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Abstract 
This paper presents a framework for distributed simulation 
that is based on system-theoretic and logical-process 
concepts.  The framework describes a three-part world-view 
for developing simulation models.  These are modeling 
formalisms, abstract simulators, and computational 
environments.  A unified view of time and causality allows 
for the application of system-theoretic notions of causality 
within a distributed simulation environment.  Within this 
framework, we introduce a unified notion of causality. 
Further we describe an approach for developing distributed 
simulation models which evolve from modeling constructs 
to simulation algorithms and their implementations.  The 
framework is exemplified using the Discrete EVent System 
Specification (DEVS) modeling formalism, its abstract 
simulator, and a parallel algorithm that implements the 
abstract simulator. 

INTRODUCTION 
The design and verification of distributed algorithms 

frequently relies on an event-oriented model of a process in 
which processes communicate via messages (e.g., [1]).  
Given a set of processes, a single process is described as a 
sequence of states and events.  A process changes state in 
response to events that can be generated internally or that 
arrive from some other process.  Formally, such a set of 
interacting processes can be described by a decomposed, 
partially ordered set (deposet, see, for example, [2]).  This 
formalization is useful for proving that particular algorithms 
have desired characteristics such as safety and liveness. 

An extension of this formalism, in which messages are 
assigned time stamps, describes the logical-process 
approach to distributed discrete event simulation [3].  The 
local causality constraint restricts the allowable sequences 
of local states and events in such a way that the global 
sequence of states and events is causally consistent. 

While event oriented models can be simulated by logical 
process based algorithms, discrete event systems have been 
described which can not be easily or straightforwardly 
mapped into an event oriented modeling paradigm [4].  
Examples of such models are partial differential equations 
and systems of ordinary differential equations approximated 
by quantized state systems [5].  One approach to this 
problem is to handle each model or particular types of 
models on a case by case basis, e.g., the discrete time 
algorithm presented by [6].  Another, more generally 
applicable, approach is to map system-theoretic formalisms 
into a logical process world-view. 

This paper presents a portion of the abstract time 
systems theory (see [11]) and the discrete event system 
specification formalism (see [5],[7-8]). The problems of 
time and causality in distributed simulation systems are 
revisited in the context of simulating causal time systems.  
A model of a simulation process is presented that is 
sufficiently general to represent, in a computationally 
friendly form, the class of discrete (time and event) causal 
systems.  The usefulness of this model is shown in the 
development of a simple parallel algorithm for simulating 
DEVS models.  A sketch of the correctness proof for the 
algorithm is also presented. 

SYSTEMS, CAUSALITY, AND CAUSAL 
PRECEDENCE 

An I/O relational system is a system for which the input 
quantities and output quantities can be distinguished [11][5].  
A relational system S is described as the cross product of 
two sets X and Y denoting the input set and output set 
respectively.  The system S is an I/O functional system if S 
is a function, assuming some particular initial state if 
necessary.  At this level of abstraction, the system is a 
collection of inputs to the system and the resulting outputs.  
For example, the function {(T,F),(F,T)} describes a system 
that behaves as a logical not gate. 

An abstract time system is a system with input and 
output objects that are functions of an independent variable.   
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These types of input and output objects are called abstract 
time functions.  An abstract time function is a map from a 
time base T to a set of values.  A set T can be used as an 
abstract time base so long as a total order, denoted by <, and 
an equivalence relation, denoted by =, is defined for T such 
that if t1 = t2 then it is not the case that t1 < t2.  The real 
numbers under the usual < and = relations is an example of 
such a time base. 

An abstract time system is causal if the system output is 
a function of past and current, but not future, inputs.  That 
is, the future cannot effect the past.  In fact, there exist two 
notions of causality [11].  The first requires that the system 
outputs be a function of past and current inputs.  Such a 
system is weakly causal, or simply causal.  The second 
requires that the system outputs be a function of past inputs 
only.  Such a system is called strongly causal. 

