
A Unified View of Time and Causality and its Application to Distributed Simulation

James J. Nutaro
Arizona Center for Integrative Modeling and Simulation

Electrical and Computer Engineering Department
University of Arizona, Tucson, AZ 85721-0104

Email: nutaro@ece.arizona.edu

Hessam S. Sarjoughian
Arizona Center for Integrative Modeling and Simulation

Computer Science and Engineering Department
Arizona State University, Tempe, AZ 85287-5406

Email: sarjoughian@asu.edu

Keywords: Causality, DEVS, Distributed, Logical
Processes, Simulation, System Theory, Time.

Abstract
This paper presents a framework for distributed simulation
that is based on system-theoretic and logical-process
concepts. The framework describes a three-part world-view
for developing simulation models. These are modeling
formalisms, abstract simulators, and computational
environments. A unified view of time and causality allows
for the application of system-theoretic notions of causality
within a distributed simulation environment. Within this
framework, we introduce a unified notion of causality.
Further we describe an approach for developing distributed
simulation models which evolve from modeling constructs
to simulation algorithms and their implementations. The
framework is exemplified using the Discrete EVent System
Specification (DEVS) modeling formalism, its abstract
simulator, and a parallel algorithm that implements the
abstract simulator.

INTRODUCTION
The design and verification of distributed algorithms

frequently relies on an event-oriented model of a process in
which processes communicate via messages (e.g., [1]).
Given a set of processes, a single process is described as a
sequence of states and events. A process changes state in
response to events that can be generated internally or that
arrive from some other process. Formally, such a set of
interacting processes can be described by a decomposed,
partially ordered set (deposet, see, for example, [2]). This
formalization is useful for proving that particular algorithms
have desired characteristics such as safety and liveness.

An extension of this formalism, in which messages are
assigned time stamps, describes the logical-process
approach to distributed discrete event simulation [3]. The
local causality constraint restricts the allowable sequences
of local states and events in such a way that the global
sequence of states and events is causally consistent.

While event oriented models can be simulated by logical
process based algorithms, discrete event systems have been
described which can not be easily or straightforwardly
mapped into an event oriented modeling paradigm [4].
Examples of such models are partial differential equations
and systems of ordinary differential equations approximated
by quantized state systems [5]. One approach to this
problem is to handle each model or particular types of
models on a case by case basis, e.g., the discrete time
algorithm presented by [6]. Another, more generally
applicable, approach is to map system-theoretic formalisms
into a logical process world-view.

This paper presents a portion of the abstract time
systems theory (see [11]) and the discrete event system
specification formalism (see [5],[7-8]). The problems of
time and causality in distributed simulation systems are
revisited in the context of simulating causal time systems.
A model of a simulation process is presented that is
sufficiently general to represent, in a computationally
friendly form, the class of discrete (time and event) causal
systems. The usefulness of this model is shown in the
development of a simple parallel algorithm for simulating
DEVS models. A sketch of the correctness proof for the
algorithm is also presented.

SYSTEMS, CAUSALITY, AND CAUSAL
PRECEDENCE

An I/O relational system is a system for which the input
quantities and output quantities can be distinguished [11][5].
A relational system S is described as the cross product of
two sets X and Y denoting the input set and output set
respectively. The system S is an I/O functional system if S
is a function, assuming some particular initial state if
necessary. At this level of abstraction, the system is a
collection of inputs to the system and the resulting outputs.
For example, the function {(T,F),(F,T)} describes a system
that behaves as a logical not gate.

An abstract time system is a system with input and
output objects that are functions of an independent variable.

ISBN: 1-56555-268-7 419 SCSC '03

mailto:nutaro@ece.arizona.edu
mailto:sarjoughian@asu.edu

These types of input and output objects are called abstract
time functions. An abstract time function is a map from a
time base T to a set of values. A set T can be used as an
abstract time base so long as a total order, denoted by <, and
an equivalence relation, denoted by =, is defined for T such
that if t1 = t2 then it is not the case that t1 < t2. The real
numbers under the usual < and = relations is an example of
such a time base.

