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The temperature and bias voltage dependent electrical transport properties of in situ fabri-
cated Cu-tetracyanoquinodimethane organic nanowire devices are investigated. The low bias
conductance and current exhibit a power-law dependence on temperature and bias voltage,
respectively. The overall behavior of these nanowires can be well described by a theoretical
model of nearly independent parallel chains of quantum dots created by randomly distributed
defects. © 2007 American Institute of Physics. [DOI: 10.1063/1.2738380]

Chemically synthesized one-dimensional (1D) nano-
structures serve as model systems for investigating transport
mechanisms on the nanoscale, where the quantum confine-
ment effect, Coulomb charging energy, electron-electron in-
teractions, and disorder all play important roles. In particular,
the effects of disorder in 1D systems are significantly more
pronounced than in systems of higher dimensionality. Unlike
in two-dimensional or three-dimensional systems, current is
unable to bypass the impurity sites in 1D systems. In a dis-
ordered 1D system the underlying transport mechanism is
usually variable range hopping (VRH) conductivity: a hop-
ping electron will always try to find the lowest activation
energy AE and the shortest hopping distance r to maximize
the hopping probability as determined by P~exp(-2r/a
—AE/kgT), where a is the localization length and kj is Bolt-
zmann’s constant. The standard Mott VRH model predicts
G ~exp[—(T,/T)"*] for disordered 1D systems without
electron-electron interactions.! On the other hand, when
Coulomb interactions are taken into account, a disordered 1D
system can also be considered as a chain of weakly coupled
1D quantum dots in the Coulomb blockade regime.2 Accord-
ing to a recent theory,2 in such a system the 1D Mott law is
restricted to low temperatures. When the temperature is not
too low, function I (7,V) is predicted to behave approxi-
mately as one of the two power laws: /= VT* at low voltage
and /o VA*! at high voltage. The exponents,  and 8, depend
on interaction and disorder.

The intriguing electrical  properties of Cu-
tetracyanoquinodimethane (TCNQ) such as switching and
memory effects make them a promising candidate for or-
ganic memory devices.™ Nanowire devices of Cu-TCNQ
and closely related compounds have been fabricated and
electrically characterized at room temperature,s’6 and tem-
perature dependent electrical transport properties were re-
ported on bulk samples only.7’8 In this letter we present re-
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sults of the electrical transport measurements on
self-assembled Cu-TCNQ organic nanowire devices for
105<T<330 K.

Cu-TCNQ is a quasi-one-dimensional organic charge-
transfer complex with segregated columns of Cu cation and
TCNQ anion. Cu-TCNQ has two phases: the high conduc-
tance phase (phase I) and the low conductance phase
(phase II). In phase I the TCNQ™ units are involved in close
m-stacking interactions at ~0.324 nm whereas in phase II
the closest approach of the rings is ~0.68 nm, leading to
dramatically different conductivities for the two phases (0.25
and 1.3 107> S cm™' for phases I and II, respectively). The
latter is believed to be responsible for the electrical switching
and memory effects.’

The Cu-TCNQ nanowire devices were fabricated on de-
generately doped Si wafers with 500 nm of thermal SiO,.
The electrodes were defined using electron beam lithography
followed by electron gun assisted deposition of a 10 nm Ti
adhesion layer, 60 nm of Au, 50 nm of Cu, and 100 nm of
Au. The Cu-TCNQ nanowires were grown by the reaction of
TCNQ vapor with the Cu layer in the electrodes via vapor-
solid reaction.””'” In our devices, individual Cu-TCNQ
nanowires with diameters between 20 and 100 nm were rou-
tinely found to bridge the opposing electrodes through the
sidewalls of the Cu layer.

Figure 1(a) depicts a typical example of a few suspended
Cu-TCNQ nanowires electrically contacting two electrodes
separated by 500 nm. The self-assembled nanowires between
electrodes were characterized by Raman spectroscopy and
confirmed to be composed of Cu—TCNQ.5 Transmission elec-
tron microscopy (TEM) experiment performed on nanowires
synthesized under identical conditions reveals that the nano-
wires are largely single crystalline phase I Cu-TCNQ grow-
ing along the a axis (or the 7r-stacking direction). Figure 1(b)
schematically illustrates the crystal structure of phase I Cu
TCNQ, where the Cu atoms are coordinated to four nitrogen
atoms in a highly distorted tetrahedral environment and the
quinoid rings of the TCNQ units are engaged in face-to-face
stacking to form segregated columns along the a axis. The
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FIG. 1. (Color online) (a) Scanning electron microscopy image showing a
Cu-TCNQ nanowire device, where the electrodes are separated by approxi-
mately 500 nm. (b) Crystal structure of phase I Cu-TCNQ (Cu: yellow, N:
blue, and C: gray). (c) SAED pattern obtained from a representative single
Cu-TCNQ nanowire at zone axis [111], where the long bright streaks along
the (011) direction are attributed to the defects arranged parallel to the a axis
(the nanowire growth direction).

strong -7 stacking of TCNQ™ radicals along the a axis
favors the 1D growth of nanowires and may also enhance the
carrier mobility along the a direction.'”!" Selected area elec-
tron diffraction (SAED) experiment performed on Cu-TCNQ
nanowires synthesized under identical conditions reveals
significant structural defects as indicated by the long bright
streaks in Fig. 1(c). The electrical transport measure-
ments were performed in the two-probe geometry inside a
variable temperature cryostat, using a Keithley 6430 source-
measure unit.

