
Data Coupling and Downcasting in Discrete Event

Simulation Software∗

James Nutaro, Richard Ward, Glenn Allgood

Oak Ridge National Laboratory

{nutarojj,wardrc1,allgoodgo}@ornl.gov

Alexander Parfenov, Jason Holmstedt

Physical Optics Corporation

aparfenov@poc.com , jtholmstedt@hotmail.com

Keywords: DEVS, discrete event simulation, object
oriented simulation

Abstract
Discrete Event System Specification (DEVS) simulation
libraries commonly make use of indirection and, essen-
tially, typeless events as part of their interface specifi-
cation. This forces library users to employ downcasting
and/or strong data coupling in the design of their sim-
ulation applications. These techniques are anathema to
good object oriented design principles, but seem to be
inescapable when using pre-built DEVS simulation li-
braries. This paper describes how downcasting and data
coupling emerge in the design of a computer architecture
model. It is hoped that, by exposing the problem and
its underlying causes, future research can be directed
at improving software engineering techniques for DEVS
simulation software.

1 INTRODUCTION

In object oriented software software systems, class hier-
archies are constructed to represent variations on a com-
mon theme. When class hierarchies are designed well, it
is possible to construct extensible software systems that
rely only on information about base types (i.e., classes
near the top of the hierarchy). This makes the software

∗This manuscript has been authored by UT-Battelle, LLC, un-

der contract DE-AC05- 00OR22725 with the U.S. Department of

Energy. The United States Government retains and the publisher,

but accepting the article for publication, acknowledges that the

United States Government retains a non-exclusive, paid-up, irre-

vocable, world-wide license to publish or reproduce the published

form of this manuscript, or allow others to do so, for United States

Government purposes.

robust in the face of changes to specialized classes, re-
sulting in code that is easier to maintain.

The animal farm is a classic example of object oriented
programming. The farm has different types of animals,
and every animal makes its own noise. Given the collec-
tion of animals on a farm, the objective is to print the
noise that every animal makes. Suppose the farm has
just a Dog and a Cat. Fig. 1 shows a C++ program
that solves this problem by using downcasting.

This downcasting based solution is deficient, from an
object oriented perspective, in two ways. First, adding
new animals requires new dynamic cast and if state-
ments in the main for loop. Second, if the code encoun-
ters an unknown animal type, then it will fail to print
the animal sound. These short comings are manifested
in the need to downcast the Animal objects to specific
Dog and Cat objects before the makeSound method can
be called.

The need for downcasting can be overcome by using
a virtual makeSound method in the Animal base class.
With this new implementation, the two difficulties de-
scribed above disappear; the need for downcasting is al-
leviated by the use of polymorphism. This solution does
not require information specific to the derived types (i.e.,
Dog and Cat), and so the need for downcasting is elim-
inated. The revised code listing is shown in Fig. 2.

Discrete Event System Specification (DEVS) simula-
tion APIs commonly include a base class from which
input and output event classes are derived (see, e.g, [2],
[7], [1], and [3]). While models operate on the derived
event classes, the simulation engine is aware only of the
base class. Consequently, type information is lost when
an event passes from a model to the simulation engine
and back.

The use of indirection and, essentially, typeless events

class Animal {
public:

virtual ∼Animal(){}
};
class Dog: public Animal {

public:
void makeSound() {

cout ≪ "WOOF!" ≪ endl;
}

};
class Cat: public Animal {

public:
void makeSound() {

cout ≪ "MEOW!" ≪ endl;
}

};

int main() {
Animal∗ Farm[2];
Farm[0] = new Dog; Farm[1] = new Cat;
for (int i = 0; i < 2; i++) {

Dog∗ dog =
dynamic cast<Dog∗>(Farm[i]);

Cat∗ cat =
dynamic cast<Cat∗>(Farm[i]);

if (dog ! = NULL)
dog->makeSound();

if (cat ! = NULL)
cat->makeSound();

}
return 0;

}

Figure 1. Solution with downcasting: an Animal farm
without polymorphism.

in the core simulation engine leads to one of two design
choices for applications. The first is to use a single super-
event for model input and output. This creates strong
data coupling in the application. The second is to use
run-time type identification and downcasting to properly
interpret input events.