An abstract time system is causal if the system output is
a function of past and current, but not future, inputs. That
is, the future cannot effect the past. In fact, there exist two
notions of causality [11]. The first requires that the system
outputs be a function of past and current inputs. Such a
system is weakly causal, or simply causal. The second
requires that the system outputs be a function of past inputs
only. Such a system is called strongly causal.

Logical Processes
Consider a system described by a logical process

[6][12]. The logical process is described by an initial state
and a function that takes a sequence of messages (or shared
variable values) over a simulated time interval from t0 to tf
and produces a corresponding sequence of output messages
(or shared variable values) over the same interval. Such a
logical process is called realizable by [12]. Clearly, a
realizable logical process is a weakly causal system.

A predictable logical process is proposed by [12] as a
necessary condition for a logical process to be implemented
on a parallel computer. A predictable logical process is a
logical process whose output at time t is a function of the
inputs received up to some time t + ε, where ε is a positive
number. A predictable logical process is a strongly causal
system.

There are two aspects of the logical process world-view
that introduce problems when trying to represent general
system-theoretic models. The first is the strong causality of
logical processes. This presents problems when trying to
simulate weakly causal systems. An example of a weakly
causal system is the implicit Euler approximation of
dx/dt=f(x(t)) by the causal (but not strongly causal, i.e. not
predictable) discrete time system x(t+h)=x(t)+hf(x(t+h)),
where h is the integration time step. The simulator for this
system has two computational loops. The outer loop
advances the simulation clock. The inner loop solves the
fixed-point problem for a particular time step. Similar
systems can be represented by weakly causal DEVS models
(see [13]). Non-predictable logical processes are considered
by [6], but they are not addressed in a systematic way.

The second difficulty is apparent from a careful study of
the process model from which the logical process model is
derived. The input streams are sequences of messages with
exactly one message being processed at each point in time.
How do we manage simultaneous events arriving from
multiple sources? This problem has appeared in the parallel

discrete event simulation literature as the simultaneous
event problem (see, for example, [14-15]). The solution has
almost invariably relied on further information about the
model itself (e.g. priorities), or was solved by fiat (i.e. first
come, first served).

For example, suppose we wanted to model an n-body
gravitational problem using a collection of n logical
processes, one for each body. A body is a system with an n
dimensional input vector where each element of the vector
is provided by a distinct logical process. It is clear that each
element of the input vector acts on the system
simultaneously.

In a logical process world-view, a simulation protocol
could be built into the models themselves that control how
the system as a whole advances forward in time. For
instance, each logical process might wait to receive a
message from all other logical processes before moving
onto the next time step. Unfortunately, we are beginning to
mix the model and the simulator, causing one to be
inextricably entwined with the other.

If we lose the distinction between a model and its
simulator, the task of showing that simulation algorithms
are correct with respect to a system-theoretic modeling
formalism becomes impractical. This observation has been
made by several authors (e.g. [16-17]) who have constructed
correctness proofs for parallel simulation algorithms. The
result of these proofs is to show that messages are processed
in time stamp order. The issue of correctness with respect a
modeling formalism (e.g. DEVS) is not addressed. A recent
study considered separation of models and their simulators
by examining the weaknesses of employing the DEVS
modeling formalism or the HLA/RTI distributed simulation
paradigm in isolation [10]. It discusses the benefits of
unifying the system-theoretic modeling and the logical
process paradigms for realization of distributed simulation
models.

LOGICAL CLOCKS
Logical clocks are used for detecting causal precedence

relations in a distributed computing environment. As was
discussed in section 2, a causal precedence relation over a
set of events and the time ordering of a set of events can not
be used interchangeably when dealing with general system-
theoretic models. This is a key point, since it implies that
the model's notion of time, by itself, cannot be used to
deduce causality. In contrast to this, the logical process
world-view, with its basis in a strongly causal modeling
paradigm, has generally treated time ordering and causal
precedence as being interchangeable.

