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Monte Carlo energy and variance-minimization techniques for optimizing
many-body wave functions
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We investigate Monte Carlo energy and variance-minimization techniques for optimizing many-body wave
functions. Several variants of the basic techniques are studied, including limiting the variations in the weight-
ing factors that arise in correlated sampling estimations of the energy and its variance. We investigate the
numerical stability of the techniques and identify two reasons why variance minimization exhibits superior
numerical stability to energy minimization. The characteristics of each method are studied using a noninter-
acting 64-electron model of crystalline silicon. While our main interest is in solid-state systems, the issues
investigated are relevant to Monte Carlo studies of atoms, molecules, and solids. We identify a robust and
efficient variance-minimization scheme for optimizing wave functions for large systems.
[S0163-18299)06919-2

[. INTRODUCTION identify the reasons why variance minimization exhibits su-

Accurate approximations to many-body wave functionsperior numerical stability to energy minimization, aij to
are crucial for the success of quantum Monte Ca@d1C) identify the best variance-minimization scheme for optimiz-
calculations. In the variational quantum Monte Cad/C) ing wave functions in large systems. We concentrate on two
method'? expectation values are calculated as integrals oveareas, the nature of the objective functi@®ec. ) and the
configuration space, which are evaluated using standareffects of approximating the required integrals by finite sums
Monte Carlo technigues. In the more sophisticated diffusioSec. Il). In Sec. IV, we use a 64-electron model of crystal-
Monte Carlo(DMC) method™ imaginary time evolution of line silicon to investigate the behavior of various optimiza-
the Schrdinger equation is used to calculate very accuratgion schemes, while in Sec. V we draw our conclusions.
expectation values. Importance sampling is included via a
trial wave function and the fermion sign problem is evaded
by using the fixed-node approximation. Il. THE OBJECTIVE FUNCTION

The most costly part of VMC and DMC calculations is
normally the evaluation of the trial wave functigand its
gradient and Laplacigrat many different points in configu-

In order to optimize a wave function, we require an ob-
jective function, i.e., a quantity that is to be minimized with

ration space. The accuracy of the trial wave function ControlgeSp?Clt t(k;_a set (f)f par ame;e{ral}d. The cn;erla that a suc-
the statistical efficiency of the algorithm and limits the final €€SSful objective function should satisfy for use in a Monte

accuracy that can be obtained. It is therefore necessary to u§@'I0 Optimization procedure are thiatthe global minimum
the objective function should correspond to a high-quality

trial wave functions that are as accurate as possible yet c . .. . L :
be computed rapidly. By far the most common type of trig/vave function, (ii) the variance of the objective function
should be as small as possible, did the minimum in the

wave function used in VMC and DMC calculations for at- > -~ : .
oms, molecules and solids is the Slater-Jastrow form objective funct|_0n _ShOU|d b_e as sharp and deep as possible.
One natural objective function is the expectation value of the

N energy,

N
d=> BnDLD#eXF{—E u(ri,r)+ 2 x(r)

i>]

(@

whereN is the number of electron®)/, and Dy, are Slater - f D2()[® L(a)Ad(a)]dR
determinants of spin-up and spin-down single-particle orbit- E.—
als, theB,, are coefficientsy is a one-body function, andis v )
a relative-spin-dependent two-body correlation factor. f P(a)dR
The functionsu and y normally contain variable param-
eters, and one may also wish to vary {Beand parameters
in the single-particle orbitals forming the Slater determi-Where the integrals are over thé&lalimensional configura-
nants. The values of the parameters are obtained via an ofon space. The numerator is the integral over the probability
timization procedure. Typical solid-state problems currentlydistribution = ®*(a) of the local energy E ()
involve optimizing of order 10 parameters for =® Y(a)HP(a).
10%-dimensional functions. These optimization problems are In fact, the energy is not the preferred objective function
delicate and require careful handling. for wave-function optimization, and the general consensus is
In this paper, we investigate several variants of energyhat a better procedure is to minimize the variance of the
and variance-minimization technigues. Our aims @jeto  energy, which is given by

: 2

0163-1829/99/5@.9)/123448)/$15.00 PRB 59 12 344 ©1999 The American Physical Society



