
Visual Analysis of Code Security
John R. Goodall
Secure Decisions

A division of Applied Visions, Inc.
6 Bayview Ave.

Northport NY 11768
631-754-4920

JohnG@SecureDecisions.com

Hassan Radwan
Applied Visions, Inc.

6 Bayview Ave.
Northport NY 11768

631-754-4920

HassanR@avi.com

Lenny Halseth
Applied Visions, Inc.

6 Bayview Ave.
Northport NY 11768

631-754-4920

LennyH@avi.com

ABSTRACT
To help increase the confidence that software is secure,
researchers and vendors have developed different kinds of
automated software security analysis tools. These tools analyze
software for weaknesses and vulnerabilities, but the individual
tools catch different vulnerabilities and produce voluminous data
with many false positives. This paper describes a system that
brings together the results of disparate software analysis tools into
a visual environment to support the triage and exploration of code
vulnerabilities. Our system allows software developers to explore
vulnerability results to uncover hidden trends, triage the most
important code weaknesses, and show who is responsible for
introducing software vulnerabilities. By correlating and
normalizing multiple software analysis tools’ data, the overall
vulnerability detection coverage of software is increased. A visual
overview and powerful interaction allows the user to focus
attention on the most pressing vulnerabilities within huge volumes
of data, and streamlines the secure software development
workflow through integration with development tools.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – Graphical user interfaces (GUI).

General Terms
Security, Human Factors.

Keywords
Security visualization, software visualization, software assurance,
data fusion, software analysis.

1. INTRODUCTION
DHS listed Software Assurance as one of the hard problems for
Cyber Security: “poorly written software is at the root of all of our
security problems.”[10] There are a huge number of
vulnerabilities, and bad or malicious coding practices are at the
heart of the problem. However, tools exist today to help make

software more secure. These software security analysis tools
include open-source and commercial solutions. None of these
tools on their own, however, are capable of finding all bugs or
vulnerabilities. The NSA tested five different software security
analysis tools on eight different applications and found that 84%
of the vulnerabilities were identified by one tool and one tool
alone: “No tool stands out as an uber-tool. Each has its strengths
and weaknesses.”[4] Different tools identify different software
weaknesses. Our own development and tests found that many of
these tools produce enormous result sets and that many of the
identified vulnerabilities are false positives. Coverity, a market
leader in software analysis, targets a 20% false positive rate. [2]
Assuming other tools have similar ratios of false positives, even
the best case is that only 80% of the identified vulnerabilities are
likely to be accurate. These tools also tend to present results in a
view oriented around vulnerability hierarchies, but developers
think in a different hierarchy – that of the source code itself.
Current tools lack overviews of the results, making it difficult to
understand the overall security of an application. Better software
analysis tools are only part of improving code security, because
these tools:
• Identify different vulnerabilities;
• Use different semantics for results;
• Produce sizable datasets with numerous false positives;
• Present a vulnerability-centric view; and
• Offer no big picture overviews.
Our technical approach for this project was to develop a visual
analysis environment, shown in Figure 1, that brings together the
output of disparate software analysis tools into a visual analysis
environment that supports a natural workflow for developers to
triage and explore the security state of their code. This solution
integrates, correlates, and normalizes software analysis tools’ data
to increase vulnerability detection coverage, provides a visual
overview and interaction methods to focus users’ attention on the
most pressing vulnerabilities within huge volumes of data, and
streamlines secure development workflow through integration
with software development tools.
The benefits of our approach to Software Assurance include:

• More software analysis tools mean more vulnerabilities will
be detected, and vulnerabilities that are detected by multiple
tools have a higher confidence that they are accurate;

• Providing interactive information visualization presents
results in an understandable format and grants the ability to
focus on the most important vulnerabilities; and

• Integration with Systems Development Lifecycle tools
provide a streamlined workflow that gives developers more
time for coding and less time trying to interpret results.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
VizSec ‘10, September 14, 2010, Ottawa, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0013-1/10/09…$10.00.