This observation prompts the question of how logical
process simulators can be usefully employed to simulate
system-theoretic models? There is substantial empirical
evidence to indicate that this is the case (e.g. [18-19], and
[9]). However, one cannot pick up an arbitrary logical

ISBN: 1-56555-268-7 420 SCSC '03

process simulator and say that it will be correct with respect
to a particular modeling formalism.

Minimally Consistent Clocks
A minimally consistent clock describes the notion of

time and its relationship to causality in general systems,
where we allow the output and state at time t to be a
function of inputs up to and including time t. A minimally
consistent clock is one that meets the following condition
[14]: Let e1 and e2 be two events and C a minimally
consistent clock. If e1 → e2 then C(e1) ≤ C(e2). It is easy to
see that if C(e1) > C(e2) then ¬(e1 → e2).

A minimally consistent clock allows two events that
happened simultaneously to be causally related. When
simulating weakly causal systems, the ability to discern
causality between two seemingly simultaneous events is
often necessary. Such a capability is needed for modeling
event sequences that have a definite causal relationship, but
no measurable time elapses in the course of the model
interaction (see, for example, [20]).

Weakly Consistent Clocks
A weakly consistent clock meets the following condition

[2][21]: Let e1 and e2 be two events and C be a weakly
consistent clock. Then

i) If C(e1) > C(e2) then ¬(e1 → e2), and
ii) If C(e1) =C(e2) then ¬(e1 → e2) and ¬(e2 → e1).

The statement ¬(e1 → e2) and ¬(e2 → e1) is denoted e1 ||

e2. From the definition, it can be seen that
iii) If e1 → e2 then C(e1) < C(e2).

In the context of weakly causal system, the model clock,

when used as a weakly consistent clock, is insufficient to
perform the simulation. Since several causally related
function evaluations might take place at time t, we would be
forced to conclude that the order in which the function
evaluations take place is immaterial to the outcome.

A General Purpose Simulation Clock
A weakly consistent clock suitable for keeping time in

simulations of weakly causal systems is presented by [22].
We provide a system-theoretic interpretation of the
algorithm and show how it resolves the causality problem
using time stamps appropriate for use in a parallel
algorithm. A time stamp is a pair (t,c) where t is a model
derived time-stamp (e.g. the time of next event) and c is an
integer counter. The simulator maintains a time of last
event (tL,cL) whose initial value is (0,0). When a model
executes an event at model time t, the simulator compares
that t to tL. If t = tL, then the simulation time of next event
becomes (t,cL+1). Note that the model time of next event is
still t. If tL < t, then the simulation time of next event

becomes (t,0). The time of last event is then set to be the
previous time of next event.

There are two rules for comparing time stamps:

1. (t1,c1) < (t2,c2) if t1 < t2 or t1 = t2 and c1 < c2, and
2. (t1,c1) = (t2,c2) if t1 = t2 and c1 = c2.

The operation of the clock can be imagined by drawing a

directed, a-cyclic graph where each node represents a model
that undergoes a zero time state transition (i.e., processes a
zero time event) in response to an input and each arc
represents an input to the model. If cycles are present in the
graph, they are broken by inserting nodes to represent a
particular model at different instances in time (i.e., one node
per model state change is allowed in the graph). The input-
free nodes are labeled 0. These are the first nodes to
execute events at, say, time t. The neighbors of these nodes
are labeled 1. They are the next set of nodes to execute
events at time t. Similarly, their neighbors are labeled 2.
Eventually, this procedure will label every node in the
graph. Sets of nodes with identical labels can be computed
in any order. Otherwise, nodes must be computed in label
order. The labels are the numbers assigned to different zero
time events by the second field of the simulation clock.

THE DEVS FORMALISM
The DEVS formalism uses two types of models to

describe a system. Atomic models represent non-
decomposable processes, entities, or other types of system.
More complex models are constructed hierarchically. A
coupled model is a multi-component model constructed
from atomic models and other coupled models.

