initial velocity

init(T,0.0); // Start time at zero

phase = FUSE_LIT; // Light the fuse!

}

void der_func(const double* q, double* dq) {

dq[V] = -9.8; // Equation 5.1

dq[H] = q[V]; // Equation 5.2

dq[T] = 1.0; // Equation 5.3

}

void state_event_func(const double* q, double *z) {

// Test condition 5.4. The test uses h <= 0 instead of h = 0 to avoid

// a problem if h, which is a floating point number, is not exactly 0.

// For instance, it might be computed at 1E-32 which is close enough.

if (q[H] <= 0.0 && q[V] < 0.0) z[0] = 1.0;

else z[0] = -1.0;

}

double time_event_func(const double* q) {

if (q[T] < 2.0) return 2.0 - q[T]; // Explode at time 2

else return DBL_MAX; // Don’t do anything after that

}

void discrete_action(double* q, const Bag<string>& xb) {

if (xb.size() > 0 && phase == FUSE_LIT) phase = DOUSE; // Any input is a douse event

else if (q[T] >= 2.0 && phase == FUSE_LIT) phase = EXPLODE; // Explode at time 2

if (q[H] <= 0.0) q[V] = -q[V]; // Bounce

}

void discrete_output(const double *q, Bag<string>& yb) {

if (q[T] >= 2.0 && phase == FUSE_LIT) yb.insert("BOOM!"); // Explode!

}

void state_changed(const double* q) {

// Write the current state to std out

cout << q[T] << " " << q[H] << " " << q[V] << " " << phase << endl;

}

void gc_output(Bag<string>&){} // No garbage collection is needed

Phase getPhase() { return phase; } // Get the current value of the discrete variable

private:

Phase phase;

};

int main() {

CherryBomb* bomb = new CherryBomb();

Simulator<string>* sim = new Simulator<string>(bomb);

while (bomb->getPhase() == FUSE_LIT)

sim->execNextEvent();

delete sim; delete bomb;

return 0;

}

60

Figure 6.1 shows the cherry bomb trajectory from t = 0 to its explosion at t = 2. This plot was produced
using the simulation program listed above. There is nothing particular surprising about it, but you can
observe the discrete changes in the cherry bomb’s trajectory. There are two bounce events at t ≈ 0.45 and
t ≈ 1.4. The cherry bomb explodes abruptly at the start of its third decent.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

he
ig

ht
 (

m
et

er
s)

time (seconds)

BOOM !

Figure 6.1: A simulation of the cherry bomb model that terminates when the cherry bomb explodes.

6.2 Building Numerical Integration Blocks for Adevs

The rk45 and rk4 classes are not directly derived from the Atomic class; they are actually derived from
the DESS class, which is derived from the Atomic class. The DESS (Differential Equation System Speci-
fication) class7 replaces the five familiar Atomic model methods with five new methods:

virtual void discrete_output_func(Bag<X>& yb)

virtual void discrete_action_func(const Bag<X>& xb)

virtual void evolve_func(double h)

virtual double next_event_func(bool& is_event)

virtual void state_changed()

Only the Atomic model’s gc output method is retained for the purposes of cleaning up objects created by
the discrete output func method. The rk4 and rk45 classes were built by specializing these five methods;
you can add new continuous system simulation algorithms to Adevs in the same way.

The method names are indicative of their function. The state changed method is used to notify the
derived class when a new state is computed. The method is intended as a tool for saving state trajectories
as a simulation progresses, and as such it is not really essential for modeling. The state changed method is
invoked once at time zero (so that you can record the initial state), after every integration step, and before
and after every discrete action (i.e., discrete state changes due to state, time, and input events).

The next event func method takes the place of the Atomic class’s ta method. The next event func
returns the smallest of the next integration step size and the time remaining until next internal event time.
The integrations step size is selected by the derived class; it could be a fixed value or chosen dynamically
to satisfy error or stability constraints. The next internal event time is also selected by the derived class; it
can be the known discrete event time (i.e., at time event) or the time of the next state event. The is event

7The classification of dynamic systems into discrete event, discrete time, and continuous models is formalized by Zeigler in
his book “Theory of Modeling and Simulation”. The acronyms for each class are DEVS (Discrete EVent system Specification),
DTSS (Discrete Time System Specification), and DESS (Differential Equation System Specification).