46

2. LITERATURE REVIEW
There is a rich history in applying information visualization to the
domains of software development (e.g. ACM Symposium on
Software Visualization and IEEE International Workshop on
Visualizing Software for Understanding and Analysis) and, more
recently, cyber security (e.g. Symposium on Visualization for
Cyber Security). However, little work has been applied to the
visualization of software security. Recently, researchers have
begun to look at applying visualization to the specific issues of
reverse engineering and understanding malware behavior. Quist
and Liebrock use visualization to aid in reverse engineering by
identification of major functional areas and de-obfuscation
through a node-link visualization in which nodes represent
addresses and links represent state transitions between
addresses.[11] Trinius, et al. use treemaps to display the
distribution of operations and threadgraphs to display the
sequence of operations.[13] These efforts are focused on
facilitating the understanding of unknown code. Our work is
focused on facilitating the understanding of how secure code is
from a developer’s standpoint.
In this sense, because our work is more in line with the software
visualization community, we are providing a tool for developers
to better understand their own code, rather than the security
visualization community, which tends to look at the adversary’s
data, be it malware or network intrusions. However, this is an
overlooked need with the security visualization community.

Software security analysis tools scan software for potential
vulnerabilities and weaknesses within the code. These tools cover
a broad range of categories in terms of how systems are checked
and what is checked. NIST maintains a web site to support the
Software Assurance community, Software Assurance Metrics And
Tool Evaluation,1 and has compiled a taxonomy of tools. Our
focus was on the class of tools identified as Source Code Security
Analyzers, which simplify the process of identifying potential
security vulnerabilities by automating the process. Understanding
the cause of software vulnerabilities is generally well understood
(e.g. most developers can recognize a null pointer exception);
however, vulnerabilities cannot be avoided without incorporating
tools into the development process.[5]

Tools use a variety of techniques for detecting vulnerabilities
within software. Many tools use a white box approach, statically
analyzing the source against predefined patterns for rules. Some
tools use a black box approach, exercising the program without
internal knowledge. Although both these approaches reveal
different sets of security flaws in software, the combination of
both black and white box testing is even more powerful than
either by itself.[8] To get the best picture possible of the overall
security status of a system, the various techniques available for
testing and exploiting a system should be utilized in conjunction
with each other.

1 http://samate.nist.gov/

Figure 1. Visual analysis system for software security triage and analysis. Each block in the main display (left) represents a source

code file, colored here by a weighted severity of the vulnerabilities within that file. Visual filter widgets (right) are used to
interactively filter the data, and are linked together; here severity is filtered to only show high severity vulnerabilities.

47

While the number of potential vulnerabilities increases because
tools greatly reduce the effort required in finding vulnerabilities in
software, the potential vulnerabilities discovered need to be
reviewed by an actual person due to both high false-positive and
high false-negative rates among the different techniques.[6]

3. SYSTEM DESIGN
The goal of this project is to improve software developers’
understanding of the security state of code by integrating the
results from disparate software analysis tools into a unified system
that facilitates visual analysis and integrates with existing
software development tools. New capabilities for software
developers include improved decision-making about the criticality
and characteristics of found vulnerabilities and folding security
into the software development process.

3.1 Data
We used two different software code bases for testing: a small, in-
house graph visualization and Apache Tomcat.2 The internally
developed graph visualization is about 100 files and 15,000 lines
of code. Apache Tomcat is about 1,500 files and 200,000 lines of
code. We ran analysis tools on multiple versions of each of these
code bases. We collected data using three different software
security analysis tools. Two are commercial products; the other is
an open-source tool. XML output produced from all three tools
was correlated together.

Vulnerabilities detected by different tools identifying the same
source code section – overlap of line and column numbers – are
deemed to be equivalent. The data for all runs against each test
code base yielded similar results to the NSA’s[4]; there was very
little overlap between the results of the three test tools. One of the
commercial tools identified 40,000 potential vulnerabilities in a
version of Tomcat, while the other found 2,500; the open source
tool found 1,000. Only about 2,600 vulnerabilities were identified
by two tools, and no vulnerabilities were found by all three tools.