The super-event solution introduces a single class that
encompasses all possible event types. This solves the un-
known type problem by permitting only one type. While
input events are downcast before being processed, the
downcasting is always safe because there is only one pos-
sible target type.

The second solution relies extensively on downcasting
and run-time type identification to process input events.

class Animal {
public:

virtual void makeSound() = 0;
virtual ∼Animal(){}

};
class Dog: public Animal {

public:
void makeSound() {

cout ≪ "WOOF!" ≪ endl;
}

};
class Cat: public Animal {

public:
void makeSound() {

cout ≪ "MEOW!" ≪ endl;
}

};

int main() {
Animal∗ Farm[2];
Farm[0] = new Dog; Farm[1] = new Cat;
for (int i = 0; i < 2; i++)

Farm[i]->makeSound();
return 0;

}

Figure 2. Solution without downcasting: an Animal
farm with polymorphism.

While this avoids the worst aspects of data coupling, it
introduces an implicit dependence between communicat-
ing components. In this case, the event generating com-
ponent must produce an output type that is compatible
with the expected input type of the receiving compo-
nent. Violations of this implicit agreement can cause
the simulation software to fail. Moreover, incompatibil-
ity problems only appear at run-time, and so the overall
robustness of the software is necessarily diminished.

A general principle of object oriented software is that
the need for downcasting indicates a design flaw. How-
ever, it appears that current approaches to object ori-
ented, DEVS-based simulation do not, or possibly can
not, effectively use polymorphism in their event process-
ing routines. By using a super-event to avoid downcast-
ing, the designer trades downcasting for data coupling.
Neither solution is attractive, but no alternatives seem
to be available.

This paper documents the use of data coupling and
downcasting in an object oriented computer architecture
model. The model was developed for the Physical Optics

Corporation to support performance related design stud-
ies. It is hoped that, by exposing the source of the design
problem and its underlying causes, future research can
be directed at improving software engineering techniques
for DEVS simulation software.

2 THE MODEL

The model is used to assess the performance of a pro-
posed computer architecture for specific supercomputing
applications at Oak Ridge National Laboratory. A per-
formance assessment is done by executing an abstract
model of the application on the simulated computer. The
computer model captures throughput characteristics of
the component hardware, first in/first out queuing of re-
quests by device drivers, and it can execute programs
described as a sequence of send and receive operations,
disk access operations, and CPU bound calculations.

The computer described by the model has four com-
pute nodes that are linked by a high speed optical net-
work. The model is decomposed into three layers. The
top layer is the complete four node system. At the mid-
dle layer are the distinct nodes and the optical network.
The network model is an abstract representation of the
Physical Optics Corporation optical interconnect. The
network model captures salient performance characteris-
tics, which include the anticipated network latency and
throughput characteristics. This mid-level view of the
model is shown in Fig. 3.

Figure 3. Node and interconnect view of the model.

A node model is decomposed into its component parts,
as shown in Fig. 4. The PCI-X bus, HyperTransport
tunnel, and optical network adapter model describe spe-
cific devices and their driver software. These models
capture data transport latency as a function of data size
and device throughput. In addition to this basic func-
tion, the PCI-X bus and HyperTransport tunnel have
data routing capabilities. The PCI-X bus can deliver

data to targeted PCI devices. The HyperTransport tun-
nel can forward data to the PCI-X bus or communicate
directly with the SCSI disk controller.

Figure 4. Block diagram of the node model.

The disk drive, SCSI disk controller, and CPU model
execute requests. In the case of the CPU model, these
requests are a sequence of program instructions (i.e., net-
work send, network receive, disk read, disk write, and
compute). An example of a program that can be exe-
cuted by the CPU model is shown in Fig. 5. The network
instructions require communication with the optical net-
work adapter via the PCI-X bus and HyperTransport
tunnel. The disk read and write instructions are ser-
viced by communicating with the SCSI disk controller
via the HyperTransport tunnel. The SCSI controller, in
turn, executes requests to access the disk. A disk access
request begins a series of interactions between the SCSI
controller and the disk drive that model the disk access
activity.