61

flag is an output argument; its value must be true if the next event is a time or state event and false if it is
just an integration step.

The evolve func is responsible for advancing the model’s continuous trajectories. The method’s role is
to integrate the differential or differential algebraic equations that describe the model’s continuous motion.
The argument h is the step size that must be used; h is always less than or equal to the value given by the
next event func. It is important to distinguish between the trial evaluations that might be required to
pick the next integration step size and actually advancing the continuous trajectories. Many trial integration
steps might be needed to implement the next event func; these trial steps might use different steps sizes
to find one the gives a tolerable error or to locate state events in the continuous solutions. But when an
appropriate time step has been found and given to the simulator via the next event func the evolve func
may still require you to use a smaller (but never a larger) time step. Calculations used to find a value for
the next event func are tentative; only the evolve func can evolve the solution.

The discrete action func is responsible for making discrete changes to the system state in response
to time, state, and input events. There are two conditions that cause this method to be invoked. The first
condition is the next event func has set its is event flag to true and the returned time expires without
an input event. The second condition is the arrival of an input event prior to the next event func time
expiring. In all cases the continuous variables are advanced to the event time by the evolve func before
the discrete action func is invoked (this is why integration step sizes suggested by the next event func
are only tentative). If the first condition is true and the second condition is false then the input Bag xb
will be empty; the discrete state change is autonomous. If the second condition is true, regardless of the
first condition, then an input event has occurred and the input values are contained in the input Bag. If
both conditions are true simultaneously the discrete action func is only invoked once, not twice. The
discrete action func can change any of the model’s state variables, continuous and discrete. The q array
contains the model’s continuous variables and changes to its elements change the corresponding continuous
state variables.

The discrete output func is the counterpart to the Atomic class’s output func. It is invoked when-
ever an autonomous event occurs and just prior to the invocation of the discrete action func. Output
values are placed by the model into the output Bag yb. The simulator will invoke the model’s gc output
method when these objects can be safely deleted.

To illustrate the construction process, let’s build a simple continuous system simulation module. Our
simple modules will only allow for one event condition z and one state variable x whose behavior is described
by the differential equation

ẋ = f(x, q̄)

where q̄ are our discrete variables. The integration scheme will be the implicit Euler method with a fixed
step size; state events will be detected by looking for points where z is equal to zero. Here is the header file
for our new simulation module which we will call ie for implicit Euler. Its interface is similar to that of the
rk45 class, but with fewer parameters to the constructor and single variables, rather than arrays, for the
event condition and state variable parameters.

#include "adevs_dess.h"

#include <cmath>

template <class X> class ie: public adevs::DESS<X> {

public:

/**

* The constructor requires an initial value q0 for the continuous

* state variable and a maximum step size h_max for the implicit Euler

* integration scheme.

*/

ie(double q0, double h_max):adevs::DESS<X>(),h_max(h_max),q(q0){}

// Get the current value of the continuous state variable.

double getStateVars() const { return q; }

62

// Compute the derivative function using the supplied state variable value.

virtual double der_func(double q) = 0;

// Compute the value the zero crossing function.

virtual double state_event_func(double q) = 0;

// The discrete action function can set the value of q by writing to its reference.

virtual void discrete_action(double& q, const adevs::Bag<X>& xb) = 0;

// The discrete output function should place output values in yb.

virtual void discrete_output(double q, adevs::Bag<X>& yb) = 0;

virtual void state_changed(double q){};

// Implementation of the DESS evolve_func method

void evolve_func(double h);

// Implementation of the DESS next_event_func method

double next_event_func(bool& is_event);

// Implementation of the DESS discrete_action_func method

void discrete_action_func(const adevs::Bag<X>& xb);