Logical Processes 
Consider a system described by a logical process 

[6][12].  The logical process is described by an initial state 
and a function that takes a sequence of messages (or shared 
variable values) over a simulated time interval from t0 to tf 
and produces a corresponding sequence of output messages 
(or shared variable values) over the same interval.  Such a 
logical process is called realizable by [12].  Clearly, a 
realizable logical process is a weakly causal system. 

A predictable logical process is proposed by [12] as a 
necessary condition for a logical process to be implemented 
on a parallel computer.  A predictable logical process is a 
logical process whose output at time t is a function of the 
inputs received up to some time t + ε, where ε is a positive 
number.  A predictable logical process is a strongly causal 
system.   

There are two aspects of the logical process world-view 
that introduce problems when trying to represent general 
system-theoretic models.  The first is the strong causality of 
logical processes.  This presents problems when trying to 
simulate weakly causal systems.  An example of a weakly 
causal system is the implicit Euler approximation of 
dx/dt=f(x(t)) by the causal (but not strongly causal, i.e. not 
predictable) discrete time system x(t+h)=x(t)+hf(x(t+h)), 
where h is the integration time step.  The simulator for this 
system has two computational loops.  The outer loop 
advances the simulation clock.  The inner loop solves the 
fixed-point problem for a particular time step.  Similar 
systems can be represented by weakly causal DEVS models 
(see [13]).  Non-predictable logical processes are considered 
by [6], but they are not addressed in a systematic way.   

The second difficulty is apparent from a careful study of 
the process model from which the logical process model is 
derived.  The input streams are sequences of messages with 
exactly one message being processed at each point in time.  
How do we manage simultaneous events arriving from 
multiple sources?  This problem has appeared in the parallel 

discrete event simulation literature as the simultaneous 
event problem (see, for example, [14-15]).  The solution has 
almost invariably relied on further information about the 
model itself (e.g. priorities), or was solved by fiat (i.e. first 
come, first served). 

For example, suppose we wanted to model an n-body 
gravitational problem using a collection of n logical 
processes, one for each body.  A body is a system with an n 
dimensional input vector where each element of the vector 
is provided by a distinct logical process.  It is clear that each 
element of the input vector acts on the system 
simultaneously.   

In a logical process world-view, a simulation protocol 
could be built into the models themselves that control how 
the system as a whole advances forward in time.  For 
instance, each logical process might wait to receive a 
message from all other logical processes before moving 
onto the next time step.  Unfortunately, we are beginning to 
mix the model and the simulator, causing one to be 
inextricably entwined with the other.   

If we lose the distinction between a model and its 
simulator, the task of showing that simulation algorithms 
are correct with respect to a system-theoretic modeling 
formalism becomes impractical.  This observation has been 
made by several authors (e.g. [16-17]) who have constructed 
correctness proofs for parallel simulation algorithms.  The 
result of these proofs is to show that messages are processed 
in time stamp order.  The issue of correctness with respect a 
modeling formalism (e.g. DEVS) is not addressed. A recent 
study considered separation of models and their simulators 
by examining the weaknesses of employing the DEVS 
modeling formalism or the HLA/RTI distributed simulation 
paradigm in isolation [10].  It discusses the benefits of 
unifying the system-theoretic modeling and the logical 
process paradigms for realization of distributed simulation 
models. 

LOGICAL CLOCKS 
Logical clocks are used for detecting causal precedence 

relations in a distributed computing environment.  As was 
discussed in section 2, a causal precedence relation over a 
set of events and the time ordering of a set of events can not 
be used interchangeably when dealing with general system-
theoretic models.  This is a key point, since it implies that 
the model's notion of time, by itself, cannot be used to 
deduce causality.  In contrast to this, the logical process 
world-view, with its basis in a strongly causal modeling 
paradigm, has generally treated time ordering and causal 
precedence as being interchangeable. 

