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Pseudogap and antiferromagnetic correlations in the Hubbard model
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Using the dynamical cluster approximation we calculate the single-particle spectra of the Hubbard
model with next-nearest neighbor hopping t′ at small doping. We find that the pseudogap along
the zone diagonal in the electron doped systems is due to long range antiferromagnetic correlations.
The physics in the proximity of (0, π) is dramatically influenced by t′ and determined only by the
short range correlations. The effect of t′ on the low energy ARPES spectra is weak except close
to the zone edge. The short range correlations are sufficient to yield a pseudogap in the magnetic
susceptibility and produce shadow states which develop a gap with decreasing temperature.

Introduction In contrast to conventional supercon-
ductors, the normal state of high Tc superconductors is
not a Fermi liquid, and displays many properties which
are not well understood. Elucidating the physics of the
normal state is crucial for understanding the high Tc ma-
terials. The most unusual properties occur in the pseu-
dogap region at low doping. It is characterized by strong
antiferromagnetic (AF) correlations and a depletion of
low energy states detected by both one and two-particle
measurements [1]. However, unlike the d-wave super-
conducting phase which seems to be universal in all the
cuprates [2, 3], the pseudogap region displays different
properties in the electron and hole doped materials [4, 6].
In order to develop a theory for the high Tc superconduc-
tivity it is essential to have a better understanding of the
asymmetry between the electron and the hole doped ma-
terials.

In the simple Hubbard model, or the closely related t-J
model, the electron-hole asymmetry can be captured by
including a finite next-nearest neighbor hopping t′ [7, 8].
An appropriate t′ strongly enhances AF correlations in
electron doped systems and modifies the angle resolved
photoemission spectra (ARPES). This behavior mirrors
that of the cuprates. In the hole doped cuprates the an-
tiferromagnetism is destroyed very quickly upon doping
(persisting to only ≈ 2% doping) [9] and the ARPES
show well defined quasiparticles close to (π/2, π/2) in
the Brillouin zone (BZ) and gap states in the proxim-
ity of (0, π) [4, 5, 10]. In the electron doped cuprates
antiferromagnetism is much more robust (persisting to
≈ 15% doping) [11] and the ARPES at small doping
(≈ 5%) shows sharp quasiparticles at the zone edge and
gap states elsewhere in the BZ [6, 10]. In this Letter
we employ a reliable technique, the dynamical cluster
approximation (DCA) [12, 13] on relatively large clus-
ters, to investigate the pseudogap and the single-particle
spectra of the t-t’-U Hubbard model at small doping, ad-
dressing the role of the antiferromagnetic correlations in
the pseudogap physics.

We find that in hole doped systems, the pseudogap
emerges in the proximity of (0, π), requires only short
range correlations, and its magnitude and symmetry is

strongly influenced by t′. In electron doped systems, the
pseudogap emerges along the diagonal direction, as a di-
rect consequence of AF scattering and requires long range
AF correlations but not necessarily long range order. The
hopping t′ enhances the AF correlations in the electron
doped system and produces this AF gap. We also find
that the short range correlations are sufficient to yield a
pseudogap signal in the magnetic susceptibility and pro-
duce shadow states which develop a gap with decreasing
temperature.

Our conclusion about the nature of the pseudogap in
the electron doped systems is different from that drawn
from cluster perturbation theory (CPT) [14] calculations.
For interaction U of the order of the bandwidth W , CPT
finds that, even when only short range AF correlations
are considered, the states along the diagonal direction
develop a gap. This result persists even at larger doping,
≈ 15%, in disagreement with experiment where quasi-
particles appear along the diagonal direction and gapped
states remain only at the intersection of the AF zone
boundary with the non-interacting Fermi surfaces (hot
spots) [15]. In order to circumvent this the authors of
Ref. [14] introduced two different mechanisms for the
pseudogap in electron doped systems: a strong-coupling
(U ≈ W ) pseudogap at small doping produced by short
range correlations and a weak-coupling (U < W ) pseu-
dogap valid at intermediate doping which requires long
range AF correlations. In contrast to the CPT results,
we find no pseudogap along the diagonal direction for
the strong coupling regime (U = W ) unless long range
AF correlations are considered, in better agreement with
small coupling results in Ref. [14, 16]. Our results imply
that there is no need to introduce two different pseu-
dogap mechanisms for the electron doped systems. We
believe that a plausible reason for the discrepancy be-
tween DCA and CPT results is the overestimation of AF
correlations in the latter approach due to finite size ef-
fects [17] characteristic to small clusters [18] and lack of
self-consistency [19].

Formalism The Hubbard Hamiltonian is
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FIG. 1: For a 16 site cluster the BZ is coarse grained in 16
cells. a) and b) correspond to clusters with different geometry,
16A and respectively 16B as described in Ref. [21].