Figure 5. Program listing that can be executed by the
CPU model.

The model output shows the cumulative times that
each CPU model spent performing its four major activ-

ities. These activities include time spent waiting to re-
ceive data from the network and disk, time spent writing
to the disk, and the amount of CPU bound computation.
Figure 6 shows the output data for a CPU. The model
produces four such output files, one per CPU.

recv wait time 2956.04
disk read time 0.00778285
disk write time 0.00759405
cpu time 6.31976e+06

Figure 6. Model output file for one CPU.

3 EVENT OBJECTS IN

ADEVS

The model is implemented in C++ using the Adevs sim-
ulation engine (see [3]). Adevs uses a class called object

as the base class for all events. Events are routed through
a multicomponent model using PortValue objects. Each
PortValue object has two fields; a port identifier and
a pointer to an object of type object. The simulation
engine and models exchange events using dynamic ar-
rays, implemented by the adevs bag<PortValue> class,
of PortValue objects.

Input events are delivered to a model via two virtual
methods that correspond to the external and confluent
transition functions of an atomic DEVS model. These
methods are implemented by every model, and they are
called by the simulation engine whenever input events
are available for the model to process. Fig. 8 shows an
abbreviated listing of the external transition function for
the HyperTransport model. The NodeEvent class that
appears in the code listing is derived from the object

class.

When a model changes state autonomously, the simu-
lation engine calls a virtual method that corresponds to
the atomic model output function. This method accepts
an empty bag, and fills it with PortValue objects that
represent the model output events. The output function
for the HyperTransport tunnel model is shown in Fig. 7.

4 DATA COUPLING

Data coupling (sometimes called stamp coupling) occurs
when software components share a complex data type.
Data coupling can appear when an excessive number of

void AMD 8131 HyperTransport PCI X Tunnel::
output func(adevs bag<PortValue>& y) {

// Send the first request in the queue
//to the appropriate output port.
output(req q.front().dst,

req q.front().e.clone(),y);
}

Figure 7. The HyperTransport tunnel output function.

arguments, typically in the form of a large data struc-
ture, are accepted as a method (or function) argument.
When some of these arguments are unnecessary, the in-
terface becomes difficult to use and understand (see, e.g.,
[4]).

To see how data coupling occurs in the computer archi-
tecture model, consider two possible interactions. The
first is the creation of a disk read request by the CPU.
The information needed by the SCSI controller to pro-
cess a read request are the request type and the number
of bytes to read. This information appears in the pro-
gram instruction that is executed by the CPU, and so it
can be easily provided by the CPU model.

As the request moves from the CPU to the SCSI con-
troller, it passes through the HyperTransport tunnel.
The HyperTransport tunnel needs to know the number
of bytes being moved and the location of the target de-
vice (i.e., on the PCI-X bus or the SCSI controller). This
information is also provided by the CPU.

The data flow for processing a disk read request is
summarized in Fig. 9. The CPU provides the Hyper-
Transport indicator, data size, and request type. This in-
formation passes first through the HyperTransport tun-
nel model, which requires only the HyperTransport in-
dicator and data size. It then passes from the Hyper-
Transport tunnel to the SCSI controller, which requires
only the request type and data size.

A simple implementation of this data flow, and the
one used in this model, is to create a super-event that
contains all of the information needed to route the re-
quest through the intermediate hardware and process it
on arrival at the target device. A NodeEvent class is cre-
ated to hold all of the input and output data required by
the models. In this particular case, the NodeEvent con-
tains the request type, HyperTransport indicator, and
data size.

This creates the first instance of data coupling. The
HyperTransport tunnel receives unnecessary data in the
form of the request type. The SCSI controller receives
the HyperTransport indicator, which is not useful to it in

void AMD 8131 HyperTransport PCI X Tunnel::delta ext(double e, const adevs bag<PortValue>& x)
{

// Add incoming requests to the request queue.
for (int i = 0; i < x.getSize(); i++) {

ht msg t msg;
msg.src = x.get(i).port;
const NodeEvent∗ e = dynamic cast<const NodeEvent∗>(x.get(i).value);
msg.e = ∗e;
// Route the message to the appropriate output port.
if (msg.src == side A in && e->protocol == HYPER TRANSPORT PROTOCOL) {

msg.dst = side B out;
req q.push back(msg);

