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A systematic study of superconductivity in the 2D Hubbard model
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The cluster size dependence of superconductivity in the conventional two-dimensional Hubbard
model, commonly believed to describe high-temperature superconductors, is systematically studied
using the Dynamical Cluster Approximation and Quantum Monte Carlo as a cluster solver. Due to
the non-locality of the d-wave superconducting order parameter, the results on small clusters show
large size and geometry effects. In large enough clusters, converged results are found that display a
finite temperature instability to d-wave superconductivity.

Despite years of active research, the understanding of
pairing in the high-temperature “cuprate” superconduc-
tors (HTSC) remains one of the most important out-
standing problems in condensed matter physics. While
conventional superconductors are well described by the
BCS theory, the pairing mechanism in HTSC is believed
to be of entirely different nature. Strong electronic cor-
relations play a crucial role in HTSC, not only for su-
perconductivity but also for their unusual normal state
behavior. Hence, models describing itinerant correlated
electrons, in particular the two-dimensional (2D) Hub-
bard model and its strong-coupling limit, the 2D t-J
model, were proposed to capture the essential physics
of the CuO-planes in HTSC [1, 2]. Despite the fact that
these models are among the mostly studied models in
condensed matter physics, the question of whether they
contain enough ingredients to describe HTSC remains an
unsolved problem.

Many different techniques, from analytic to numerical
have been applied to study superconductivity in these
models. The Mermin-Wagner theorem [3] and the rigor-
ous results in Ref. [4] preclude dx2−y2 superconducting
long-range order at finite temperatures in the 2D mod-
els. Superconductivity may however exist – as in the
attractive Hubbard model – as topological order at fi-
nite temperatures below the KT transition temperature
[5]. Recent renormalization group studies indicate that
the ground-state of the doped weak-coupling 2D Hub-
bard model is superconducting with a dx2−y2-wave order
parameter [6]. The possibility of dx2−y2-wave pairing in
the 2D Hubbard and t-J models was also indicated in a
number of numerical studies of finite system size (for a
review see [7]). Only recent numerical calculations for
the t-J model provided evidence for pairing at T = 0 in
relatively large systems for physically relevant values of
J/t [8, 9]. Quantum Monte Carlo (QMC) simulations
are also employed to search for such a transition [10].
These studies indicate an enhancement of the pairing
correlations in the dx2−y2 channel with decreasing tem-
perature. Unfortunately the Fermion sign problem limits
these studies to temperatures too high to study a possible
KT transition. Another difficulty of these methods arises

from their strong finite size effects, often ruling out the
reliable extraction of low-energy scales. In fact, a reli-
able finite-size scaling has only recently been achieved in
the negative-U model [11], where the relevant tempera-
ture scales are much higher. The available results for the
positive-U model so far have thus been inconclusive, and
a treatment within a non-perturbative scheme that goes
beyond the conventional finite size techniques is clearly
necessary to resolve the controversy as to whether there
exists finite temperature superconductivity in these mod-
els.

In this Letter we use the Dynamical Cluster Approxi-
mation (DCA) [12, 13, 14] (for a review see [15]) to ex-
plore the superconducting instability in the 2D Hubbard
model, with

H = −t
∑

〈ij〉,σ

c†iσcjσ + U
∑

i

ni↑ni↓ , (1)

where c
(†)
iσ (creates) destroys an electron with spin σ on

site i, niσ is the corresponding number operator, t the
hopping amplitude between nearest neighbors 〈. . . 〉 and
U the on-site Coulomb repulsion. In the DCA we take
advantage of the short length-scale of spin correlations
in optimally doped HTSC [16] to map the original lattice
model onto a periodic cluster of size Nc = Lc×Lc embed-
ded in a self-consistent host. Thus, correlations up to a
range ξ <

∼ Lc are treated accurately, while the physics on
longer length-scales is described at the mean-field level.
By increasing the cluster size, it thus allows us to sys-
tematically interpolate between the single-site dynamical
mean-field result and the exact result while remaining in
the thermodynamic limit. We solve the cluster problem
using QMC[17].

We present results of large cluster calculations – up to
26 sites – that indicate that the 2D Hubbard model has a
superconducting instability at a finite temperature. This
conclusion is reached due to several factors: Simulations
on small clusters, where d-wave order is topologically al-
lowed, show large finite size and geometry effects leading
to inconclusive results. However, since the average sign
in DCA QMC simulations is significantly larger than in
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finite-size QMC counterparts, exploring lower tempera-
tures and larger clusters becomes possible. In addition,
the advent of new parallel vector machines, such as the
CRAY X1 at ORNL, improves the speed of these calcula-
tions by more than one order of magnitude compared to
conventional architectures, making simulations on large
clusters with a small average sign feasible. Within the
limits of current computational capability, we observe
finite transition temperatures in the largest affordable
clusters. The results are converged as a function of clus-
ter size within the error bars, although we cannot pre-
clude a further small reduction in transition temperatures
in yet larger clusters.