This observation prompts the question of how logical 
process simulators can be usefully employed to simulate 
system-theoretic models?  There is substantial empirical 
evidence to indicate that this is the case (e.g. [18-19], and 
[9]).  However, one cannot pick up an arbitrary logical 
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process simulator and say that it will be correct with respect 
to a particular modeling formalism. 

Minimally Consistent Clocks 
A minimally consistent clock describes the notion of 

time and its relationship to causality in general systems, 
where we allow the output and state at time t to be a 
function of inputs up to and including time t.  A minimally 
consistent clock is one that meets the following condition 
[14]: Let e1 and e2 be two events and C a minimally 
consistent clock.  If e1 → e2 then C(e1) ≤ C(e2).  It is easy to 
see that if C(e1) > C(e2) then ¬(e1 → e2 ). 

A minimally consistent clock allows two events that 
happened simultaneously to be causally related.  When 
simulating weakly causal systems, the ability to discern 
causality between two seemingly simultaneous events is 
often necessary.  Such a capability is needed for modeling 
event sequences that have a definite causal relationship, but 
no measurable time elapses in the course of the model 
interaction (see, for example, [20]). 

Weakly Consistent Clocks 
A weakly consistent clock meets the following condition 

[2][21]: Let e1 and e2 be two events and C be a weakly 
consistent clock.  Then 

 
i) If C(e1) > C(e2) then ¬(e1 → e2 ), and 
ii) If C(e1) =C(e2) then ¬(e1 → e2 ) and ¬(e2 → e1). 

 
The statement ¬(e1 → e2 ) and ¬(e2 → e1) is denoted e1 || 

e2.  From the definition, it can be seen that 
iii) If e1 → e2  then C(e1) < C(e2). 

 
In the context of weakly causal system, the model clock, 

when used as a weakly consistent clock, is insufficient to 
perform the simulation.  Since several causally related 
function evaluations might take place at time t, we would be 
forced to conclude that the order in which the function 
evaluations take place is immaterial to the outcome. 

A General Purpose Simulation Clock 
A weakly consistent clock suitable for keeping time in 

simulations of weakly causal systems is presented by [22].  
We provide a system-theoretic interpretation of the 
algorithm and show how it resolves the causality problem 
using time stamps appropriate for use in a parallel 
algorithm.  A time stamp is a pair (t,c) where t is a model 
derived time-stamp (e.g. the time of next event) and c is an 
integer counter.  The simulator maintains a time of last 
event (tL,cL) whose initial value is (0,0).  When a model 
executes an event at model time t, the simulator compares 
that t to tL.  If t = tL, then the simulation time of next event 
becomes (t,cL+1).  Note that the model time of next event is 
still t.  If tL < t, then the simulation time of next event 

becomes (t,0).  The time of last event is then set to be the 
previous time of next event. 

There are two rules for comparing time stamps: 
 

1. (t1,c1) < (t2,c2) if t1 < t2 or t1 = t2 and c1 < c2, and 
2. (t1,c1) = (t2,c2) if t1 = t2 and c1 = c2. 

 
The operation of the clock can be imagined by drawing a 

directed, a-cyclic graph where each node represents a model 
that undergoes a zero time state transition (i.e., processes a 
zero time event) in response to an input and each arc 
represents an input to the model.  If cycles are present in the 
graph, they are broken by inserting nodes to represent a 
particular model at different instances in time (i.e., one node 
per model state change is allowed in the graph).  The input-
free nodes are labeled 0.  These are the first nodes to 
execute events at, say, time t.  The neighbors of these nodes 
are labeled 1.  They are the next set of nodes to execute 
events at time t.  Similarly, their neighbors are labeled 2.  
Eventually, this procedure will label every node in the 
graph.  Sets of nodes with identical labels can be computed 
in any order.  Otherwise, nodes must be computed in label 
order.  The labels are the numbers assigned to different zero 
time events by the second field of the simulation clock. 