3.2 Use Case
The primary use case driving the design of our system is triage, in
which a developer or quality assurance analyst must prioritize the
vulnerability results from multiple detection tools. Two challenges
in this use case are the large number of vulnerabilities identified
(e.g. the 40,000 vulnerabilities detected for one of the snapshots
of Tomcat) and the high percentage of false positives (which were
found when analyzing the data, but attempting to quantify is
outside the scope of the project). The questions we attempted to
address when designing for the triage use case were:
• Which vulnerabilities are noise / most important?
• What vulnerability categories are most common?
• What vulnerabilities are found by multiple tools?
• Where in the code are the vulnerabilities?
• Who do confirmed vulnerabilities get assigned to?

3.3 Visualization and Interaction
Our primary visualization is based on a block metaphor, similar to
bargrams[14]. Each source code file is represented as a block.
Each block aggregates the vulnerabilities found by the analysis
tools for the file it represents. To move away from the traditional

2 http://tomcat.apache.org/

vulnerability-centric views we aggregated the vulnerability
information in blocks the developers would recognize: the source
files they created/maintained. The width of a file block
corresponds to the number of potential vulnerabilities or bugs
found within that file. The structure of the visualization is
described in Figure 2. This method produces a very compact,
space-filling visualization that allows the system to scale to very
large code bases while still providing a useful data overview. Our
implementation provides flexible data to visual mappings; for
example, color can represent the developer that last modified the
file or an average severity score. The color palettes used in the
examples in this paper were derived from ColorBrewer [3]. The
sort order can be customized by creation date, number of
vulnerabilities, average severity score or the username of the
developer that last modified the file.

Figure 2. Overview visualization mockup: vulnerabilities are

aggregated by source code file, represented as blocks and
sized according to the number of vulnerabilities within each.

Our system takes advantage of multiple, coordinated views, where
there are several supporting views, which we refer to as visual
filter widgets, for the main visualization. Each supporting view is
linked with each other and the main overview display so that
interacting in one filters data in or out of the others.

The workflow for our prototype follows the Visual Information
Seeking Mantra: “Overview first, zoom & filter, details on
demand.”[12] This process is outlined below:

• Overview: see and compare all of the vulnerabilities within a
project across source code files;

• Filter: visual filter widgets for vulnerability category,
weighted severity, analysis tool, and detection intersection to
interactively and iteratively filter out data irrelevant to the
user’s current task;

• Zoom: zoom into a source code file to see the hierarchy of
classes, methods and vulnerabilities within each file; and

• Details: view meta-data about individual vulnerabilities.
This workflow is supported by visual filter widgets and zooming.
The visual filter widgets can be seen at the right of Figure 1.
Selection on each of these widgets will filter the main display as
well as the other visual widgets. This gives the user immediate
response to see how different attributes interact together.

The first of these filter widgets is a severity distribution histogram
for the vulnerability data. Each severity level in the distribution
histogram uses the same severity-to-color mapping used in the
main file display view. The y axis represents vulnerability count
within the dataset, using a square root scale. Although a square
root scale can be more difficult for users to grasp than a linear
scale, or even a logarithmic scale, we wanted to ensure that
smaller counts would not be obscured, while not skewing the
differences as much as a logarithmic scale would have.
Perceptually, identifying relative differences within a small

48

display area was more important than accuracy for our target use
case.

The second filter widget summarizes the intersection detection
among analysis tools of the vulnerabilities. The intersection
detection is the number of software analysis tools that identified a
vulnerability. It shows and allows the user to filter on the overlap
among different analysis tools. Each block represents the number
of tools that identified a vulnerability, sized by the number of
vulnerabilities detected. This filter may be useful to initially
investigate vulnerabilities that are found by multiple tools, on the
theory that false positives will be less likely if multiple tools
identify the same weakness in the code.