H = −t
∑

〈ij〉,σ

c†iσcjσ − t′
∑

〈〈il〉〉,σ

c†iσclσ +U
∑

i

ni↑ni↓ . (1)

Here c
(†)
iσ destroys (creates) an electron with spin σ on

site i and niσ is the corresponding number operator. U
is the on-site Coulomb repulsion. We consider hopping
t between nearest-neighbors 〈ij〉 and hopping t′ between
next-nearest-neighbors 〈〈il〉〉. In cuprates t′ ≈ −0.3t [20]
and hole (electron) doped systems correspond to a filling
smaller (larger) than one. In our calculations, for ease
of comparison between the electron and the hole doped
cases, we keep the filling n = 0.95 and modify the sign
of t′, i.e. make it positive (negative) in order to represent
the electron (hole) doped cuprates.

In the DCA [12] we map the original lattice model
onto a periodic cluster of size Nc = Lc × Lc embed-
ded in a self-consistent host. The correlations up to a
range ξ <

∼ Lc are treated accurately, while the physics on
longer length-scales is described at the mean-field level.
The reduction to an effective cluster model is achieved
by coarse graining the BZ into Nc cells (see Fig. 1) and
approximating the self-energy as a constant within each
cell, Σ(k, ω) ≈ Σ(K, ω), where K denotes the center of
the cell which k belongs to.

We solve the cluster problem using quantum Monte
Carlo (QMC) [17]. The Maximum Entropy method[22] is
employed to calculate the real frequency cluster Green’s
function from which the self-energy is extracted. It is
then interpolated using a smooth spline, and used to cal-
culate the lattice spectrum A(k, ω). We use two different
16 site cluster geometries, 16A and 16B [21], which result
in different coarse graining of the BZ (see Fig. 1). Cal-
culations on larger clusters below the pseudogap temper-
ature and at large coupling (U = W ) are not currently
possible due to the QMC sign problem. We find identical
results (within the error bars) in all the common points
of the coarse-grained Brillouin zones, which shows that
these 16 site clusters capture the momentum dependence
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FIG. 2: (color) 5% doping. Zero energy surface A(k, 0) for a)
t′ = −0.3t and b) t′ = 0.3t. A(k, ω) for k along the (0, 0)-
(π, π) direction in the BZ for c) t′ = −0.3t and d) t′ = 0.3t.

of the self-energy rather well. We checked the robustness
of our results at low temperature with calculations on
smaller clusters where the sign problem is much better.

Results At a temperature TN = 0.19t (0.24t) for the
hole (electron) doped system the AF correlation length
reaches the cluster size yielding a divergent AF suscep-
tibility (not shown). Below TN one can proceed either
by imposing the full symmetry on the effective medium,
i.e. by reducing the problem to a cluster embedded in
a paramagnetic (PM) host, or by allowing the host to
develop long-range AF order. Both the PM and the AF
solutions are complementary approximations to the ex-
act solution; the first cuts off the AF correlations larger
than the cluster size while the second one introduces long
range AF order via the mean-field character of the host.

The paramagnetic solution will be discussed first. In
Fig. 2 -a and -b we show the spectral intensity at zero
energy for the hole and electron doped systems, respec-
tively. These false color plots are very similar to the ex-
perimental ARPES data (see Fig.8 in Ref. [4] and Fig.3
in Ref. [6]). For instance, in both experiment and in
our results, a region of large intensity can be observed
close to (π/2, π/2) and very low intensity is observed at
the zone edge for hole doped systems. For the electron
doped systems the intensity is maximum at (0, π). How-
ever, the experimental data for the electron doped ma-
terials show gapped states along the diagonal direction
[6]. Whereas, Fig. 2 -b reveals that in our calculations
the intensity at (π/2, π/2) is similar to the one observed
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FIG. 3: a) Uniform (k = 0) spin susceptibility versus tem-
perature for 5% hole (squares) and electron (circles) doped
systems. Total DOS (full line) and DOS excluding the (0, π)
and (π, 0) cells (dashed line) for hole doped (b) and electron
doped (c) cases at T = 0.12t and 5% doping.

for the hole doped case and there is no pseudogap along
the zone diagonal. In fact the cut of A(k, ω) along the di-
agonal direction shows very similar features for the hole
and electron doped cases (Fig. 2-c and -d). Apart from
the differences at high energy close to the zone center and
the zone corner which follow the non-interacting disper-
sion, the low-energy features along the zone diagonal are
almost identical.

In both experiment and our DCA calculations the pseu-
dogap temperature T ∗ is associated with a downturn of
the spin susceptibility with reduced temperatures [23].
We show the spin susceptibility versus temperature for
5% hole and electron doping in Fig. 3 -a. For both cases
the downturn can be seen at T = T ∗ ≈ 2.4±0.1t. For the
hole doped case this T ∗ coincides roughly with the ap-
pearance of the pseudogap in the single particle spectra.
However, for the electron doped case below the downturn
temperature, no depletion in the total density of states
at zero energy is seen (Fig. 3 -c, full line). The appar-
ent reason for this lack of pseudogap in the total DOS of
the electron doped systems is the large intensity peaks
which emerge at the zone edge with decreasing tempera-
ture [24]. As shown in Fig. 3 -b and -c with the dashed
lines, if one integrates the states in the BZ excluding
those in the coarse-graining cell around (0, π), a deple-
tion of the low energy states with decreasing temperature
can be noticed also for the electron doped case. More-
over, the resulting density of states is very similar to the
one for the hole doped case.