Previous simulations with a cluster of four sites, the
smallest cluster that can capture dx2−y2-wave pairing,
with U equal to the bandwidth W = 8t, show good gen-
eral agreement with HTSC [17, 18, 19]. In the para-
magnetic state, the low-energy spin excitations become
suppressed below the crossover temperature T ∗, and a
pseudogap opens in the density of states at the chemical
potential. At lower temperatures, we find a finite tem-
perature transition to antiferromagnetic long-range order
at low doping, while at larger doping, the system displays
an instability to dx2−y2-wave superconducting long-range
order. This apparent violation of the Mermin-Wagner
theorem is a consequence of the small cluster size stud-
ied (see also [20, 21]).

With increasing cluster size however, the DCA progres-
sively includes longer-ranged fluctuations while retaining
some mean-field character. Larger clusters are thus ex-
pected to systematically drive the Neél temperature to
zero and hence recover the Mermin-Wagner theorem in
the infinite cluster size limit. In contrast, superconduc-
tivity may persist as KT order even for large cluster sizes.

Since the large cluster simulations presented here are at
the limit of current computational capabilities, we are re-
stricted in our ability to explore both the parameter space
and different cluster sizes. We choose the parameters to
favor superconducting and antiferromagnetic order. In
our study of superconductivity, we choose U = 4t = W/2
(we take t as our unit of energy). While we observe that
larger values of U yield higher transition temperatures in
the 4-site cluster, the smaller value of U greatly reduces
the sign problem and thus allows us to simulate larger
cluster sizes. We focus on a doping of 10%, where the
pairing correlations are maximal for U = W/2. To study
antiferromagnetism, we focus on the undoped model and
set U = 8t, where the Neél temperature is highest.

Furthermore, we have to be careful in selecting differ-
ent cluster sizes and geometries. Much can be learned
from simulations of finite size systems, where periodic
boundary conditions are typically used. Betts and Flynn
[22] systematically studied the 2D Heisenberg model on
finite size clusters and developed a grading scheme to de-
termine which clusters should be used. The main quali-
fication is the “imperfection” of the near-neighbor shells:

a measure of the (in)completeness of each neighbor shell
compared to the infinite lattice. In finite size scaling cal-
culations they found that the results for the most perfect
clusters fall on a scaling curve, while the imperfect clus-
ters generally produce results off the curve. Here, we
employ some of the cluster geometries proposed by Betts
(see Fig. 1) to study the antiferromagnetic transition at
half filling and generalize Betts’ arguments to generate a
set of clusters appropriate to study d-wave superconduc-
tivity.

FIG. 1: Cluster sizes and geometries used in our study.
The shaded squares represent independent d-wave plaquettes
within the clusters. In small clusters, the number of neigh-
boring d-wave plaquettes zd listed in table I is smaller than
four, i.e. than that of the infinite lattice.

To illustrate that the DCA recovers the correct re-
sult as the cluster size increases, we plot in Fig. 2 the
DCA results for the Neél temperature TN at half-filling
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as a function of the cluster size Nc. TN decreases slowly
with increasing cluster size Nc. As spin-correlations de-
velop exponentially with decreasing temperature in 2D,
the Nc > 4 data falls logarithmically with Nc, consis-
tent with TN = 0 in the infinite size cluster limit. Thus,
the Mermin-Wagner theorem is recovered for Nc → ∞.
The clusters with Nc = 2 and Nc = 4 are special be-
cause their coordination number is reduced from four.
For Nc = 2 the coordination number is one and hence
a local singlet is formed on the cluster for temperatures
below J ∼ t2/U . In the Nc = 4 site cluster, the coordi-
nation is two, so fluctuations of the order parameter are
overestimated and the RVB state is stabilized. Hence,
antiferromagnetism is suppressed in these cluster sizes
and their corresponding TN does not fall on the curve.
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FIG. 2: Neél temperature at half-filling when U=8t versus
the cluster size. TN scales to zero in the infinite cluster size
limit. The solid line represents a fit to the function A/(B +
ln(Nc/2)) obtained from the scaling ansatz ξ(TN) = Lc. For
Nc = 2 a local singlet and for Nc = 4 the RVB state suppress
antiferromagnetism.

We now turn to the main focus of this Letter, i.e. the
search for a possible KT instability to the superconduct-
ing state. To check that the DCA formalism is able to
describe such a transition, we first tested the DCA/QMC
on the negative U , i.e. attractive Hubbard model which
is known to exhibit a KT instability to an s-wave super-
conducting state [11]. We find that the DCA indeed pro-
duces a finite temperature s-wave instability to the KT
superconducting state. Due to the local nature of the s-
wave order parameter, the DCA results converge rather
quickly with cluster size. The DCA values for Tc agree
with those recently obtained in finite size QMC simula-
tions [11]. In addition, we checked that our DCA/QMC
code reproduces the results of other DMFT codes when
Nc = 1, and those of finite size QMC codes when the
coupling to the self-consistent host is turned off.