PRB 59 MONTE CARLO ENERGY AND VARIANCE- ... 12 345

) ) Although minimization ofA(«) or B(«a) using correlated
J P (a)[E (@) —Ey(a)]7dR sampling methods has often been successful, in some cases
Ala)= : (3)  the procedure can exhibit a numerical instability. Two situa-
J ®?(a)dR tions where this is likely to occur have been identified. The

first is when the nodes of the trial wave function are allowed

Optimizing wave functions by minimizing the variance of 0 alter during the optimization process. A similar instability
the energy is actually a very old idea, having been used i§an arise when the number of electrons in the systems be-
the 1930s. The first application using Monte Carlo tech-comes large, which can result in an instability even if the
niques to evaluate the integrals appears to have been ti@des of the trial wave function remain fixed. The character-
Conroy? but the present popularity of the method derivesistic of these numerical instabilities is that during the mini-
from the developments of Umrigar and coworkefsh num- ~ mization procedure a few configuratiortsften only ong
ber of reasons have been advanced for preferring variandkcquire a very large weight. The estimate of the variance is
minimization, including:(i) it has a known lower bound of then reduced almost to zero by a set of parameters that are
zero, (i) the resulting wave functions give good estimatesfound to give extremely poor results in a subsequent QMC
for a range of properties, not just the eneréjji) it can be  calculation. When the nodes of the trial wave function are
applied to excited statey) efficient algorithms are known altered large weights are most likely to occur for configura-
for minimizing objective functions that can be written as ations close to the zeros of the probability distribution
sum of squares, an@) it exhibits greater numerical stability ®?(ao). Large weights can also occur when varying the Ja-
than energy minimization. The latter point is very significantStrow factor if the number of electromis large. For a small
for applications to large systems. change in the one-body functiaiy the local energy changes

The minimum possible value &(«) is zero. This value by an amounproportionalto Né&y, but the weight is multi-
is obtained if and only ifP(a) is an exact eigenstate &f. plied by a factor that iexponent_ialn N&x, which can _re_sult
Minimization of A(a) has normally been carried out via a In Very large or very small weights i is large. A similar
correlated sampling approach in which a set of configura@rgument holds for changes in the two-body term, which
tions distributed according ®2(«y) is generated, where, shows an even more severe potential instability because the

is an initial set of parameter value&(«) is then evaluated Cchange in the two-body term scales liKE. _
as The instability due to the weights has been noticed by

many researchers. In principle one could overcome this in-

) 5 stability by using more configurations, but the number re-

f P(ag)W(a)[E (a) —Ey(a)]"dR quired is normally impossibly large. Various practical ways

Ala)= , (4 of dealing with this instability have been devised. One
J’ d?(ag)W(a)dR method is to limit the upper value of the weights to set
the weights equal to unify® Schmidt and Moskowitz set

where the integrals contain a weighting facte(a) given by  the weights equal to unity in calculations for small systems
in which the nodes were altered. An alternative approach is

D a) to draw the configurations from a modified probability dis-
=—. (5 tribution that is positive definite, so that the weights do not
P (ao) get very large”’ In our calculations for large systems of up to

A(«) is then minimized with respect to the parameti#s. 1000 electrons! we also set the weights equal to unity while
The set of configurations is normally regenerated severg®Ptimizing the Jastrow factor. When using the correlated
times with the updated parameter values so that when corfampling approach, whether or not the weights are modified,
vergence is obtaineflx}={a}. A variant of Eq.(4) is ob- better results are obtained by periodically regenerating a new

. laci h fi lueE  Set of configurations chosen from the distributidf(a),
;?\'/TES by replacing the enerdyy(«) by a fixed value where{«} is the updated parameter set. This helps the con-

vergence of the minimization procedure. One can also re-

w(a)

_ strict the allowed variation in the parametées} before re-
f ®?(ag)W(a)[E(a)—EJ*dR generating a new set of configurations, but this can slow the
B(a)= . (6) convergence. We fouridthat setting the weights to unity
j D2(ag)W(a)dR allowed us to alter the parameters by a larger amount before
we had to regenerate the configurations with the new set of

parameters. After a feutypically three or four regenera-
tions we found that the parameters had converged to stable
values giving a small variance and low energy in a subse-
quent VMC calculation.