An atomic model is described by a state set, output set,
and input set and a collection of functions that define its
dynamic behavior. The internal transition function
describes the autonomous behavior of the system. The
external transition function describes the input response of
the system. The confluent transition function is used to
resolve the case where an internal and an external transition
occur simultaneously. The time advance function indicates
the time that must elapse before the next internal event
occurs, assuming that no input becomes available in the
interim. The output function gives the output of the system
as a function of its state immediately before the internal
transition function.

Formally, an atomic model is represented by a structure
< S, X, Y, δint,, δext, δconf , λ, ta > where

S is the set of system states
X is the set of input events
Y is the set of output events
δint, : S → S is the internal transition function,
δext : Q × Xb → S is the external transition function,
where Q = { (s,e) such that s ∈S and 0 ≤ e ≤ ta(s) },

ISBN: 1-56555-268-7 421 SCSC '03

δconf : S × Xb → S is the confluent transition
function,
ta : S → R+∪{∞} is the time advance function, and
λ : S → Yb is the output function.

Note that the formalism allows bags of input and output
events to be consumed and produced, respectively, by the
system.

A coupled model is specified in terms of a set of atomic
components and a coupling specification. The closure under
coupling property for coupled models (see [5]) ensures that
a coupled model can be reduced to an atomic model that is
equivalent at the I/O functional level. This allows for the
inclusion of coupled models as components of other coupled
models and so enables hierarchical model construction.

Formally, a coupled model is described by a structure N
= <X,Y,M,Z> where X and Y are the model input and
output sets, M is a set of component models subject to the
constraint the N ∉M (i.e., the network model can not be a
component of itself), and Z is a coupling specification. The
coupling specification is a set of functions that describe
three types of mappings. The functions zNm, where m ∈M
are the external input couplings. These map the coupled
model input set X to the component model input sets Xm.
Similarly, the functions zmN are the external output
couplings that map the component output sets Ym to the
network model's output set Y. Finally, internal couplings
are described by the functions zmk where m,k ∈M and zmk
maps the output set Ym to the input set Xk.

For the purposes of this paper, we consider only the
simulation of a flat coupled model (i.e., one in which any
coupled components have been reduced to their atomic
equivalents). Given an input trajectory, the resulting state
and output trajectories are computed as follows. Set the
time of last event tLi to zero for every component model i.
Set the time of next event, call it tN, to the smallest time
tL+tai(si) over all models, where tai(si) is the time advance
of the ith model, and the earliest event bag in the input
trajectory, call it x.

Having computed the time of next event for this cycle,
the component model input/output is determined1. If the
time at which x is valid is tN, apply the input zNi(x) to every
component model i such that zNi(x) is not the non-event.
Also, for every component model k whose time of next
event is equal to tN, compute its output function and apply
the input zki(λ(sk)) to every model i such that zki(λ(sk)) is not
the non-event. If a model received input from more than
one source, the incoming events are collected into a single
input bag for the model. This completes the input/output
computation for the cycle.

1Note that message passing from one component to
another is instantaneous.

Next, the model state changes are computed. For every
component model whose time of next event is tN but has
not received input, compute its next state using the internal
transition function. For every component model whose time
of next event is tN and has received input, compute its next
state using the confluent transition function. For every
model component whose time of next event is less than tN
and has received input, compute its next state using the
elapsed time value tLi - tN and the external transition
function. The time of last event for all models that changed
state is then set to tN (i.e. tLi := tN for every model i whose
state has changed). This completes a cycle, and so we
repeat.

COMPUTATIONAL REPRESENTATIONS
OF SYSTEM FORMALISMS

A theoretical framework for studying simulation
algorithms provides an abstract view of the modeling
formalism under consideration. This abstraction is useful
because it describes the formalism in a computationally
friendly way. We focus on the I/O functional view of a
model where the initial state is assumed and the input
trajectory is described by an event sequence. The
concatenation operator is provided to model multi-
dimensional input trajectories (see section 2.1). A particular
choice of clock (i.e. weakly or minimally consistent)
describes the relationship between time and causality in the
modeling formalism. In general, the two dimensional clock
described in section 3.3 can be used to construct a weakly
consistent clock for system formalisms that allow weakly
causal models. However, the minimally consistent clock is
not disallowed.