The final filter widget is a single level, squarified treemap
visualization [1] of the categories of detected vulnerabilities. Each
block within the treemap is sized by the vulnerability count of that
category. Because categories are modeled as a single-level tree, a
treemap may not be the best visualization, but we wanted the
flexibility to add more complex categorical structures in the future
such as the Common Weakness Enumeration (CWE).[9] This
widget can help the user quickly narrow in on common types of
issues.

3.4 Development Tool Integration
One of the goals is to fit our prototype visualization within the
workflow of the software developer or quality assurance analyst.
In order to do so, it is necessary to integrate the tool with existing
software development tools. Integration with the Subversion
Source Code Management system maps user information to
source code files. Additionally, integration with the Bugzilla Issue
Tracking system allows a user to click a button while an
individual vulnerability is selected to create a new Bugzilla entry
without leaving the prototype. These integrations are only a first
step, intended to be a proof of concept to demonstrate the utility
of integrating with different kinds of development tools.

3.5 Implementation
Our system is implemented in Java. The prefuse visualization
toolkit is used as the basis for visualizations.[7] A custom parser
facilitates the standardization and normalization of the different
output formats produced by the software security analysis tools
that our system leverages. A directory analyzer also pairs the files
listed by the vulnerability analysis tools to actual source files and
directories on the system, in case the security analysis took place
on a different system. Software development tool integration is
achieved by gathering user information from the Subversion3
blame of specific revisions of source code. XML RPC was
leveraged within Java to connect to a Bugzilla4 server, file new
bugs with relevant information, and assign them to the user
indicated by the Subversion blame command.

4. SCENARIO WALKTHROUGH
To better describe our system and to demonstrate how it can
facilitate the understanding of large data sets, this section will
walk through how a developer or quality assurance analyst can
use our system to triage and prioritize a massive vulnerability
dataset. This scenario utilizes data from three software analysis
tools that were run against an old version of Apache Tomcat.

3 http://subversion.tigris.org/
4 http://www.bugzilla.org/

After loading a data set, the initial display, shown in Figure 3,
presents the user with an overview of all of the source code files
within the project. The overview display on the left shows each
individual file as a rectangular block. Each file is colored by the
average weighted severity of all the vulnerabilities detected within
it; the darker the color, the higher the average severity of the file.
Thin, gray blocks within the overview display shows files that had
no vulnerabilities.

Figure 3. Visualization of Apache Tomcat, which consists of
1,160 source code files. The data here shows nearly 34,000

vulnerabilities identified by 3 software analysis tools.
There are several sorting options for this overview display: by
severity, by vulnerability count, by creation date, or by user.
Sorting by severity and vulnerability count are probably the most
useful for triage. We added the ability to sort by creation date in
order to have a stable layout if we were to add an updating
capability, in which newly created files from a previous analysis
snapshot would be shown at the upper right of the display, and the
oldest files on the bottom. Two coloring options are also
available: by severity and by user. Sorting and coloring by user,
i.e. the developer that last modified the source code file, enables a
different view into the data and may facilitate different use cases,
such as identifying developers who regularly check in code
updates with vulnerabilities.

The series of smaller views vertically aligned to the right of the
display area are the visual filter widgets the user can act on to
filter the vulnerability data. For this dataset, the severity widget
shows that most of the vulnerabilities are low (3 or 4), medium (6)
or high (8); there are very few very high (9 or 10) severity
vulnerabilities in relation to all of the identified vulnerabilities.
Also, the vast majority of the vulnerabilities were detected by
only one detection tool, a small percentage were detected by two
tools, and none were detected by three tools. This finding is
similar to the NSA study that also found there to be very littler
overlap among tools.[4] The category with the largest number of
vulnerabilities is Input Validation.