These strategies can often overcome the numerical insta-
o bility. Our goal is to apply QMC methods to large systems
occur.whend?:d%. I b(.)th .Of the coeﬁjqents (.)EV.and Witr?/ manyginequivalew'? )gitoms, which will req%ireywave
Ala) |n.t£e linear cor_nbmaﬂon are positive, which _'S_ 9uar functions for many electrons with many variable parameters.
anteed ifE<E,, then it follows that the absolute minimum \ve would like to be able to optimize the determinantal part
of B(«) occurs atd=®. Using this method wittE<E,  of the wave function as well as the Jastrow factor, which has
allows optimization only of the ground-state wave function. only recently been attempted for solittsand we would also

Note that ifE<E,, whereE, is the exact ground-state en-
ergy, then the minimum possible value®f«) occurs when
o=, the exact ground-state wave function. Minimization
of B(«) is equivalent to minimizing a linear combination of
Ey and A(«). The absolute minima of botk,, and A(«)
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like to optimize excited states as well as ground states. Ithe optimization process. Although the objective functions
order to accomplish these goals, we will need to improve ouA(«) and C(a) are unbiased in the sense that the exact
optimization techniqgues. In this paper, we analyze energground-state wave function corresponds to an absolute mini-
and variance-minimization techniques, in the expectatioomum C(«) is biased in the sense that for a wave function
that a deeper understanding of the issues of numerical stabihat cannot be exact the optimized parameters will not ex-

ity will lead to improved algorithms. actly minimize the true variance. We refer to this as a “weak
First, we analyze the procedure of setting the weights tdias” because it disappears as the wave function tends to the
unity, which gives a new objective functidd(«), where exact one. In practice this is not a problem because in mini-

mizing C(«) we regenerate the configurations several times
with the updated distribution until convergence is obtained,
so that minimization ofA(«) and C(«a) turns out to give
' () almost identical parameter values. On the other hand, the
f P?(ap)dR unweighted energ¥. shows a “strong bias” in the sense
that the nature of its stationary points are very different from
and those of the properly weighted energy. The ability to alter the
weights while not affecting the positions of the minima is an
important advantage of variance minimization over energy
minimization, which we believe is one of the factors that
' 8 leads to the greater numerical stability of variance minimi-
j d?(agp)dR zation.

f ®2(ag)[EL(@)— Ec(a)]2dR

Cla)=

j@z(ao)[qu(a)ﬂcb(a)]dR
EC:

is the unweighteq energy. The .Ot.)jeCtiV? functiBfa) has . Ill. FURTHER EFFECTS OF FINITE SAMPLING
the property that its absolute minimum is zero and that this

value is obtained if and only i®(«) is an exact eigenstate In the previous section we described the numerical insta-

of A, because for an exact eigenst&e= Ec. The absolute bility arisi_ng from the _weighting fgctors. The origin of this
minima of C(«) are therefore at the same positions as thos@roblem lies in approximating the integrals by the average of

of A(a) and thereforeC(a) should be a satisfactory objec- the integrand over a finite set of .points in configurgtion
tive function. As we will show by explicit example in Sec. SPace: There is another important issue connected with the

IV, the advantage of («) is that it has a lower variance than approximation_ O.f finite sampli_ng, .WhiCh is_whether the posl-
A(«), especially whenv, and« differ significantly. A simi- tions of the minima of the objective function are altered by

lar analysis can be applied to the case where the weights apgecﬂmtgdsal:\rﬁ)llngb_ltsi_lf. functioa in th h

subject to an upper limit, and we will refer to all such ex- onsider the objective tunctiof (e), In e case where

pressions with modified weights as variantsand E. the trial wave function has sufficient variational freedom to
The objective functiorC(«) contains the unweighted en- encompass the exact wave function. Approximating @j;.