Figure 1. Elements of a modeling and simulation
framework.

Figure 1 shows the organization of a simulation
framework for a general modeling formalism. This view is
derived from the seven-layer view presented in [10]. The
models themselves are described in an algorithm neutral

Model
Abstract
simulator

Simulation algorithm

computation correctness

interpretation

Computational platform

implementation

System formalism

ISBN: 1-56555-268-7 422 SCSC '03

way (i.e. the construction of the model description requires
no knowledge of the simulation algorithm). Associated
with the model is an abstract simulator that describes the
rules for interpreting models described using the system
formalism. This is not the same as rules for interpreting a
particular model. The details of a particular model's
behavior are contained within the model itself.

From the abstract simulator, a particular simulation
algorithm is derived that is behaviorally identical to the
abstract simulator. This is mapped onto a computational
platform (e.g. hand calculator, parallel computer, cluster, or
workstation) where the actual computation is performed.

 The computational model that is presented in this paper
fits between the system formalism and the simulation
algorithm. The goal is to provide a means of expressing
simulation algorithms in a form that is concise and eases the
job of building correctness proofs for a computational
scheme. Correctness, of course, being relative to the
abstract simulator whose behavior we are trying to realize.

A computational representation of a system formalism is
a structure that is, at the I/O functional level, equivalent to
the formalism and whose time stamped events form of a
decomposed, partially ordered set. The computational
representation consists of a set of inputs values, a set of
output values, and a set of time stamps associated with those
values. An event is a (time,value) pair. We use the event e
and its associated pair (t,v) interchangeably. We adopt the
convenient notational convention ei = (ti,vi). We can order
events by time stamp as follows

1. e1 ≤ e2 iff t1 ≤ t2
2. e1 < e2 iff t1 < t2
3. e1 = e2 iff t1 = t2

We expect time stamps to be assigned to values in a way

that is consistent with our expectation that smaller time
stamps indicate earlier events. If e1 and e2 are two causally
independent events with equal time stamps, then we can
concatenate their values to get a new event e3.
Concatenation will be denoted by •. For example, let (t,a)
and (t,b) be two causally independent events. Then
(t,a)•(t,b) ≡ (t,{a,b}). Concatenation allows bags of causally
unrelated events with equal time stamps to be denoted by a
single event. Concatenation is defined to be associative and
commutative.

We rely on a particular interpretation of the simulation
clock to determine when two events are causally
independent. Most commonly, weak consistency is
assumed and so e1 = e2 is taken to imply e1 || e2. However, if
minimal consistency is assumed, we cannot in general
determine if e1 || e2.

A computational representation has a state that is
represented by a stack of events that record the event history

of the simulation. Formally, a computational representation
is described by STC = <E, G, push, eN, out> where

E is an event set
G is a set of event stacks (e0e1...) where ei ∈E,
push : G × E → G is the transition function,
eN : G → E is the next event function, and
out : G → E is the output function.

The push function is defined such that

push((e0e1...en),e) = (e0e1...ene).

The functions eN and out depend on the behavior of the

interpretation of the simulation clock. If we assume a
weakly consistent clock, then these function are constrained
such that

eN(e0e1...en) = e such that en < e, and
out(e0e1...en) = y such that en < y ≤ eN(e0e1...en).

If a minimally consistent clock is assumed, then
eN(e0e1...en) = e such that en ≤ e, and
out(e0e1...en) = y such that en ≤ y ≤ eN(e0e1...en).

Computational Representation of Logical
Processes

We claim the above model includes the logical process
model. A stack corresponds to an event history for the
logical process. Given a stack s, the operation push(s,eN(s))
represents the logical process executing an event that it
scheduled for itself. If an event x is received from some
other the logical process, the operation push(s,x) constructs
the event history that results from processing x. The out(s)
function is used to determine which events should be sent to
other logical processes.