}
else if (msg.src == side B in && e->protocol == HYPER TRANSPORT PROTOCOL) {

msg.dst = side A out;
req q.push back(msg);

}
//
else if (msg.src == pci bus B in && e->protocol == PCI X PROTOCOL &&
msg.e.target device addr == pci addr b) {

msg.dst = side B out;
req q.push back(msg);

}
// If this is the first request, then process it
if (req q.size() == 1 && timeNext() == ADEVS INFINITY) {

process next req();
}

}
}

Figure 8. The HyperTransport tunnel external transition functions.

any way. Access to these unnecessary data items intro-
duces an opportunity for errors. For instance, if the Hy-
perTransport tunnel does not preserve the request type,
then the disk read request will fail.

The problem grows as new features are added to the
model and, consequently, more data is added to the
super-event. Fig. 10 shows the NodeEvent class that
is used in the complete model. Although each data field
is required for some transaction within the model, only a
handful (two or three fields) are required by any partic-
ular transaction. Moreover, as the number of intermedi-
ate components that participate in a transaction grows,
the potential for mishandling data grows as well. Possi-
ble mishandling includes inconsistent use of a data item
or the accidental introduction of erroneous values when
events are copied or modified.

5 DOWNCASTING

Suppose a component is given an object of class A, but
it needs an object of class B. If the class B is derived
from class A, it is possible to downcast the object class
from A to B. In practice, downcasting takes the form of
a query and a cast. Is this object of class B derived from
class A? If it is, then cast the object as one of class B.

Because the simulation engine is aware only of the
base class, it is necessary for models to downcast input
events before they are processed. Downcasting can be
done blindly when a single event class is allowed. In
designs that allow for multiple event classes, the appro-
priate cast must be determined using the port identifier
or the language run-time type identification system. In
the first case, failures due to downcasting are avoided at
the expense of introducing data coupling. In instances
where multiple event classes are permitted, unexpected

class NodeEvent: public object {
public:

NodeEvent(object∗ user data = NULL);
NodeEvent(const NodeEvent& src, object∗ user data);
NodeEvent(const NodeEvent& src);
const NodeEvent& operator=(const NodeEvent& src);
∼NodeEvent();
// Create a copy of this object.
object∗ clone() const;
// Communication protocol and device used to transport this event.
node protocol t protocol;
// Target address for a message. Addresses are protocol dependent.
int target device addr;
// Originating address for a message. Addresses are protocol dependent.
int orig device addr;
// Device specific request type.
device request t req type;
// Number of bits comprising the request.
int num bits;
// Get any user data that was assigned to this event.
const object∗ get data() const;

};

Figure 10. The NodeEvent class definition.

failures can occur when the class of an input event is
unknown or unexpected.

In the computer architecture model, problematic
downcasting is avoided by using a single super-event
class (i.e., the NodeEvent class). However, to illustrate
a downcasting based solution, suppose that each com-
ponent model defines its own event classes, and these
classes carry only the information that is needed by the
component. For the interaction described previously,
there are three distinct event types. A DiskRequestEvent

is defined for the SCSI controller, and its attributes are
the request type and data size. A HyperTransportEvent

is defined for the HyperTransport tunnel, and its at-
tributes are the destination of the data transmission, a
reference to the data being transported, and the data
size.

To initiate a disk read request, the CPU creates a
HyperTransportEvent whose transported data reference
attribute points to a DiskRequestEvent. This is received
by the HyperTransport tunnel as an object that must be
downcast to a HyperTransportEvent. The HyperTrans-
port tunnel then passes the DiskRequestEvent to the
SCSI controller, where it is received as an object that
must be downcast to a DiskRequestEvent before being
processed.

This solution could fail for several reasons. In one
scenario, the event source has misunderstood the input
requirements of the event destination. This could occur,
for instance, because of an error in the component docu-
mentation. In another scenario, the event source uses an
obsolete interface definition (e.g., an obsolete header file
in conjunction with an up to date version of the object
code). In a third scenario, the coupling constraints are
misunderstood by the component integrator. For exam-
ple, connecting the CPU directly to the SCSI controller
will cause a run-time failure.