ergy Ec. As we will show by explicit example in Sec. IV, by an average over t_he S.mi}z contammgNS configurations
- , drawn from the distributioP“( ) gives
the ground state dfl does not necessarily correspond to the

minimum value ofEc. The energyE. is therefore not a Ng

satisfactory objective function in its own right. If we replace 2 W(R;;)[EL(R ;@) —Ey({R;}; @) 2

the energyEc(«) in Eq. (7) by some other energk, then N

the minima of the objective function occur at the eigenstates A= Ng - (10
of H if and only if E evaluated with the exact wave function > W(R;;a)

is equal to the exact energy of the eigenstate. This require- i

ment still allows freedom in the choice &f, and the follow- ) . )
ing form is sufficient, The eigenstates dfl give ANs=0 for any size of sample

becauseE, =E,, for an eigenstate. Clearly this result also

holds for C(a). This behavior contrasts with that of the
- f P(R)EL(a)dR variational energyE, . Consider a finite sampling of the
E= , (90  variational energy of Eq(2), where the configurations are
f p(R)dR distributed according td?(«,) and properly weighted,
where p(R) is any probability distribution. This demon- N
strates that we can alter the weights in the endtgynd the 2 W(Ri@)EL(Ri;a)
varianceC independently, without shifting the positions of ENs— : _ (12)
the absolute minima of. In this paper, we have not inves- v Ns
tigated this freedom and we have always used the same E W(R;;a)

weights forEc andC. :
The above analysis applies for wave functions with suffi- . N ,

cient variational freedom to encompass the exact wave functh€ global minima ofE,* are not guaranteed to lie at the

tion. In practical situations we are unable to find exact waveeigenstates oH for a finite sample. The fact that the posi-

functions and it is important to consider the effect this has ortions of the global minima oA(«) andC(«) are robust to
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finite sampling is a second important advantage of variancesed might be 19 but we found it necessary to use a much

minimization over energy minimization. larger number to obtain sufficiently accurate values of the
different objective functions and, particularly, their vari-
V. TESTS OF MINIMIZATION PROCEDURES ances. In a practical application an objective function, e.g.

C(a), is evaluated using, for example, “l@onfigurations.
We now investigate the performance of the various enThe quantities of interest are thé®(«) and its variance
ergy and variance-minimization techniques for a solid-statealculated as averages over blocks of ¢6nfigurations. Be-
system. We would like to know the exact wave function for cause the numerator i@(«) containsk,,, which is itself a
our test system, and therefore we have chosen a noninteragium over configurations, the values®fa) and its variance
ing system. We model the valence states of silicon in thelepend on the number of configurations in the block. The
diamond structure, using periodic boundary conditions tovariance ofC(«a) calculated as such a block average is much
simulate the solid. The fcc simulation cell contains 16 atomsmore sensitive to the block size than the valueCgfy). As
and 64 electrons. The electrons are subject to a local potefthe number of configurations in the block increases the val-
tial, which is described by two Fourier componeis;;= ues ofC(a) and its variance converge to their true values.
—0.1 a.u. andV=—0.06 a.u., chosen to give a reason-[Analagous arguments hold f@(a).] Quoting all our re-
able description of the valence band structure of silicon. Theults as a function of the block size would result in an enor-
value ofV;4, is in good agreement with empirical pseudopo-mous increase in the amount of data. However, for our sili-
tential form factors for silicod? while the value ofV,0is  con model, the variances of the objective functions are close
somewhat larger. Overall, this model gives a reasonable dee their true asymptotic values for block sizes of t@nfigu-
scription of the valence states of silicon and retains the esrations or greater, so the values at the limit of large block
sential features for testing the optimization techniques.  sizes are the relevant ones for practical applications, and
The “exact” single-particle orbitals were obtained by di- these are the values we quote here.
agonalizing the Hamiltonian in a plane-wave basis set con- The configurations were generated by a Metropolis walk
taining all waves up to an energy cutoff of 15 a.u. This basisdistributed according td?, using the inexact reduced basis-
set is still incomplete, but the square root of the variance oget wave function. An optimization procedure typically starts
the energy is about 0.02 eV per atom, which is negligible forwith nonoptimal parameter values that are improved during
our purposes. We have added a variational parameteén  the optimization procedure. We present results for configu-
the form of ay function with the full symmetry of the dia- rations generated with the nonoptimal value af=0.03,
mond structure which gives results typical of the starting value for an opti-
mization anday= 0, which is the final value from a success-
: ful optimization procedure. The qualitative behavior is not
X(r):“( EG: PGelG'r)’ (12 strongly influenced by the value of;.