A logical process simulator may or may not make use of
event concatenation. For example, if a particular simulator
uses a first come, first serve processing order for events with
identical time stamps, concatenation is not needed.
However, if events with equivalent time stamps are
delivered to the logical process for sorting by the model,
then concatenation provides a mechanism for doing so.
Similarly, a particular logical process implementation may
choose either form of clock (see for example, Yaddes which
requires non-zero look-ahead for efficient simulation (see
[17]) and SPEEDES which allows for it (see [23]).

Computational Representation of DEVS
Atomic Models

We consider only atomic DEVS models. Let s be the
stack that represents the event history of the system up to
some time t. The next event is determined by one of three
operations. An internal event is represented by the
operation push(s,eN(s)). Given an input event x, the
external transition function is represented by push(s,x). The

ISBN: 1-56555-268-7 423 SCSC '03

confluent transition function is modeled by the operation
push(s,eN(s)•x). The output function is modeled by out(s).
The time advance function is wrapped up in the time stamp
of the eN(s) event, as will be shown in the next section. For
a more formal treatment of the relationship between DEVS
and simulation processes, see [24].

It is clear from the preceding discussion that a logical
process simulator is not necessarily correct with respect to
the DEVS formalism. Such a simulator might violate the
formalism in several ways. For example, selection of a
minimally consistent clock that uses model derived time
stamps will not produce results that are correct with respect
to DEVS [4]. Similarly, the algorithm must be sensitive to
how preemption of internal events is handled in order to
maintain the semantics of the time advance function.
Lastly, DEVS specifies event bags and the confluent
transition function for managing simultaneous events.
These features might not be supported by a logical process
simulator.

Correctness of a Parallel Algorithm
In this section, we develop a simple parallel simulation

algorithm in terms of the above model. The algorithm is a
basic, event stepped algorithm equivalent to a single level
Parallel DEVS abstract coordinator (see [5]). We show that
the algorithm is correct by hypothesizing a correct final
stack configuration and demonstrating that the algorithm
constructs that stack.

Let <Ei, Gi, pushi, eNi, outi> denote the ith simulator and
assume we have N of them labeled 1,2,...,N. We use Φ to
denote no event (i.e. x•Φ=Φ). It is assumed that the clock is
weakly consistent. The for each blocks are executed in
parallel.

Algorithm 1: Event stepped simulation
1 tN := min{outi(stci).t} for all i in [1,N]
2 while (tN < tstop)
3 for each i in [1,N]
4 if (eNi(stci).t = tN)
5 xi := eNi(stci)
6 else
7 xi := Φ
8 end
9 end
10 for each i in [1,N] such that outi(stci).t = tN
11 for each j in [1,N] such that i influences j
12 xj := xj • outi(stci)
13 end
14 end
15 for each i in [1,N] such that xi ≠ Φ
16 stci := push(stci,xi)
17 end
18 tN := min(outi(stci).t) for all i in [1,N]
19 end

 We sketch a proof for the restricted case of two
simulators, call them 1 and 2. Suppose the end result of a
run should be 1 = (x1x2x3...xn) and 2 = (z1z2...zm). The
simulator is trivially correct if 1 and 2 are empty stacks (i.e.
there are no events to process). Suppose its correct up to
(x1x2x3...xp) and (z1z2...zq) where p < n and q ≤ m. Without
loss of generality, we consider how the stack (x1x2x3...xp+1)
is constructed. A new event can be added as a result of an
internal transition, external transition, or a confluent
transition.

Assume the next simulation event for 1 is an internal
transition. That is, xp+1=eN1(x1x2x3...xp) and
out1(x1x2x3...xp).t=xp+1.t and xp+1.t < out2(z1z2...zq).t. In this
case, 1 processes some internal event and generates a
(possibly null valued) output event, but does not receive
input from 2. Line 18 ensures that tN=out1(x1x2x3...xp).t.
By hypothesis then, tN=eN1(x1x2x3...xp).t. So line 4
evaluates to true and at line 5, x1=eN1(x1x2x3...xp). Since
tN<out2(z1z2...zq).t, line 12 is not executed. Finally, line 15
evaluates to true and at line 16 we push x1 onto the stack.
Since x1 is xp+1, we get the desired result.