A detailed comparison of the hole and electron spectra
is presented in Fig. 4, where A(K, ω) for K in the cen-
ter of the cells which divide the BZ [25] (see Fig. 1) are
shown.

In Figs. 4 -a through -d, we find that the single particle
spectra at low energy for the hole and the electron doped
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FIG. 4: (color) A(k, ω) for different k points in the BZ for hole
(black) and electron (red) cases, at 5% doping and T = 0.12t.
The green line in (a) is A(k, ω) for the hole doped case at
larger T = 0.4t which develops a gap upon decreasing T. In
(g) the blue line represents the spectrum for t′ = 0.

cases are surprisingly similar apart from the features close
to (0, π). The depletion of the low energy states shown in
Fig 3 -b and -c with dashed lines, presumably associated
with the downturn in the magnetic susceptibility, can be
seen to come mostly from the states in the proximity of
(π, π/2) (see Fig. 4 -a). Unlike the non-interacting case,
where at (π, π/2), there is only spectral weight for ω > 0,
there is now substantial weight at negative energies. This
is due to AF scattering as can be deduced by comparing
the main features with the (π/2, 0) spectrum (Fig. 4 -b)
found at the mirroring position with respect to AF zone
boundary in the BZ. These shadow states develop a gap
with decreasing temperature as shown in Fig. 4 -a where
a large temperature spectrum (T = 0.4t, green line) and
a low temperature one (T = 0.12t, black line) are plotted
for the hole doped case. In Fig. 4 -d we observe a sharp
peak at (π/2, π/2) in both the hole and electron doped
spectra. Thus, there is no pseudogap along the diagonal
direction.

Differences between the hole and electron doped spec-
tra are illustrated in Figs. 4 -e through -g. In Figs. 4 -e
and 4 -f one can see a difference between the hole and
electron doped cases for the high energy features at zone
center and respectively zone corner. This can be under-
stood by noticing that t′ shifts the the energy of these
non-interacting states at these points by 4t′. More sig-
nificantly, a fundamental difference between the electron
and hole doped spectra at (0, π) is shown in Fig. 4-g. The
hole doped spectra exhibits a strong gap whereas the elec-
tron doped spectra has an intense peak. It is also worth
looking at the t′ = 0 case, shown in the figure with dotted
line, where a gap is present but it is much less developed
than the one for t′ = −0.3t. Thus, even for the hole
doped case (i.e. t′ < 0) the magnitude of t′ has a strong
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FIG. 5: A(k, ω) averaged over the (π/2, π/2) cell for the AF
and the PM solutions.

influence on symmetry with respect to zero energy of the
density of states, which might be relevant for interpret-
ing tunneling experiments. By comparing these results
with earlier DCA calculations [8, 13] we also have found
that the properties of A(k, ω) at (0, π) can be rather suc-
cessfully captured with a smaller 2×2 cluster, indicating
that only the short range correlations of the order of one
lattice spacing are relevant.

We will now discuss the antiferromagnetic solution

(Fig. 5). Here, a gap is obtained for the electron doped
case close to (π/2, π/2) point in the BZ, in agreement
with the experimental findings [6]. This gap is an anti-
ferromagnetic (spin density wave) gap and requires long
range AF correlations. The short range AF correlations,
of the order of a few lattice constant, are not sufficient
to produce it. This conclusion is in agreement with
the small coupling pseudogap mechanism proposed in
Ref. [14]. The hopping t′ is responsible for enhancing the
antiferromagnetism in the electron doped systems thus
producing this gap. Presumably any other parameters
which favor the antiferromagnetism will have a similar
effect. For example, the AF solution for the hole doped
case produces a gap at (π/2, π/2) too, though a little
smaller due to weaker antiferromagnetism. The spectral
features away from (π/2, π/2) within the AF solutions
are not qualitatively different from the ones obtained
with the PM solution (not shown). We note that the
long range AF order does not yield a gap at (0, π) for
the electron doped case even though this point is on the
AF zone boundary. The gap which the shadow states at
(π, π/2) develop in the PM solution is now enhanced by
AF order, as well the intensity of the shadow states.

Band structure calculations suggest that a next-next-
nearest-neighbor hopping t′′ ≈ 0.2t [20] should be in-
cluded. We find that this term has a rather small
quantitative effect (though it may provide better agree-
ment with experimental data) and its presence would not
change the conclusions of this investigation.

Conclusions Our calculation shows that the gap of
the low-energy states along the diagonal direction of the
BZ in the electron doped systems is an AF gap which
requires long range AF correlations. On the other hand
the physics in the proximity of (0, π) is determined by the
short range AF correlations and it is strongly influenced
by t′. For the hole (electron) doped systems t′ yields
a gap (an intense peak) at the zone edge. Except in
the proximity of the (0, π) point in the BZ the influence
of t′ on the ARPES spectra is very weak. The short
range AF correlations give rise to shadow states. These
states develop a gap with decreasing temperature which
coincides with the downturn in the spin susceptibility
observed in both the hole and the electron doped systems.
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