First, we consider energy minimization. In Fig. 1, we plot
where G labels the eight reciprocal lattice vectors of the the weighted and unweighted mean energigsandEc and
[111] star andPg is a phase factor associated with the non-their variances as a function ef, with configurations gen-
symmorphic symmetry operations. The exact value of theerated fromao=0.03[Fig. 1(a)] and ay=0 [Fig. 1(b)]. The
parametek is, of course, zero. To model the situation whereunweighted mean energy hasnaaximumat ay, i.e., the
the wave function does not possess the variational freedovalue from which the configurations were generated. This
to encompass the exact one we used a smaller basis set cuttgBult can be understood as follows. Consider a wave func-
of 2.5 a.u. The variational energy from this wave function istion of the form
0.35 eV per atom above the exact value, which is typical of
the_values we encounter in our solid-state calc_:ulapons. The o= BnDLD#eXf{E ady
optimal value ofa for this inexact wave function is very n K
close to zero. where thew, are parameters, and tlig are correlation func-

This model exhibits all the numerical problems we have,. K P : ' & :

. LS . .. _tions. The mean unweighted energy can be written as

encountered in optimization procedures. In practical situa-
tion_s one may have more electrons a_nd more parameters to Ec({a) = (ax— awo) Gy — ay) + constant, (14)
optimize, which makes the numerical instabilities more pro-
nounced. In order to analyze the behavior in detail, we havéherea,, are the parameter values from which the configu-
evaluated the variance of the objective functions. We foundations are generated and
that unfeasibly large numbers of electron configurations were

: (13

- - . 1

_reqL_nred to qbtaln accurate valu_es of t_he variance of the ob- _ _f d>2({ako})2 V,J,V,J,dR

jective functions for wave functions with many more elec- 2 i

trons and variables parameters than used in our model sys- G= (15
tem. We stress that when the numerical instabilities are more f ®2({ayoh)dR

pronounced it is even more advantageous to adopt the opti-

mization strategies recommended here. The Gy, and the constant term depend on thg but not on

We generated samples of 0:960° statistically indepen- the a. When there is only a single paramet@ris negative,
dent electronic configurations that were used to calculate theo thatE. is a quadratic function with a maximum af,
guantities involved in the various optimization schemes. In= ¢\ o. When there is more than one parameter the stationary
practical applications, a typical number of configurationspoint of the quadratic can be a maximum, minimum or
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FIG. 2. Distributions of weights for configurations generated
140 © ] with y=0.03 anday=0, evaluated withv=0 and a=0.03, re-
spectively.

outlying energies arise from the kinetic energies in almost all
cases. The standard deviations ave=0.964 and o
=0.726 a.u., fory=0.03 and 0, respectively. The expected
percentage of configurations beyond &om the mean of a
normal distribution is 0.27%, but the actual percentages are
0.443% and 0.608% fory=0.03 and 0, respectively. Al-
though these outlying local energies give a negligible contri-
7.0 + O—OUnweighted bution to the mean energy, calculated with or without
6ol OO Weighted weighting, and only a very small contribution to the values
' of the variance like objective functiong(«), B(«a), and
50006 004 002 000 002 0.04 0.06 C(a), t_hey gi_ve sig_niﬁqant cont_ributions to the variances of
o the variancelike objective functions.
It is highly undesirable for an objective function to have a
FIG. 1. Weighted and unweighted mean energies and standaldrge variance. A larger variance implies that a greater num-
deviations, shown as error bars, for configurations generated witQa of configurations is required to determine the objective
(@ a=0.03 and(b) a=0. function to a given accuracy. However, as noted above, only
] o ) ~ the variances and not the meansAdfa), B(«), andC(«)
saddle point, which is not acceptable behavior for an objeczre significantly affected by these outlying configurations.
tive function. The weights may be altered in other ways,e therefore limit the outlying local energies. An alternative
such as limiting their upper value, but if the weights areyouyld be to delete the outlying configurations, but this intro-

altered the minima of the energy are moved, which is ajyces a greater bias and is not as convenient in correlated-
“strong bias” in the objective function. If one insists on