To identify a possible KT transition in the positive U
Hubbard model we calculate the dx2−y2-wave pair-field

susceptibility Pd for the cluster sizes Nc = 4, 8A, 16A,
16B, 18A, 20A, 24A and 26A. In contrast to the s-wave
order parameter in the attractive model, the d-wave order
parameter is non-local and involves four bonds or sites.
Thus, large size and geometry effects have to be expected
in small clusters. Similar to the cluster grading scheme
Betts developed for magnetic order, we can classify the
different clusters according to their quality for d-wave or-
der. At low temperatures, local d-wave pairs will form,
but phase fluctuations of the pair wave-function prevent
the system from becoming superconducting. The number
zd of neighboring independent d-wave plaquettes consist-
ing of four sites in a given cluster is then a measure for the
strength of phase fluctuations and hence for the pairing
correlations and Tc.

TABLE I: Number of independent neighboring d-wave pla-
quettes zd.

Cluster 4 8A 12A 16A 16B 18A 20A 24A 26A

zd 0 (MF) 1 2 3 2 1 4 4 4

Fig. 1 shows the arrangement of independent d-wave
plaquettes in the clusters used in our study and the cor-
responding values of zd are listed in table I. The Nc = 4
cluster encloses exactly one d-wave plaquette (zd = 0).
When a local d-wave pair forms on the cluster, the sys-
tem becomes superconducting, since no superconducting
phase fluctuations are included. Thus, the Nc = 4 re-
sult corresponds to the mean-field solution. In the 8A
cluster, there is room for one more d-wave pair, thus the
number of neighboring d-wave plaquettes zd = 1. Since
this same neighboring plaquette is adjacent to its partner
on four sides, phase fluctuations will be overestimated as
compared to the infinite system. The situation is simi-
lar in the 16B cluster, where only two independent (and
one next-nearest neighbor) d-wave plaquettes are found
(zd = 2). In contrast, zd = 3 in the oblique 16A clus-
ter. We thus expect d-wave pairing correlations to be
suppressed in the 16B cluster as compared to those in
the 16A cluster. With the exception of the 18A cluster,
where neighboring d-wave plaquettes share one site and
thus are not independent, the larger clusters 20A, 24A,
and 26A all have zd = 4 and are thus expected to show
the most accurate results.

Fig. 3 shows the temperature dependence of the inverse
d-wave pair-field susceptibility, 1/Pd, in the 10% doped
system. Since a proper error propagation is severely ham-
pered by storage requirements, we obtain the error-bars
shown on the 16A results from a number of indepen-
dent runs initialized with different random number seeds.
Error-bars on larger cluster results are expected to be of
the same order or larger. As noted before, the Nc = 4
result is the mean-field result for d-wave order and hence
yields the largest pairing correlations and the highest Tc.
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As expected, we find large finite size and geometry effects
in small clusters. When zd < 4, fluctuations are over-
estimated and the d-wave pairing correlations are sup-
pressed. In the 8A cluster where zd = 1 we do not find
a phase transition at finite temperatures. Both the 12A
and 16B cluster, for which zd = 2, yield almost identical
results. Pairing correlations are enhanced compared to
the 8A cluster and the pair-field susceptibility Pd diverges
at a finite temperature. As the cluster size is increased,
zd increases from 3 in the 16A cluster to 4 in the larger
clusters, the phase fluctuations become two-dimensional
and as a result, the pairing correlations increase further
(with exception of the 18A cluster). Within the error-
bars (shown for 16A only), the results of these clusters fall
on the same curve, a clear indication that the correlations
which mediate pairing are short-ranged and do not ex-
tend beyond the cluster size. The low-temperature region
can be fitted by the KT form Pd = A exp(2B/(T−Tc)

0.5),
with energy scales Tc and B2 an order of magnitude
smaller than those obtained in the attractive model. For
all clusters with zd ≥ 3 we find a transition temperature
Tc ≈ 0.025t. We cannot preclude, however, the possibil-
ity of a very slow, logarithmic cluster size dependence of
the form Tc(Nc) = Tc(∞) + B2/(C + ln(Nc)/2)2 where
Tc(∞) is the exact transition temperature.
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FIG. 3: Inverse d-wave pair-field susceptibility as a func-
tion of temperature for different cluster sizes at 10% dop-
ing. The continuous lines represents fits to the function
Pd = A exp(2B/(T − Tc)

0.5) for data with different values
of zd. Inset: Magnified view of the low-temperature region.

In summary, we have presented DCA/QMC simula-
tions of the 2D Hubbard model for clusters up to Nc = 32
sites. Consistent with the Mermin-Wagner theorem, the
finite temperature antiferromagnetic transition found in
the Nc = 4 simulation is systematically suppressed with
increasing cluster size. In small clusters, the results for
the d-wave pairing correlations show a large dependence
on the size and geometry of the clusters. For large enough

clusters however, we find converged results that display a
finite temperature instability to a d-wave superconduct-
ing phase at Tc ≈ 0.025t at 10% doping when U = 4t.
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