// Implementation of the DESS dscrete_output_func method

void discrete_output_func(adevs::Bag<X>& yb);

// Implementation of the DESS state_changed method

void state_changed();

/// Destructor

~ie(){}

private:

const double h_max; // Maximum integration time step

double q; // Continuous state variable

double integ(double qq, double h);

// Return the sign of x

static int sgn(double x) {

if (x < 0.0) return -1;

else if (x > 0.0) return 1;

else return 0;

}

};

The numerical integration scheme is implemented in the integ method; this method is called by the
evolve func method to advance the continuous solution and by the next event func to search for state
events. The implicit scheme

x(t + h) = x(t) + hf(x(t + h), q(t)) (6.5)

requires that we search for a next value of x that satisfies Equation 6.5. This is a fixed point problem and
it can be seen most clearly if write x̃ = x(t + h), g(x̃) = x(t) + hf(x̃), and then state the problem as finding
a value for x̃ such that

x̃ = g(x̃)

A simple solution method is to start with the initial guess x̃0 = x(t) and then compute successive guesses
x̃1, x̃2, ... by

x̃i+1 = g(x̃i) (6.6)

until the difference between x̃i+1 and x̃i is small. If this works, the sequence of x̃i’s will converge to a single
value, the this value is the solution that we are looking for and the final x̃i is used for x(t + h) in Equation
6.5. Here is the implementation of the integ method and its trivial use by the evolve func method to
advance to continuous solution.

template <class X>

double ie<X>::integ(double qq, double h) {

63

double q1 = qq;

double q2 = qq + h*der_func(q1);

while (fabs(q1-q2) > 1E-12) {

q1 = q2;

q2 = qq + h*der_func(q1);

}

return q2;

}

template <class X>

void ie<X>::evolve_func(double h) {

q = integ(q,h);

}

The discrete action func, discrete output func, and state changed methods are very simple; they
just pass on the current value of the single continuous state variable to corresponding methods of the derived
class. The continuous state variable is always up to date because the DESS base class calls the evolve func
before invoking the ie class’s discrete output func, discrete action func, or state changed methods.
Here are the method implementations.

template <class X>

void ie<X>::discrete_action_func(const adevs::Bag<X>& xb) {

discrete_action(q,xb);

}

template <class X>

void ie<X>::discrete_output_func(adevs::Bag<X>& yb) {

discrete_output(q,yb);

}

template <class X>

void ie<X>::state_changed() {

state_changed(q);

}

All the remains is to implement the next event func. This method returns the smaller of our maximum
integration time step hmax (hmax in the source code) and zero crossing of the state event function z. The
state event detection problem is a root finding problem; we want to a value of x(ζ) such that z(x(ζ)) = 0
and ζ ∈ [t, t + hmax]. If such a point exists, that an event occurs at time ζ, otherwise there are no events in
the interval. We’ll use a relatively simple method for finding these event points. Assume that z is a line and
let δh be the width of the time interval that we are considering. Initial we take δh = hmax, corresponding to
the time interval [t, t + hmax]. We computing z at x(t) and x(t + δh) and look to see if its sign has changed.
If the answer is no, then there is no event in the interval. Otherwise by assuming that z is the line

z(x(t + τ)) =
z(x(t + δh)− z(x(t))

δh
τ + z(x(t))

we can determine the time τ until the next event as

τ =
z(x(t))h

z(x(t))− z(x(t + δh))

We then set δh to τ and repeat this procedure until either the interval [t, t+hmax] does not contain an event
or the value of z is suitable small. The next event func, which implements this procedure, is shown below.
Notice that it uses the integ method to compute trial values of x.