THE DEVS FORMALISM 
The DEVS formalism uses two types of models to 

describe a system.  Atomic models represent non-
decomposable processes, entities, or other types of system.  
More complex models are constructed hierarchically.  A 
coupled model is a multi-component model constructed 
from atomic models and other coupled models. 

An atomic model is described by a state set, output set, 
and input set and a collection of functions that define its 
dynamic behavior.  The internal transition function 
describes the autonomous behavior of the system.  The 
external transition function describes the input response of 
the system.  The confluent transition function is used to 
resolve the case where an internal and an external transition 
occur simultaneously.  The time advance function indicates 
the time that must elapse before the next internal event 
occurs, assuming that no input becomes available in the 
interim.  The output function gives the output of the system 
as a function of its state immediately before the internal 
transition function.    

Formally, an atomic model is represented by a structure 
< S, X, Y, δint,, δext, δconf , λ, ta > where 

S is the set of system states 
X is the set of input events 
Y is the set of output events 
δint, : S → S is the internal transition function,  
δext : Q × Xb → S is the external transition function, 
where Q = { (s,e) such that s ∈S and 0 ≤ e ≤ ta(s) },  
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δconf : S × Xb → S is the confluent transition 
function, 
ta : S → R+∪{∞} is the time advance function, and  
λ : S → Yb is the output function. 
 

Note that the formalism allows bags of input and output 
events to be consumed and produced, respectively, by the 
system.   

A coupled model is specified in terms of a set of atomic 
components and a coupling specification.  The closure under 
coupling property for coupled models (see [5]) ensures that 
a coupled model can be reduced to an atomic model that is 
equivalent at the I/O functional level.  This allows for the 
inclusion of coupled models as components of other coupled 
models and so enables hierarchical model construction.  

Formally, a coupled model is described by a structure N 
= <X,Y,M,Z> where X and Y are the model input and 
output sets, M is a set of component models subject to the 
constraint the N ∉M (i.e., the network model can not be a 
component of itself), and Z is a coupling specification.  The 
coupling specification is a set of functions that describe 
three types of mappings.  The functions zNm, where m ∈M 
are the external input couplings.  These map the coupled 
model input set X to the component model input sets Xm.  
Similarly, the functions zmN are the external output 
couplings that map the component output sets Ym to the 
network model's output set Y.  Finally, internal couplings 
are described by the functions zmk where m,k ∈M and zmk 
maps the output set Ym to the input set Xk.   

For the purposes of this paper, we consider only the 
simulation of a flat coupled model (i.e., one in which any 
coupled components have been reduced to their atomic 
equivalents).  Given an input trajectory, the resulting state 
and output trajectories are computed as follows.  Set the 
time of last event tLi to zero for every component model i.  
Set the time of next event, call it tN, to the smallest time 
tL+tai(si) over all models, where tai(si) is the time advance 
of the ith model, and the earliest event bag in the input 
trajectory, call it x.   

Having computed the time of next event for this cycle, 
the component model input/output is determined1.  If the 
time at which x is valid is tN, apply the input zNi(x) to every 
component model i such that zNi(x) is not the non-event.  
Also, for every component model k whose time of next 
event is equal to tN, compute its output function and apply 
the input zki(λ(sk)) to every model i such that zki(λ(sk)) is not 
the non-event.  If a model received input from more than 
one source, the incoming events are collected into a single 
input bag for the model.  This completes the input/output 
computation for the cycle. 

                                                 
1Note that message passing from one component to 
another is instantaneous. 

Next, the model state changes are computed.  For every 
component model whose time of next event is tN but has 
not received input, compute its next state using the internal 
transition function.  For every component model whose time 
of next event is tN and has received input, compute its next 
state using the confluent transition function.  For every 
model component whose time of next event is less than tN 
and has received input, compute its next state using the 
elapsed time value tLi - tN and the external transition 
function.  The time of last event for all models that changed 
state is then set to tN (i.e. tLi := tN for every model i whose 
state has changed).  This completes a cycle, and so we 
repeat.   