The overview display can reduce the dataset size an order of
magnitude by aggregating vulnerabilities into files, as shown in
Figure 3, which depicts 1,160 blocks representing each of the
source code files, which include 33,907 vulnerabilities. Even with
this large data reduction, the user needs the ability to further
narrow the scope of their analysis. In this triage scenario, the user

49

is interested in finding the high-impact vulnerabilities first. To do
that, the user selects the vulnerabilities with severity levels 6
through 10 from the severity distribution widget. Because
different tools report vulnerabilities differently, and our
normalization does not account for these semantic differences, a
larger range of severities needs to be included to ensure
vulnerabilities that certain tools may underestimate are not
missed. Figure 1 shows the resulting display.

The selected severities in the distribution histogram are colored in
orange while the ignored severities are colored in gray. Each of
the visual filter widgets is linked; modifying one adjusts the others
to show how the applied filter effects the distribution of those data
attributes. Thus, the colors in both the detection intersection and
category treemap filter widgets have changed. When a filter is
active, the filter widgets show the percentage of vulnerabilities
that match the active filters using color. White indicates that there
are no matches and a green-hued sequential color palette is used
to show the match percentage with darker shades indicating a
higher percentage. As shown in Figure 1, with severity filters set
to 6-10, the vulnerabilities mostly fall in the Input Validation,
Encapsulation, and Suspect Code categories.

Although applying the severity filters begins to reduce the visible
data, more filtering is necessary to drill down to a more
manageable set of source code files. In order to further reduce the
data, the user utilizes the detection intersection widget to only
show the vulnerabilities that are detected by two tools, giving
more confidence that the detected vulnerabilities are not false
positives. In addition, sort order can be changed from file
creation date to severity to aid in prioritizing. Figure 4 shows the
result after applying the new filters and sort order. The overview
display now shows the aggregated source code file information
for only 227 vulnerabilities of the original nearly 34,000. This
example shows how the user can quickly combine filters to
remove less important data to begin to know what vulnerabilities
within the code need to be dealt with first.

Figure 4. Filtered overview display that reduces the visible
source code files to just a handful, with files having higher

severity vulnerabilities at the left.
Choosing the highest average severity as a mechanism to
prioritize on, the user can zoom in to the detailed view for it with
a double click. The detail view, shown in Figure 5, contains a
tree-table of the classes and methods contained in the file, each

with entries for vulnerability count, average severity, and the
severity distribution histogram for the class or method. The user-
selected file, StandardWrapperValve.java, contains only two
vulnerabilities that match the filter settings. As expected by first
examining those vulnerabilities found by multiple tools, the
vulnerabilities show a Null Pointer Exception on the same line
found by two tools. Reviewing the method in the source code
shows that this Null Pointer Exception is likely a true positive and
could indeed be a vulnerability.

Figure 5. Detailed view, which shows the selected file’s classes,
the methods within those classes and the vulnerabilities within
each method as an expandable tree-table that uses visual cues

to help the user quickly find high severity methods.
With only a few clicks, our system provided the ability to drill
down from a listing of nearly 34,000 vulnerabilities to look at the
details of two overlapping vulnerabilities. From this point, the
user could choose to look at the file listing by user – shown in
Figure 6 – to see if there are any patterns that jump out.

Figure 6. Overview display that colors and sorts source code

files by the user that last checked in the file, showing that
about half of the visible files were checked in by the same

developer (in green, at right).

50

In this case the user represented by the light green takes up nearly
the entire right half of the display; this could mean the
programmer regularly checks in code with vulnerabilities, or just
that she is the main developer that modifies more code than
anyone else. An understanding of the context would be required to
fully understand these types of patterns.
The user may also wish to assign the vulnerability to a developer
by using the embedded ability to click on a vulnerability and
automatically enter an issue into the issue tracking system based
on the developer that last modified the code and the attributes of
the vulnerability itself.

5. CONCLUSIONS
This research effort has resulted in a prototype system that
correlates and normalizes the output of multiple software analysis
tools that automatically detect potential weaknesses and
vulnerabilities in software code. The system visualizes this output
and provides an overview-to-details workflow to triage
vulnerabilities utilizing a developer-centric view. This workflow
allows the system to scale to large code bases with tens of
thousands of vulnerabilities. Several integration points were made
with software development tools to associate users with
vulnerabilities and to submit bug reports to an issue tracking
system.