64

template <class X>

double ie<X>::next_event_func(bool& is_event) {

double h = h_max;

double z1 = state_event_func(q);

double z2 = state_event_func(integ(q,h));

while (true) {

if (sgn(z1) == sgn(z2)) {

is_event = false;

break;

}

else if (sgn(z1) != sgn(z2) && fabs(z2) < 1E-12) {

is_event = true;

break;

}

h = (h*z1)/(z1-z2);

z2 = state_event_func(integ(q,h));

}

return h;

}

Let’s demonstrate our new integration scheme on a simple problem whose solution can be worked by
hand. Consider a bucket that is being filled with liquid. The bucket is equipped with a computer controlled
value that sense the volume of liquid in the bucket and drains it when the volume is vmax; our bucket model
produces an output event when this occurs. If the spigot that hangs over the bucket is open, then the
bucket fills at an exponentially decaying rate (to avoid overfilling); if the spigot is closed then the bucket
stops filling. This model has one discrete variable that describes the spigot and one continuous variable that
describes the volume of fluid in the bucket. There is a single state event condition that causes the volume
to be set to zero when it reaches vmax. We’ll assume the bucket has an absolute capacity of 1 unit and the
computer drains the bucket if the volume reaches 0.75 units. The bucket’s dynamics can be written as

v̇ =

{

0 if the spigot is closed

1− v if the spigot is open

v ≥ 0.75 =⇒ v ← 0

where v is the liquid volume, =⇒ is logical implication, and ← is an assignment. An output event always
occurs when the state event condition is satisfied. The bucket model implemented with our new ie class is
shown below.

#include "ie.h"

#include "adevs.h"

#include <iostream>

using namespace std;

using namespace adevs;

double t = 0.0; // Global simulation time variable that is set in the main simulation loop

class bucket: public ie<bool> {

public:

// The initial volume is 0, the integration time step is 0.01, the spigot is closed

bucket():ie<bool>(0.0,0.01),spigot_open(false){}

double der_func(double q) { return spigot_open*(1.0-q); }

double state_event_func(double q) { return 0.75-q; }

65

void discrete_action(double& q, const Bag<bool>& xb) {

if (q >= 0.75) q = 0.0;

if (xb.size() > 0) spigot_open = *(xb.begin());

}

void discrete_output(double q, Bag<bool>& yb) {

if (q >= 0.75) yb.insert(true);

}

void state_changed(double q) {

cout << t << " " << q << " " << spigot_open << endl;

}

void gc_output(Bag<bool>&){}

private:

bool spigot_open;

};

When the bucket is initially empty the system has a periodic trajectory

v(t) = 1− exp(−t) where t ∈ [0,− ln(0.25)]

that begins when the spigot is opened and repeats itself by setting v and t to zero every −ln(0.25) ≈ 1.37
units of time. The exact and simulated trajectories are shown in Figure 6.2 for the case where the spigot is
opened at t = 1 and closed at t = 4. The implicit Euler simulation can be seen to lag slightly behind the
exact solution. This is due to the relatively poor accuracy of the implicit Euler method and not an error in
our implementation. For comparison, I conducted the same simulation using the more accurate rk4 class
in place of our ie class; the improvement is readily apparent following the spigot closing at time 4, but less
evident elsewhere.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 1.5 2 2.5 3 3.5 4 4.5

vo
lu

m
e

time

exact
ie

rk4

Figure 6.2: Volume of the bucket as a function of time when the spigot is opened at t = 1 and closed at
t = 4.

66

Chapter 7

The Simulator Class

The functionality of the Simulator class is broken into three pieces: determining the model’s next event
time, extracting output from the model, injecting external input into the model, and advancing the simulation
clock. The first piece of functionality is provided by the nextEventTime method with which we are already
familiar. I’ll address the three remaining pieces in turn.

There are two essential steps for extracting output from your model. The first step is to register an
EventListener with the simulator. The EventListener’s outputEvent method is used to intercept output
originating from Atomic and Network models; this first step is already familiar to us. The second step
is to invoke the Simulator’s computeNextOutput method, which performs the output calculations and
provides the results to registered EventListeners.

The computeNextOutput method is probably not familiar; we have not had cause to discuss it until
now. The method signature is

void computeNextOutput()

and it computes the model output at the next event time given by the nextEventTime method. The
computeNextOutput method invokes the output func method of every imminent Atomic model, maps
outputs to inputs by calling the route method of Network models, and calls the outputEvent method of
every EventListener that has been registered with the Simulator. This method anticipates the outcome
of your model from its current state assuming that no input events will intervene between now and the
nextEventTime.