We have characterized dozens of Cu-TCNQ nanowire
devices and observed both phases of Cu-TCNQ. In this study
we focus on the devices chiefly consisting of the phase I
Cu-TCNQ nanowires as indicated by the linear current-
voltage (I-V) dependence at low V and the absence of
memory effect. Figure 2 shows the temperature dependence
of the conductance G as determined by measuring the dc I-V
characteristic and taking the slope at zero bias for three rep-
resentative devices. Nonmetallic behavior (dG/dT>0) is
observed over the entire temperature range measured, with
the conductance decreasing by up to over three orders of
magnitude upon cooling from 330 to 105 K (S3). The data
for all the three samples approximately fit to the 1D VRH
model. With further decrease of temperature, the conduc-
tance becomes immeasurably small possibly due to Coulomb
blockade effects. While simple activation behavior was ob-
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FIG. 2. (Color online) Low bias conductance of three Cu-TCNQ nanowire
devices (symbols) and fits (solid lines) to the 1D variable range hopping
model.

served in bulk Cu-TCNQ crystals,7 neither the three-
dimensional VRH model nor the simple activation model fits
our data (not shown). This finding is consistent with the 1D
structure of the phase I Cu-TCNQ nanowires with defects.

Fogler et al. have demonstrated in their recent theoreti-
cal calculations that a 1D wire with a finite density of ran-
dom impurities (or defects) can also be modeled as a chain of
weakly coupled quantum dots when Coulomb interactions
are taken into account.’ They showed that for such a system
there exists a broad parameter regime where the current can
exhibit 7 and V dependences that can be approximated by
power laws (I~ VT® at low V and I~ V#*! at high V) usually
with a> B. Figure 3(a) shows the conductance (G=1/V at
low V) vs T in the double logarithmic plot for the same
samples, as depicted in Fig. 2. A power-law dependence
G~T“ is indeed observed for more than two decades of
conductance in all the three samples with a single « in the
range between 7.4 and 8.1.

Further support for the weakly coupled quantum dot
chain model can be found in the /-V characteristic for V
> kgT. Figure 3(b) shows the log-log plot of I-V curves at
different temperatures for one of the samples (S3). A transi-
tion between Ohmic (/~V) and power-law behavior
(I~ VA*) is observed as V increases. The exponent 83 ob-
tained from the data in the voltage range between 3 and 8§ V
is slightly temperature dependent and increases from 2.5 to
3.4 as the temperature decreases from 215 to 145 K. More-
over, the I-V curves measured at different temperatures for
the same sample collapse remarkably well on to a single
curve as we plot /7" vs eV/kgT, where a~7.4 is the
exponent in G(T) ~ T* [inset of Fig. 3(b)]. Table I lists a and
B for all the three samples. In general, we find that « is
significantly larger than [, consistent with the theoretical
predictions.2 The smaller power-law exponent at higher T
can be attributed to reduced typical hopping distance."”
Power-law behavior has been observed in various 1D sys-
tems, including molybdenum selenide nanowires, single and
multiwalled carbon nanotubes, and conducting
polymelrs.13 7 The power-law dependences in these systems
were attributed to the tunneling of electrons into a Luttinger
liquid (LL). However, the unusually large « and a/p ratio
makes it unlikely for the power laws in our devices to origi-
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FIG. 3. (Color online) (a) Low bias conductance vs T for the same Cu-
TCNQ nanowire devices, as shown in Fig. 2; solid lines are fits to the power
law, G~ T (b) I-V data taken at different temperatures. All curves show a
change from linear response (8~ 0) to power-law dependence at a tempera-
ture dependent high bias voltage. Inset: 1/7%*' determined from the I-V data
plotted against eV/kpT.

nate from the LL effects. On the other hand, the 1D quantum
dot chain model can explain not only the power laws but also
the large o/ .

The coincidence of power-law temperature dependence
and 1D VRH behavior in our Cu-TCNQ nanowires may be

TABLE I. Exponents « and B determined from the temperature dependent
conductance and /-V characteristic of three representative Cu-TCNQ nano-
wire devices. Values of the slightly temperature dependent 83 are listed for
three different temperatures (in parentheses): 81, 82, and S3.

Sample S1 S2 S3
a 8.0 8.1 7.4
Bl 0.95(305 K) 0.57(245 K) 2.5(215 K)
B2 1.15(245 K) 0.71(225 K) 3.2(175 K)
B3 1.25(205 K) 0.95(185 K) 3.4(145 K)
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attributed to the rather limited temperature range. A second
possibility is that our nanowires are close to the transitional
parameter range between VRH and weakly coupled quantum
dots. While the power-law behavior in the I-V characteristic
cannot be explained in the context of the standard VRH
model, our data agree with the 1D quantum dot chain model
indicating that the Coulomb interactions in our Cu-TCNQ
nanowires cannot be neglected. It is also worth pointing out
that the Cu-TCNQ nanowires in our devices are quasi-1D
systems with a large number of nearly independent 1D con-
ducting channels in parallel. Therefore, mesoscopic fluctua-
tions that would normally obscure the power-law behavior in
strictly 1D wires are averaged out in our systems.2

In summary, the electrical transport properties of our Cu-
TCNQ nanowires are consistent with their disordered 1D
structure as determined by TEM. The power-law depen-
dences indicate the existence of Coulomb interactions in our
nanowires. Further experimental studies for a larger tempera-
ture range will be needed to fully understand the intriguing
1D transport phenomena in Cu-TCNQ organic nanowires by
eliminating any potential ambiguity.
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