Energy (a.u.)

using an energy-minimization method, weightingust be 30000 -
used. — =0
We now investigate the distributions of the weights and - o=0.03

the local energies. In Fig. 2, we plot the distributions of the
weights for ¢g=0.03 and a=0 and for ;=0 and «
=0.03, while in Fig. 3 we plot the corresponding distribu-
tions of the local energies. The distributions of the weights
resemble Poisson distributions, but the square roots of theg
variances are significantly greater than the means, so there3
are more configurations at large weights than for a Poissong
distribution with the same mean. The local energies follow =
normal distributions relatively well. As expected, the distri-
butions of the local energies is wider for thg=0.03 wave
function. Closer inspection reveals that the distribution of the
local energies is not exactly normal because the actual dis- 0 T S S S
tributions have “fat tails.” The outlying energies result from 78 80 1éner;yz(a u1)3 1415 16 W
outlying values of the kinetic energy. We have examined o

other systems, including interacting systems with wave func- FIG. 3. Distributions of the local energies fer=0 and «
tions obeying the cusp conditions, and have found that the-0.03.

20000 |

gurations

10000
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FIG. 4. The effect of limiting outlying energies ¢ta) and(b)] objective functiorC (the unweighted variangend[(c) and(d)] objective
function A (the weighted variangewith ay=0.03. Outlying energies are limited as in E@6) with the values o shown.

sampling schemes. The limiting must be done by the introfunctionsC andA versusa for configurations generated with
duction of an arbitrary criterion, which we have implementeda«,=0.03, with values of the limiting power in Eq. (16), of
as follows. First we calculate the standard deviation of the4, 8, 12, and infinity(no limiting), while in Figs. 4b) and
sampled local energies;. We then calculate limiting values 4(d) we plot their variances. The mean valuesCadre hardly
for the local energy as those beyond which the total expectegffected by the limiting, while those ok are only slightly
number of configurations based on a normal distribution isjtered. The smaller variances 6fand A obtained by limit-
less thamA, where ing the values of the local energy are very clear. In fact, if
the local energies are not limited then the variances of the
A=Ngx10"P, (16) objective function are not very accurately determined, even
with our large samples of 0.9610° configurations. Similar
chosen to be 8, although varyimgfrom 4 to 12 makes no results hold for configurations generated with=0. We are

significant difference to the results. We include the factor of10t @ware of other workers limiting the local energies in this
N, rather than limiting the energies beyond a given numbelV@- This method can significantly reduce the variance of
of standard deviations to incorporate the concept that ad!® variancelike objective functions without significantly af-
more configurations are included, the sampling is improvedfecting their mean values. Limiting the local energies is even
In the limit of perfect samplingNs— o, the objective func- More advantageous when small numbers of configurations
tions are unchanged. For our silicon system, the percentagé€ used. As mentioned above, in practical applications one
of configurations having their local energies limited by thisevaluates the objective functions as averages over a sample
procedure, withp=8, is only 0.024% and 0.047% fax, Of some given size, so that the variance of interest is the
=0.03 and 0, respectively, which corresponds to those bevariance for that block size. When the block size is small the
yond 5.7 standard deviations from the mean. The effect ofariances of objectives functios and C increase, but this
limiting the outlying local energies is illustrated in Fig. 4. In effect is greatly reduced by limiting the local energies. Lim-
Figs. 4a) and 4c) we plot the mean values of the objective iting the local energies in the way we have described gives

N, is the total number of configurations apdis typically
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FIG. 5. The unweighted objective functich generated with
ao=0 and with limiting of the weights.

significantly better numerical behavior for all the variance
like objective functions and therefore, all data shown in Figs.

5-7 have been limited witlp=8, unless explicitly stated
otherwise.