The computeNextState method is used to inject intervening events and advance the simulation clock.
The method signature is

void computeNextState(Bag<Event<X> >& input, double t)

where the Event class is the same one that the EventListener accepts to its outputEvent method. The
Event class has two fields: a pointer to a model of type Devs<X> (i.e., a Network or Atomic model)
and a value of type X.

The computeNextState method applies a bag of input Events to the model at time t. If the input bag
is empty and t is equal to the next event time, then this method has the same effect as execNextEvent : it
calculates the output values at time t using the computeNextOutput method, computes the next state of all
models undergoing internal and external events, computes structure changes, and advances the simulation
clock. If the input bag is not empty then the value of each Event is applied as an input to the model
pointed to by that Event. If, in this case, t is equal to the next event time then the method also follows
the usual steps of invoking the computeNextOutput method and calculating state and structure changes;
if t is less than the Simulator’s next event time, then the procedure is nearly identical excepting that the
computeNextOutput method is not invoked. In this case, the only input events for any model are those
provided in the input bag.

67

The Simulator’s execNextEvent method, the workhorse of most simulation programs, actually defers
its job to two these two methods which do the real work. The implementation takes only two lines; the Bag
bogus input is empty.

void execNextEvent() {

computeNextOutput();

computeNextState(bogus_input,nextEventTime());

}

The Simulator’s computeNextOutput , computeNextState, and execNextEvent methods throw
an exception if a model violates either of two constraints: the time advance is negative or the coupling
constraints described in section 4.1 and illustrated in Figure 4.4, are violated. The Adevs exception class
is derived from the standard C++ exception class; the method what returns a string that describes the
exception condition and the method who returns a pointer to the model that caused the exception to be
generated. The Adevs exception class is intended to assist with model debugging. There isn’t much you
can do at run-time to fix a time advance method or reorganize a model’s structure (or fix the structure
change logic), but the simulator tries to be friendly by identifying a problem before it becomes an obscure
and difficult to find bug.

68

Chapter 8

Models with Many Input/Output
Types

It would be surprising if every component in a large model (or even a small one) had the same input and
output requirements. Some models can be satisfactorily constructed with a single type of input/output
object and, if this is the case, it will simplify the design of your simulator. If not, you’ll need to address this
problem when you design your simulation program.

One solution to this problem is to establish a base class for all input and output types and derive specific
types from the common base. The simulator and all of its components exchange pointers to the base class
and down cast specific objects as needed. The C++ dynamic cast operator is particularly useful for this
purpose. Although it is not without its problems, I have used this solution in many designs and it works
well.

It is not always possible for every component in a model to share a common base class for its input
and output type. This can happen if different sub-model have very different input and output needs or
when models from earlier projects are reused. For example, to use a CellSpace model as a component of a
Digraph model requires some means of converting the CellSpace’s CellEvent objects into the PortValue
objects required by the Digraph. Happily, there is a simple solution to this problem that makes clever use
of the Simulator and EventListener classes to wrap a model with one input and output type inside of an
atomic model with a different input and output type.

The Adevs ModelWrapper class is an Atomic model that encapsulates another model. The encapsu-
lated model can be a Network or Atomic model. The ModelWrapper uses input/output objects of type
ExternalType, but the encapsulated class uses input/output objects of type InternalType. Two abstract
methods are provided for converting objects with one type into objects with the other type; these methods
are

void translateInput(const Bag<ExternalType>& external_input, Bag<Event<InternalType> >& internal_input)

void translateOutput(const Bag<Event<InternalType> >& internal_output, Bag<ExternalType>& external_output)

Clean up of converted objects are managed with the gc output method, which is inherited from the Mod-
elWrapper’s Atomic base class, and a new gc input method for cleaning up objects created by the
translateInput method; its signature is

void gc_input(Bag<Event<InternalType> >& g)