Now, assume the next simulation event for 1 is an
external transition. That is, xp+1.t=out2(z1z2...zq).t and
eN1(x1x2x3...xp)<out2(z1z2...zq). In this case, 1 processes
some external event that is received from 2. Line 18
ensures that tN=out2(z1z2...zq). So line 7 is executed setting
x1 = Φ. Line 10 evaluates to true for 2 and, since 2
influences 1, we end up with x1=out2(z1z2...zq). Again, line
15 evaluates to true and at line 16 we push x1 onto the stack.
Since x1 is xp+1, we get the desired result.

Finally, assume the next simulation event for 1 is a
confluent transition. That is, xp+1=
out2(z1z2...zq)•eN1(x1x2x3...xp) and eN1(x1x2x3...xp).t
=out1(x1x2x3...xp).t=xp+1.t. In this case, 1 processes a bag of
events constructed from an external event received from 2
and an internal event. Line 18 ensures that
tN=out2(z1z2...zq).t=out1(x1x2x3...xp).t. By hypothesis,
tN=eN1(x1x2x3...xp).t. So line 4 evaluates to true, setting
x1=eN1(x1x2x3...xp). Line 10 evaluates to true for 2 and,
since 2 influences 1, we end up with
x1=out2(z1z2...zq)•eN1(x1x2x3...xp). Finally, line 15 evaluates
to true and at line 16 we push x1 onto the stack. Since x1 is
xp+1, we get the desired result.

Additional properties that we would like to show are
safety (i.e. the algorithm only applies internal, external, or
confluent events to the simulators), liveness (at least one
event is processed per pass), and correct termination (the
simulation halts when the desired stacks have been created).
Briefly, safety holds since any case other than an internal,
external, or confluent transition causes line 15 to evaluate to
false. Liveness holds because the simulation clock is
always advanced to the time of the next simulation event.
The algorithm terminates when the next simulation event
has a time stamp greater than tstop.

ISBN: 1-56555-268-7 424 SCSC '03

CONCLUSIONS
The model presented in this paper provides a unified

approach for describing time and causality in parallel
simulation protocols when those protocols are required to be
correct with respect to system-theoretic modeling principles.
The model provides a unique capability to describe
algorithms that can simulate models with a DEVS
representation at the I/O functional level. The model
maintains important aspects of the logical process model
that has been useful for studying distributed and parallel
simulation algorithms.

ACKNOWLEDGEMENT
This research was partially supported by NSF Next

Generation Software (Grant No. EIA-9975050) and
Scaleable Enterprise System (Grant No. DMI-0122227)
programs.

REFERENCES
[1] Fujimoto, R.M., Parallel and Distributed Simulation

Systems, John Wiley and Sons, Inc., 2000.
[2] Garg, V.K., Principles of Distributed Systems, Kluwer

Academic Publishers, Boston, 1996.
[3] Reed, D.A., R.M. Fujimoto, "Mutlicomputer Networks:

Message-based parallel processing", MIT Press,
Cambridge, Mass., 1987.

[4] Zeigler, B.P., G. Ball, H. Cho, J.S. Lee, H.S.
Sarjoughian, “Implementation of the DEVS Formalism
over the HLA/RTI: Problems and Solutions”, SIW,
March 1999.

[5] Zeigler, B.P., H. Praehofer, T.G. Kim, Theory of
Modeling and Simulation, 2nd edition, Academic Press,
New York, 2000.

[6] Bagrodia, R., “A Unifying Framework for Distributed
Simulation”, ACM Transactions on Modeling and
Computer Simulation, Vol. 1, No. 4, pp. 248-385, 1991.

[7] Wymore, W.A., Model-based Systems Engineering: An
Introduction to the Mathematical Theory of Discrete
Systems and to the Tricotyledon Theory of System
Design, CRC, Boca Raton, 1993.

[8] Sato, R., “Realization Theory of Discrete-event
Systems and its Application to the Uniqueness and
Universality of DEVS”, Int. J. Of General Systems,
Vol. 30, No. 5, pp. 513-549, 2001.