Limiting the values of the weights is a crucial part of the
variance-minimization procedure for large systems. Com-
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FIG. 7. Comparison of variancelike objective functions with
ap=0 as a function ofw.

parison of Figs. &) and 4d) shows that the variance of the
unweighted objective functio@(«) is smaller than that of
the weighted objective functioA(«) for all values of«,
provided one limits the local energies. The variances close to
the minimum are similar but away from the minimum the
variance ofA increases much more rapidly than that@f
The smaller variance of indicates the superior numerical
stability of the unweighted function. Qualitatively similarly
behavior occurs for configurations generated wif=0. A
commonly used alternative to setting the weights equal to
unity is to limit the maximum value of the weights. In Fig. 5,
we show data for objective functiod with the largest value
of the weights limited to multiples of 1 and 10 times the
mean weight, along with data for the weights set to unity. In
this graph the standard deviations of the objective functions
are plotted as error bars. Figure 5 shows that the variance of
Cis reduced as the weights are more strongly limited, but the
lowest variance is obtained by setting the weights to unity. In
addition, when the weights are limited the curvature of the
objective function is reduced, which makes it more difficult
to locate the minimum. We therefore conclude that setting
the weights to unity gives the best numerical stability.
Finally, we study the effect of using the objective function
B(«) [Eqg. (6)], in which the variational energf,, is re-

placed by a fixed reference energy which is chosen to be
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lower than the exact energy. In Fig. 6, we show the objectivesuggested two reasons why variance-minimization tech-
function B(a) versusa for configurations generated with niques are numerically more stable than energy minimization
a,=0. The overall shapes of the curves are hardly changetechniques:

as E is decreased, although the variance of the objective (1) In variance minimization it is allowable to limit the -
function slowly increases. E is chosen to be too low then a weights or set them equal to unity, which reduces the vari-

significant amount of energy minimization is included andf,incekOfb.the,, obrj]_ecrflv; function Wh'tlﬁ introducing only a
the numerical stability deteriorates. The objective functon weak bias, = which disappears as tné process converges.
does have the property that its variance is independent of n_fltenng the weights In energy minimization normally leads
block size, so that it does not show the increase in variance &f & badly behaved objective function.

short block sizes, but in practice we have not found this to be (2) Variance minimization, \.N'th or V.V.'thOUt f_;\lterlng the_
weights, shows greater numerical stability against errors in-

an important advantage. Using a valuebslightly below  5q,ced by finite sampling because the positions of the
Ey appears to offer no significant advantages. . minima of the variance are not shifted by the finite sampling,
_ A d|re<_:t comparison of_the different var_lancellke objec- hereas those of theroperly weightetlenergy are.

tive functions is made in Fig. 7. The behavior of the follow-  \ye have studied optimization strategies for a realistic
ing objective functions are displayed) A, (i) B with E model of the valence electronic structure of diamond-
=Ey—0.3750 a.u.{iii) C, and(iv) a variant ofC with the  structure silicon. The best strategy we have found is as
maximum value of the weights limited to 10 times the meanfollows.

weight. Limiting outlying values of the local energy im- (1) Minimize the variance of the unweighted local energy
proves the behavior of all the objective functions, so in eaclobjective functionC, Eq. (7)].

case we have limited them according to Etg) with p=8. (2) Limit outlying values of the local energy according to
The mean values of the objective functions are plotted in FigEq. (16).

7(a), which shows them to behave similarly, with the posi- (3) Regenerate the configurations several times with the
tions of the minima being almost indistinguishable. How-updated parameter values until convergence is obtained.
ever, the curve for the variant & with limited weights is This stategy may be applied to both ground and excited
somewhat flatter, which is an undesirable feature. The starstates of atoms, molecules and solids. It has been designed to
dard deviations of the objective functions are plotted in Fig.noe optimal for systems containing many electrons. The be-
7(b), and here the differences are more pronounced. The umhavior that we have observed in numerous wave function
weighted varianceC has the smallest variance, which is optimizations for large systems is consistent with the analy-
slightly smaller than that of the variant & with strongly  sis presented in this paper and indicates that the above opti-
limited weights. The variances of the objective functions thatmization strategy is robust, accurate and efficient.

include the full weights increase rapidly away fram=0.

This rapid increase is highly undesirable and can lead to
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V. CONCLUSIONS
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