COMPUTATIONAL REPRESENTATIONS 
OF SYSTEM FORMALISMS 

A theoretical framework for studying simulation 
algorithms provides an abstract view of the modeling 
formalism under consideration.  This abstraction is useful 
because it describes the formalism in a computationally 
friendly way.  We focus on the I/O functional view of a 
model where the initial state is assumed and the input 
trajectory is described by an event sequence.  The 
concatenation operator is provided to model multi-
dimensional input trajectories (see section 2.1).  A particular 
choice of clock (i.e. weakly or minimally consistent) 
describes the relationship between time and causality in the 
modeling formalism.  In general, the two dimensional clock 
described in section 3.3 can be used to construct a weakly 
consistent clock for system formalisms that allow weakly 
causal models.  However, the minimally consistent clock is 
not disallowed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Elements of a modeling and simulation 
framework. 
 

Figure 1 shows the organization of a simulation 
framework for a general modeling formalism.  This view is 
derived from the seven-layer view presented in [10]. The 
models themselves are described in an algorithm neutral 

Model 
Abstract 
simulator 

Simulation algorithm 

computation correctness 

interpretation 

Computational platform 

implementation 

System formalism 
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way (i.e. the construction of the model description requires 
no knowledge of the simulation algorithm).  Associated 
with the model is an abstract simulator that describes the 
rules for interpreting models described using the system 
formalism.  This is not the same as rules for interpreting a  
particular model.  The details of a particular model's 
behavior are contained within the model itself. 

From the abstract simulator, a particular simulation 
algorithm is derived that is behaviorally identical to the 
abstract simulator.  This is mapped onto a computational 
platform (e.g. hand calculator, parallel computer, cluster, or 
workstation) where the actual computation is performed. 

 The computational model that is presented in this paper 
fits between the system formalism and the simulation 
algorithm.  The goal is to provide a means of expressing 
simulation algorithms in a form that is concise and eases the 
job of building correctness proofs for a computational 
scheme.  Correctness, of course, being relative to the 
abstract simulator whose behavior we are trying to realize. 

A computational representation of a system formalism is 
a structure that is, at the I/O functional level, equivalent to 
the formalism and whose time stamped events form of a 
decomposed, partially ordered set.  The computational 
representation consists of a set of inputs values, a set of 
output values, and a set of time stamps associated with those 
values.  An event is a (time,value) pair.  We use the event e 
and its associated pair (t,v) interchangeably.  We adopt the 
convenient notational convention ei = (ti,vi).  We can order 
events by time stamp as follows 

 
1. e1 ≤ e2 iff t1 ≤ t2  
2. e1 < e2 iff t1 < t2    
3. e1 = e2 iff t1 = t2 

 
We expect time stamps to be assigned to values in a way 

that is consistent with our expectation that smaller time 
stamps indicate earlier events. If e1 and e2 are two causally 
independent events with equal time stamps, then we can 
concatenate their values to get a new event e3.  
Concatenation will be denoted by •.  For example, let (t,a) 
and (t,b) be two causally independent events.  Then 
(t,a)•(t,b) ≡ (t,{a,b}).  Concatenation allows bags of causally 
unrelated events with equal time stamps to be denoted by a 
single event.  Concatenation is defined to be associative and 
commutative. 

We rely on a particular interpretation of the simulation 
clock to determine when two events are causally 
independent.  Most commonly, weak consistency is 
assumed and so e1 = e2 is taken to imply e1 || e2.  However, if 
minimal consistency is assumed, we cannot in general 
determine if e1 || e2.      

A computational representation has a state that is 
represented by a stack of events that record the event history 

of the simulation.  Formally, a computational representation 
is described by STC = <E, G, push, eN, out> where 

 
E is an event set 
G is a set of event stacks (e0e1...) where ei ∈E, 
push : G × E → G is the transition function, 
eN : G → E is the next event function, and 
out : G → E is the output function. 

 
The push function is defined such that 

push((e0e1...en),e) = (e0e1...ene). 
 