The model to encapsulate is passed to the ModelWrapper constructor. The ModelWrapper creates
a Simulator for the model that is used to control its evolution; the ModelWrapper is a simulator inside
of a model inside of a simulator! The ModelWrapper keeps track of the wrapped model’s last event
time, and it uses this information and the Simulator’s nextEventTime method to compute its time
advance. Internal, external, and confluent events cause the WrappedModel to invoke its Simulator’s

69

computeNextState method and thereby advance the state of the wrapped model. Internal events are
simplest; the computeNextState method is invoked with the wrapped model’s next event time and an
empty input bag.

The delta conf and delta ext , however, must convert the incoming input events, which have the type
ExternalType, into input events for the wrapped model, which have the type InternalEvent. This is accom-
plished with the translateInput method. The first argument to the method is the input bag passed to
the ModelWrapper’s delta ext or delta conf method. The second argument is an empty bag that the
method implementation must fill. When the translateInput method returns this bag will be passed to the
computeNextState method of the ModelWrapper’s simulator. Notice that the internal input argument
is a Bag filled with Event objects; if the wrapped model is a Network then the translated events can be
targeted at any of the Network’s components. The ModelWrapper invokes the gc input method when
it is done with the events in the internal input bag. This gives you the opportunity to delete objects that
you created when translateInput was called.

A similar process occurs when the ModelWrapper’s output func is invoked, but in this case it is
necessary to convert output objects from the wrapped model, which have type InternalType, to output
objects from the ModelWrapper, which have type ExternalType. This is accomplished by invoking the
translateOutput method. The method’s first argument is the bag of output events produced collectively
by all of the wrapped model’s components; notice that the contents of the internal output bag are Event
objects. The model field points to the component of the wrapped model (or the wrapped model itself)
that produced the event and the value field contains an output object produced by that model. These
Events must be converted to objects of type ExternalType and stored in the external output bag. The
external output bag is, in fact, the bag passed to the wrapper’s output func, and so its contents become
the output objects produced by the wrapper. The gc output method is used in the usual way to clean up
any objects created by this process.

The Wrapper class shown below illustrates how to use the Adevs WrapperModel class. The Wrapper
is derived from the WrapperModel and implements its four abstract methods: translateInput , trans-
lateOutput , gc input , and gc output . This class wraps an Atomic model that uses int* objects as its
input/output. The Wrapper uses C strings as its input and output type. The translation methods merely
convert integers to strings and vice versa. The Wrapper can be used just like any Atomic model; it can
be a component in a network model or simulated by itself. The behavior of the Wrapper is identical to the
model it wraps; the only change is in the interface.

// This class converts between char* and int* event types.

class Wrapper: public adevs::ModelWrapper<char*,int*> {

public:

Wrapper(adevs::Atomic<int*>* model):

// Pass the model to the base class constructor

adevs::ModelWrapper<char*,int*>(model){}

void translateInput(const adevs::Bag<char*>& external,

adevs::Bag<adevs::Event<int*> >& internal) {

// Iterate through the incoming events

adevs::Bag<char*>::const_iterator iter;

for (iter = external.begin(); iter != external.end(); iter++) {

// Convert each one into an int* and send it to the

// wrapped model

adevs::Event<int*> event;

// Set the event value

event.value = new int(atoi(*iter));

// Set the event target

event.model = getWrappedModel();

// Put it into the bag of translated objects

internal.insert(event);

70

}

}

void translateOutput(const adevs::Bag<adevs::Event<int*> >& internal,

adevs::Bag<char*>& external) {

// Iterate through the incoming events

adevs::Bag<adevs::Event<int*> >::const_iterator iter;

for (iter = internal.begin(); iter != internal.end(); iter++) {

// Convert the incoming event value to a string

char* str = new char[100];

sprintf(str,"%d",*((*iter).value));

// Put it into the bag of translated objects

external.insert(str);

}

}

void gc_output(adevs::Bag<char*>& g) {

// Delete strings allocated in the translateOutput method

adevs::Bag<char*>::iterator iter;

for (iter = g.begin(); iter != g.end(); iter++)

delete [] *iter;