[9] Wainer, G., “Improved Cellular Models with Parallel
Cell-DEVS”, TRANSACTIONS of the Society for
Computer Simulation, Vol. 17, No. 1, 2000.

[10] Sarjoughian, H.S., B.P. Zeigler, “DEVS and HLA:
Complementary Paradigms for M&S?”,
TRANSACTIONS of the Society for Computer
Simulation, Vol. 17, No. 4, pp. 187-197, 2000.

[11] Mesarovic, M.D., Y. Takahara, Abstract Systems
Theory, Springer-Verlag, New York, 1989.

[12] Misra, J., “Distributed Discrete Event Simulation”,
Computing Surveys, Vol. 18, No. 1, pp. 39-65, 1986.

[13] Kofman, E., “Quantization--Based Simulation of
Differential Algebraic Equation Systems”, Technical
Report LSD0203, LSD, Universidad Nacional de
Rosario, 2002.

[14] Rönngren, R., M. Liljenstam, “On Event Ordering in
Parallel Discrete Event Simulation”, Thirteenth
Workshop on Parallel and Distributed Simulation, pp
38-45, 1996.

[15] Wieland, F., “The Threshold of Event Simultaneity”,
Transactions of the Society for Computer Simulation
International, Vol. 16, No. 1, 1999.

[16] Frey, P., R. Radhakrishnan, H.W. Carter, P.A. Wilsey,
P. Alexander, “A Formal Specification and Verification
Framework for Time Warp-Based Parallel Simulation”,
IEEE Trans. on Software Engineering, Vol. 28, No. 1,
pp. 58 - 78, 2002.

[17] Ghosh, S., “On the Proof of Correctness of Yet Another
Asynchronous Distributed Discrete Event Simulation
Algorithm (YADDES)”, IEEE Trans. on Systems, Man,
and Cybernetics-Part A: Systems and Humans, Vol. 26,
No. 1, pp. 68-80, 1996.

[18] Prähofer, H. and G. Reisinger. “Distributed Simulation
of DEVS-based Multiformalism Models”, In AIS '94.
Gainesville, FL, December 1994.

[19] Liao C., A. Motaabbed, D. Kim, B.P. Zeigler,
“Distributed Simulation of Sparse Output DEVS”,
Proceedings of AI, Simulation, and Planning in High
Autonomy Systems, Tucson, AZ, September, IEEE/CS
1993.

[20] Rieffel, E., “An Introduction to Quantum Computing
for Non-Physicists”, ACM Computing Surveys, Vol. 32,
No. 3, pp. 300-335, 2000.

[21] Schwarz, R., F. Mattern, “Detecting Causal
Relationships in Distributed Computations: In Search of
the Holy Grail”, Distributed Computing, Vol. 7, No. 3,
pp. 149-174, 1994.

[22] Jha, V., R. Bagrodia, “A Unified Framework for
Conservative and Optimistic Distributed Simulation”,
8th Workshop on Parallel and Distributed Simulation,
pp. 12-19, 1994.

[23] Steinman, J.S., “SPEEDES: A multiple-synchronization
environment for parallel discrete event simulation”, The
International Journal for Computer Simulation, Vol. 2,
No. 3, pp. 251-286, 1992

[24] Nutaro, J.J., “Time Management and Interoperability in
Distributed Discrete Event Simulation”, Master's
Thesis, University of Arizona, Department Electrical
and Computer Engineering, 2000.

ISBN: 1-56555-268-7 425 SCSC '03

	TITLE PAGE
	SCSC Table of Contents
	ACROBAT HELP
	A Unified View of Time and Causality and its Application to Distributed Simulation
	Keywords:
	Abstract
	INTRODUCTION
	SYSTEMS, CAUSALITY, AND CAUSAL PRECEDENCE
	LOGICAL CLOCKS
	THE DEVS FORMALISM
	COMPUTATIONAL REPRESENTATIONS OF SYSTEM FORMALISMS
	CONCLUSIONS
	ACKNOWLEDGEMENT
	REFERENCES