The functions eN and out depend on the behavior of the 

interpretation of the simulation clock.  If we assume a 
weakly consistent clock, then these function are constrained 
such that 

 
eN(e0e1...en) = e such that en < e, and 
out(e0e1...en) = y such that  en < y ≤ eN(e0e1...en). 

If a minimally consistent clock is assumed, then 
eN(e0e1...en) = e such that en ≤ e, and 
out(e0e1...en) = y such that  en ≤ y ≤ eN(e0e1...en). 

Computational Representation of Logical 
Processes 

We claim the above model includes the logical process 
model.  A stack corresponds to an event history for the 
logical process.  Given a stack s, the operation push(s,eN(s)) 
represents the logical process executing an event that it 
scheduled for itself.  If an event x is received from some 
other the logical process, the operation push(s,x) constructs 
the event history that results from processing x.  The out(s) 
function is used to determine which events should be sent to 
other logical processes. 

A logical process simulator may or may not make use of 
event concatenation.  For example, if a particular simulator 
uses a first come, first serve processing order for events with 
identical time stamps, concatenation is not needed.  
However, if events with equivalent time stamps are 
delivered to the logical process for sorting by the model, 
then concatenation provides a mechanism for doing so.  
Similarly, a particular logical process implementation may 
choose either form of clock (see for example, Yaddes which 
requires non-zero look-ahead for efficient simulation (see 
[17]) and SPEEDES which allows for it (see [23]). 

Computational Representation of DEVS 
Atomic Models 

We consider only atomic DEVS models.  Let s be the 
stack that represents the event history of the system up to 
some time t.  The next event is determined by one of three 
operations.  An internal event is represented by the 
operation push(s,eN(s)).  Given an input event x, the 
external transition function is represented by push(s,x).  The 
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confluent transition function is modeled by the operation 
push(s,eN(s)•x).  The output function is modeled by out(s).  
The time advance function is wrapped up in the time stamp 
of the eN(s) event, as will be shown in the next section.  For 
a more formal treatment of the relationship between DEVS 
and simulation processes, see [24]. 

It is clear from the preceding discussion that a logical 
process simulator is not necessarily correct with respect to 
the DEVS formalism.  Such a simulator might violate the 
formalism in several ways.  For example, selection of a 
minimally consistent clock that uses model derived time 
stamps will not produce results that are correct with respect 
to DEVS [4].  Similarly, the algorithm must be sensitive to 
how preemption of internal events is handled in order to 
maintain the semantics of the time advance function.  
Lastly, DEVS specifies event bags and the confluent 
transition function for managing simultaneous events.  
These features might not be supported by a logical process 
simulator. 

Correctness of a Parallel Algorithm 
In this section, we develop a simple parallel simulation 

algorithm in terms of the above model.  The algorithm is a 
basic, event stepped algorithm equivalent to a single level 
Parallel DEVS abstract coordinator (see [5]).  We show that 
the algorithm is correct by hypothesizing a correct final 
stack configuration and demonstrating that the algorithm 
constructs that stack. 

Let <Ei, Gi, pushi, eNi, outi> denote the ith simulator and 
assume we have N of them labeled 1,2,...,N.  We use Φ to 
denote no event (i.e. x•Φ=Φ).  It is assumed that the clock is 
weakly consistent.  The for each blocks are executed in 
parallel. 

 
Algorithm 1: Event stepped simulation 
1   tN := min{outi(stci).t} for all i in [1,N] 
2   while (tN < tstop) 
3   for each i in [1,N] 
4    if (eNi(stci).t = tN) 
5     xi := eNi(stci) 
6    else 
7     xi := Φ 
8    end 
9   end 
10   for each i in [1,N] such that outi(stci).t = tN 
11    for each j in [1,N] such that i influences j 
12     xj := xj • outi(stci) 
13    end  
14   end 
15   for each i in [1,N] such that xi ≠ Φ 
16     stci := push(stci,xi) 
17   end 
18  tN := min(outi(stci).t) for all i in [1,N] 
19  end 