}

void gc_input(adevs::Bag<adevs::Event<int*> >& g) {

// Delete integers allocated in the translateInput method

adevs::Bag<adevs::Event<int*> >::iterator iter;;

for (iter = g.begin(); iter != g.end(); iter++)

delete (*iter).value;

}

};

71

72

Chapter 9

Random Numbers

Adevs has two classes that work together to generate many types of random numbers. These two classes
are the random seq class and the rv class. The random seq class provides uniformly distributed random
numbers to the rv class, and the rv transforms this uniform stream of random numbers into a variety of
random number distributions.

The random seq class is an interface for a random number generator. Its derived classes produce
uniformly distributed pseudo-random numbers. The underlying random number stream is accessed with
two methods. The next long returns a raw random number as an unsigned long. The next dlb refines
the next long method by reducing the raw random number to a double precision number in the interval
[0, 1]. The random number sequence is initialized with the set seed method, and the entire random number
generator can be copied with the copy method. To summarize, the random seq class has four abstract
methods

void set_seed(unsigned long seed)

double next_dbl()

random_seq* copy() const

unsigned long next_long()

that must be implemented by any derived class.
Adevs comes with two implementations of the random seq class: the crand class and the mtrand class.

The crand class uses the rand function from the standard C library to implement the required methods. Its
implementation is trivial; I’ve listed it below as an example of how to implement the random seq interface.

class crand: public random_seq {

public:

/// Create a generator with the default seed

crand(){}

/// Create a generator with the given seed

crand(unsigned long seed) { srand (seed); }

/// Set the seed for the random number generator

void set_seed(unsigned long seed) { srand (seed); }

/// Get the next double uniformly distributed in [0, 1]

double next_dbl() { return (double)rand()/(double)RAND_MAX; }

/// Copy the random number generator

unsigned long next_long() { return (unsigned long)rand(); }

random_seq* copy() const { return new crand (); }

/// Destructor

~crand(){}

};

73

The mtrand class implements the Mersenne Twister random number generator1. The code is based on
their open source implementation of the Mersenne Twister. Aside from its potential advantages as a random
number generator, the mtrand class differs from the crand class by its ability to make deep copies; every
instance of the mtrand class has its own random number stream.

The rv class uses the uniform random numbers provided by a random seq object to produce several dif-
ferent random number distributions: triangular, uniform, normal, exponential, lognormal, Poisson, Weibull,
binomial, and many others. Every instance of the rv class is created with a random seq; the default is an
mtrand object, but any type of random seq object can be passed to the rv constructor. The different
random distributions are sampled by calling the appropriate method: triangular for a triangular distribu-
tion, exponential for an exponential distribution, poisson for a Poisson distribution, etc. Adevs is open
source software; if a new distribution is needed then you can add a method that implements it to the rv
class (and, I hope, contribute the expansion to the Adevs project).

1M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random
Number Generator”, ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pgs. 3-30.

74

Chapter 10

Interpolation

Data is often made available as a set of tabulated points. Hourly temperature data, millisecond samples
of a voltage signal in an electric circuit, and a minute by minute record of a radar track are examples of
continuous signals recorded at discrete points in time. But if you need temperate data every half hour,
the circuit voltage a fractions of a millisecond, or track information at quarter minutes then a method for
approximating values between tabulated points will be very useful. The InterPoly class exists for this
purpose.

The InterPoly class approximates smooth continuous signal by fitting a polynomial to the available
data points. The approximating polynomial is guaranteed to pass through every available data point, and in
many cases it provides a reasonable approximation to the original signal between the available data points.
The most familiar example of an interpolating polynomial is a line that connects two data points (t1, x1)
and (t2, x2); the connecting line is

p(t) =
t− t2

t1 − t2
x1 +

t− t1

t2 − t1
x2

and it is easy to check that p(t1) = x1 and p(t2) = x2. If more data points are available then quadratic, cubic,
quartic, and even higher degree polynomials can be used to obtain (in principle) better approximations.