Our future plans include extending the detail view to show source
code with cross-reference vulnerability information as opposed to
source code metadata only, as shown in Figure 7.

Figure 7. Mockup integrating source code decorated with

vulnerability information within the detailed view.
Additionally, the current system shows a point in time snapshot of
the vulnerability state of a software code base. In the future we
plan on extending the system to look at vulnerability trends across
time; for example, we will explore the use of animation to show
new files being added to the code base and changes in the number
of vulnerabilities found in existing code files. We also plan on
integrating additional software analysis tools that can be used as
input data to our visual analysis system and increasing the variety
of Source Code Management and Issue Tracking systems. We
plan on investigating other development tools for potential
integration with our system that developers would benefit from.

We would also like to explore additional use cases, such as visual
analysis of vulnerability trends over time, and design visual
analysis support for them. Finally, we would like to validate our
approach through user evaluations of the prototype system.

6. ACKNOWLEDGMENTS
This research and development effort is supported by DHS S&T
through a Small Business Innovative Research grant, under
contract no. N10PC20014 .

7. REFERENCES
1. Bederson, B.B., Shneiderman, B. and Wattenberg, M. 2002.

Ordered and quantum treemaps: Making effective use of 2D
space to display hierarchies. ACM Transactions on Graphics,
21 (4). 833-854.

2. Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B.,
Hallem, S., Henri-Gros, C., Kamsky, A., McPeak, S. and
Engler, D. 2010. A few billion lines of code later: using static
analysis to find bugs in the real world. Communications of
the ACM, 53 (2). 66-75.

3. Brewer, C.A. http://www.ColorBrewer2.org/. Accessed
6/10/2010.

4. Buxbaum, P. http://gcn.com/articles/2007/03/18/all-for-one-
but-not-one-for-all.aspx. Accessed 6/10/2010.

5. Evans, D. and Larochelle, D. 2002. Improving Security
Using Extensible Lightweight Static Analysis. IEEE
Software, 19 (1). 42-51.

6. Goertzel, K.M., Winograd, T., McKinley, H.L., Oh, L.,
Colon, M., McGibbon, T., Fedchak, E. and Vienneau, R.
2007. Software Security Assurance: A State of the Art
Report.

7. Heer, J., Card, S.K. and Landay, J.A. 2005. prefuse: a toolkit
for interactive information visualization Proceedings of the
SIGCHI conference on Human factors in computing systems,
ACM, Portland, Oregon, USA, 421-430.

8. Janardhanudu, G. 2005. White Box Testing Build Security In.
9. Martin, R.A., Christey, S.M. and Jarzombek, J. 2005. The

Case for Common Flaw Enumeration. In NIST Workshop on
Software Security Assurance Tools, Techniques, and Metrics.

10. Maughan, D. 2010. The need for a national cybersecurity
research and development agenda. Communications of the
ACM, 53 (2). 29-31.

11. Quist, D.A. and Liebrock, L.M. 2009. Visualizing compiled
executables for malware analysis. In International Workshop
on Visualization for Cyber Security (VizSec), 27-32.

12. Shneiderman, B. 1996. The eyes have it: A task by data type
taxonomy of information visualizations. In Proceedings of
the IEEE Symposium on Visual Languages, 336-343.

13. Trinius, P., Holz, T., Gobel, J. and Freiling, F.C. 2009.
Visual analysis of malware behavior using treemaps and
thread graphs. In International Workshop on Visualization
for Cyber Security (VizSec), 33-38.

14. Wittenburg, K., Lanning, T., Heinrichs, M. and Stanton, M.
2001. Parallel bargrams for consumer-based information
exploration and choice Proceedings of the ACM Symposium
on User Interface Software and Technology (UIST), ACM,
Orlando, Florida, 51-60.

51