      We sketch a proof for the restricted case of two 
simulators, call them 1 and 2.  Suppose the end result of a 
run should be 1 = (x1x2x3...xn) and 2 = (z1z2...zm).  The 
simulator is trivially correct if 1 and 2 are empty stacks (i.e. 
there are no events to process).  Suppose its correct up to 
(x1x2x3...xp) and (z1z2...zq) where p < n and q ≤ m.  Without 
loss of generality, we consider how the stack (x1x2x3...xp+1) 
is constructed.  A new event can be added as a result of an 
internal transition, external transition, or a confluent 
transition. 

Assume the next simulation event for 1 is an internal 
transition. That is, xp+1=eN1(x1x2x3...xp) and 
out1(x1x2x3...xp).t=xp+1.t and xp+1.t < out2(z1z2...zq).t.  In this 
case, 1 processes some internal event and generates a 
(possibly null valued) output event, but does not receive 
input from 2.  Line 18 ensures that tN=out1(x1x2x3...xp).t.  
By hypothesis then, tN=eN1(x1x2x3...xp).t.  So line 4 
evaluates to true and at line 5, x1=eN1(x1x2x3...xp).  Since 
tN<out2(z1z2...zq).t, line 12 is not executed.  Finally, line 15 
evaluates to true and at line 16 we push x1 onto the stack.  
Since x1 is xp+1, we get the desired result. 

Now, assume the next simulation event for 1 is an 
external transition.  That is, xp+1.t=out2(z1z2...zq).t and 
eN1(x1x2x3...xp)<out2(z1z2...zq).  In this case, 1 processes 
some external event that is received from 2.  Line 18 
ensures that tN=out2(z1z2...zq).  So line 7 is executed setting 
x1 = Φ.  Line 10 evaluates to true for 2 and, since 2 
influences 1, we end up with x1=out2(z1z2...zq).  Again, line 
15 evaluates to true and at line 16 we push x1 onto the stack.  
Since x1 is xp+1, we get the desired result. 

Finally, assume the next simulation event for 1 is a 
confluent transition.  That is, xp+1= 
out2(z1z2...zq)•eN1(x1x2x3...xp) and eN1(x1x2x3...xp).t 
=out1(x1x2x3...xp).t=xp+1.t.  In this case, 1 processes a bag of 
events constructed from an external event received from 2 
and an internal event.  Line 18 ensures that 
tN=out2(z1z2...zq).t=out1(x1x2x3...xp).t.  By hypothesis, 
tN=eN1(x1x2x3...xp).t.  So line 4 evaluates to true, setting 
x1=eN1(x1x2x3...xp).  Line 10 evaluates to true for 2 and, 
since 2 influences 1, we end up with 
x1=out2(z1z2...zq)•eN1(x1x2x3...xp).  Finally, line 15 evaluates 
to true and at line 16 we push x1 onto the stack.  Since x1 is 
xp+1, we get the desired result. 

Additional properties that we would like to show are 
safety (i.e. the algorithm only applies internal, external, or 
confluent events to the simulators), liveness (at least one 
event is processed per pass), and correct termination (the 
simulation halts when the desired stacks have been created).  
Briefly, safety holds since any case other than an internal, 
external, or confluent transition causes line 15 to evaluate to 
false.  Liveness holds because the simulation clock is 
always advanced to the time of the next simulation event.  
The algorithm terminates when the next simulation event 
has a time stamp greater than tstop. 
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CONCLUSIONS 
The model presented in this paper provides a unified 

approach for describing time and causality in parallel 
simulation protocols when those protocols are required to be 
correct with respect to system-theoretic modeling principles.  
The model provides a unique capability to describe 
algorithms that can simulate models with a DEVS 
representation at the I/O functional level.  The model 
maintains important aspects of the logical process model 
that has been useful for studying distributed and parallel  
simulation algorithms. 
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