An interpolating polynomial can be constructed with the InterPoly class in three ways. The first way
is to provide the sample data to the InterPoly constructor

InterPoly(const double* u, const double* t, unsigned int n)

where u is an array of data values,t is an array of associated time points, and n is the number of data points
(i.e., the size of the u and t array). The constructor will build an n − 1 degree polynomial that fits the
supplied data. The second way is supply just the data values, a time step, the first time value, and number
of data points to the constructor

InterPoly(const double* u, double dt, unsigned int n, double t0 = 0.0)

where u is an array of data values, dt is the time spacing of the data points, n is the number of data points,
and t0 is the time instant of the first data point (i.e., the data point i is at time t0 + i ·dt). Both constructors
make copies of the supplied arrays, and changes to the array values will not be reflected by the InterPoly
object. The third way is to assign new data point values to an existing polynomial by calling the InterPoly
method

void setData(const double* u, const double* t = NULL)

where u is the new set of data values and t is (optionally) the new set of time points. This method requires
that the number of data points in u (and t if used) be equal to the number of points supplied to the InterPoly
constructor.

There are three methods for computing interpolated values: the interpolate method, the overloaded
operator(), and the derivative method. The method signatures are listed below:

75

double interpolate(double t) const

double operator()(double t) const

double derivative(double t) const

The interpolate method and operator() give the value of the interpolating polynomial at the time point
t. The derivative method gives the value of the first time derivative of the interpolating polynomial as an
approximation of the first time derivative of the original function. For example, if the data describes the
position of an object through time then the derivative method gives and approximation of the object’s
velocity.

To demonstrate the InterPoly class and give you a sense of what the interpolating polynomials look like,
I’ve listed below a program that computes sin(t), its time derivative cos(t), and interpolated approximations
of both. Interpolating polynomials built with 4, 5, and 6 data point in the interval [0, 2π] are illustrated in
Figs. 10.1 and 10.2. The quality of the approximation generally improves as more data points are added,
but the function and interpolating polynomial diverge significantly outside of the interval spanned by the
data points. Be careful if you extrapolate!

#include "adevs.h"

#include <cmath>

#include <iostream>

using namespace std;

int main(int argc, char** argv) {

// Get the number of data points to use and allocate

// memory for the data points arrays

int N = atoi(argv[1]);

double* t = new double[N];

double* u = new double[N];

// Compute data points using the sin function

for (int i = 0; i < N; i++) {

t[i] = i*(2.0*3.14159/(N-1));

u[i] = sin(t[i]);

}

// Create the interpolating polynomial

adevs::InterPoly p(u,t,N);

// The data arrays can be deleted now

delete [] t; delete [] u;

// Compute several points with sin, its derivative, and the polynomial

// inside and a little beyond the interval spanned by the data

for (double t = 0; t < 2.0*3.14159+0.5; t += 0.01)

cout << t

<< " " << sin(t) << " " << p(t)

<< " " << cos(t) << " " << p.derivative(t)

<< endl;

// Done

return 0;

}

76

-1

-0.5

 0

 0.5

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

t

sin(t)
4 points
5 points
6 points

Figure 10.1: The function sin(t) and some interpolating polynomials with data spanning the interval [0, 2π].

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

t

cos(t)
4 points
5 points
6 points

Figure 10.2: The time derivative of sin(t) and the time derivative of some interpolating polynomials with
data spanning the interval [0, 2π].

77

	Building and Installing
	Modeling and simulation with Adevs
	Atomic Models
	Network Models
	Parts of a Network Model
	Simulating a Network Model
	Building a Network Model
	Digraph Models
	Cell Space Models

	Variable Structure Models
	Building and Simulating Variable Structure Models
	A Variable Structure Example

	Continuous Models
	Using the Runge-Kutte Integration Modules
	Building Numerical Integration Blocks for Adevs

	The Simulator Class
	Models with Many Input/Output Types
	Random Numbers
	Interpolation