The origin of these failures are difficult to find. They
occur at run-time because the compiler is unable to per-
form type checking on model input and output events.
Moreover, an event moves by an indirect path from its
source (i.e., the CPU) to its destination (i.e., the SCSI
controller).

6 CONCLUSIONS

The widespread use of a base class for event represen-
tation in DEVS simulation engines suggests that data
coupling and downcasting are common features of DEVS
based simulation applications. The computer architec-

Figure 9. Data flow for a disk read request.

ture model described in this paper is a stereotypical ex-
ample of a discrete event model, and so the design issues
that emerge in this application are likely to appear in
many DEVS modeling projects.

It is difficult to avoid data coupling and extensive use
of downcasting given a simulation engine that uses indi-
rection and a base class for event representation. A solu-
tion to this problem might require new design patterns
for DEVS simulators, but promising candidates have yet
to be identified. The use of coupling compilers (see, e.g.,
[2] and [5]) and application specific languages (see, e.g.,
[6]) might suggest another solution. Special languages
for describing model coupling could, for instance, hide
an underlying super-event solution by automatically cre-
ating appropriate class aliases (e.g., C typedefs) and en-
forcing access constraints at compile time.

The problems of downcasting and data coupling can
be avoided in simulation software based on the event
scheduling paradigm. Within this paradigm, a context is
included with every event handler. The context object is
used in the event handling routine to implement changes
in its own state. Figure 11 sketches an event scheduling
solution to the disk request example described above. A
similar approach, adapted to the interface requirements
of DEVS based simulation libraries, might also provide a
solution to the software engineering problems described
in this paper.

References

[1] Jean-Baptiste Filippi and Paul Bisgambiglia.
JDEVS: an implementation of a DEVS based formal
framework for environmental modelling. Environ-

mental Modelling & Software, 19(3):261–274, March
2004.

[2] E. Kofman, M. Lapadula, and E. Pagliero. Pow-
erDEVS: A DEVS-Based Environment for Hybrid
System Modeling and Simulation. Technical Report
LSD0306, School of Electronic Engineering, Univer-
sidad Nacional de Rosario, Rosario, Argentina, 2003.

[3] A. Muzy and J. Nutaro. Algorithms for efficient
implementations of the DEVS & DSDEVS abstract
simulators. In 1st Open International Conference

on Modeling & Simulation, pages 401–407, ISIMA
/ Blaise Pascal University, France, June 2005.

[4] Roger S. Pressman. Software Engineering: A Practi-

tioner’s Approach, Sixth Edition. McGraw-Hill, New
York, New York, 2005.

[5] András Varga. OMNeT++ user manual, OMNeT++
version 3.2. Unpublished manuscript, 2005.

[6] Gabriel Wainer. CD++: a toolkit to develop
DEVS models. Software: Practice and Experience,
32(13):1261–1306, 2002.

[7] Bernard P. Zeigler and Hessam S. Sarjoughian. In-
troduction to DEVS modeling and simulation with
Java: Developing component-based simulation mod-
els. Unpublished manuscript, 2005.

class NodeEvent;

class AMD 8131 HyperTransport PCI X Tunnel {
public: // Event processing methods

void handleNodeEvent(NodeEvent∗ e);
// . . .

private: // State variables
deque<ht msg t> req q;
// . . .
void process next req();

};
class NodeEvent: public SimulationEvent {

public: // Event specific data is the same as before
int src;
node protocol t protocol;
// . . .
// Event context
AMD 8131 HyperTransport PCI X Tunnel∗ context;
// Event handler
void handler() { context->handleNodeEvent(this); }

};
void AMD 8131 HyperTransport PCI X Tunnel::
handleNodeEvent(NodeEvent∗ e) {

if (e->protocol == HYPER TRANSPORT PROTOCOL && e->src == side A in) {
ht msg t msg;
// Create message from NodeEvent e
req q.push back(msg);

}
// . . .
process next req(); // Schedule another NodeEvent

}

Figure 11. Sketch of an event scheduling implementation for the HyperTransport tunnel.

