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Monte Carlo energy and variance-minimization techniques for optimizing
many-body wave functions

P. R. C. Kent, R. J. Needs, and G. Rajagopal
Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom

~Received 20 October 1998!

We investigate Monte Carlo energy and variance-minimization techniques for optimizing many-body wave
functions. Several variants of the basic techniques are studied, including limiting the variations in the weight-
ing factors that arise in correlated sampling estimations of the energy and its variance. We investigate the
numerical stability of the techniques and identify two reasons why variance minimization exhibits superior
numerical stability to energy minimization. The characteristics of each method are studied using a noninter-
acting 64-electron model of crystalline silicon. While our main interest is in solid-state systems, the issues
investigated are relevant to Monte Carlo studies of atoms, molecules, and solids. We identify a robust and
efficient variance-minimization scheme for optimizing wave functions for large systems.
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I. INTRODUCTION
Accurate approximations to many-body wave functio

are crucial for the success of quantum Monte Carlo~QMC!
calculations. In the variational quantum Monte Carlo~VMC!
method1,2 expectation values are calculated as integrals o
configuration space, which are evaluated using stand
Monte Carlo techniques. In the more sophisticated diffus
Monte Carlo~DMC! method2,3 imaginary time evolution of
the Schro¨dinger equation is used to calculate very accur
expectation values. Importance sampling is included vi
trial wave function and the fermion sign problem is evad
by using the fixed-node approximation.

The most costly part of VMC and DMC calculations
normally the evaluation of the trial wave function~and its
gradient and Laplacian! at many different points in configu
ration space. The accuracy of the trial wave function contr
the statistical efficiency of the algorithm and limits the fin
accuracy that can be obtained. It is therefore necessary to
trial wave functions that are as accurate as possible yet
be computed rapidly. By far the most common type of tr
wave function used in VMC and DMC calculations for a
oms, molecules and solids is the Slater-Jastrow form

F5(
n

bnDn
↑Dn
↓expF2(

i . j

N

u~r i ,r j !1(
i

N

x~r i !G , ~1!

whereN is the number of electrons,Dn
↑ and Dn

↓ are Slater
determinants of spin-up and spin-down single-particle or
als, thebn are coefficients,x is a one-body function, andu is
a relative-spin-dependent two-body correlation factor.

The functionsu and x normally contain variable param
eters, and one may also wish to vary thebn and parameters
in the single-particle orbitals forming the Slater determ
nants. The values of the parameters are obtained via an
timization procedure. Typical solid-state problems curren
involve optimizing of order 102 parameters for
103-dimensional functions. These optimization problems
delicate and require careful handling.

In this paper, we investigate several variants of ene
and variance-minimization techniques. Our aims are~i! to
PRB 590163-1829/99/59~19!/12344~8!/$15.00
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identify the reasons why variance minimization exhibits s
perior numerical stability to energy minimization, and~ii ! to
identify the best variance-minimization scheme for optim
ing wave functions in large systems. We concentrate on
areas, the nature of the objective function~Sec. II! and the
effects of approximating the required integrals by finite su
~Sec. III!. In Sec. IV, we use a 64-electron model of crysta
line silicon to investigate the behavior of various optimiz
tion schemes, while in Sec. V we draw our conclusions.

II. THE OBJECTIVE FUNCTION

In order to optimize a wave function, we require an o
jective function, i.e., a quantity that is to be minimized wi
respect to a set of parameters$a%. The criteria that a suc-
cessful objective function should satisfy for use in a Mon
Carlo optimization procedure are that~i! the global minimum
of the objective function should correspond to a high-qua
wave function,~ii ! the variance of the objective functio
should be as small as possible, and~iii ! the minimum in the
objective function should be as sharp and deep as poss
One natural objective function is the expectation value of
energy,

EV5

E F2~a!@F21~a!ĤF~a!#dR

E F2~a!dR
, ~2!

where the integrals are over the 3N-dimensional configura-
tion space. The numerator is the integral over the probab
distribution F2(a) of the local energy EL(a)
5F21(a)ĤF(a).

In fact, the energy is not the preferred objective functi
for wave-function optimization, and the general consensu
that a better procedure is to minimize the variance of
energy, which is given by
12 344 ©1999 The American Physical Society
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A~a!5

E F2~a!@EL~a!2EV~a!#2dR

E F2~a!dR
. ~3!

Optimizing wave functions by minimizing the variance
the energy is actually a very old idea, having been use
the 1930s. The first application using Monte Carlo tec
niques to evaluate the integrals appears to have bee
Conroy,4 but the present popularity of the method deriv
from the developments of Umrigar and coworkers.5,6 A num-
ber of reasons have been advanced for preferring varia
minimization, including:~i! it has a known lower bound o
zero, ~ii ! the resulting wave functions give good estima
for a range of properties, not just the energy,~iii ! it can be
applied to excited states,~iv! efficient algorithms are known
for minimizing objective functions that can be written as
sum of squares, and~v! it exhibits greater numerical stabilit
than energy minimization. The latter point is very significa
for applications to large systems.

The minimum possible value ofA(a) is zero. This value
is obtained if and only ifF(a) is an exact eigenstate ofĤ.
Minimization of A(a) has normally been carried out via
correlated sampling approach in which a set of configu
tions distributed according toF2(a0) is generated, wherea0
is an initial set of parameter values.A(a) is then evaluated
as

A~a!5

E F2~a0!w~a!@EL~a!2EV~a!#2dR

E F2~a0!w~a!dR
, ~4!

where the integrals contain a weighting factorw(a) given by

w~a!5
F2~a!

F2~a0!
. ~5!

A(a) is then minimized with respect to the parameters$a%.
The set of configurations is normally regenerated sev
times with the updated parameter values so that when
vergence is obtained$a0%5$a%. A variant of Eq.~4! is ob-
tained by replacing the energyEV(a) by a fixed valueĒ
giving

B~a!5

E F2~a0!w~a!@EL~a!2Ē#2dR

E F2~a0!w~a!dR
. ~6!

Note that if Ē<E0, whereE0 is the exact ground-state en
ergy, then the minimum possible value ofB(a) occurs when
F5F0, the exact ground-state wave function. Minimizati
of B(a) is equivalent to minimizing a linear combination o
EV and A(a). The absolute minima of bothEV and A(a)
occur whenF5F0. If both of the coefficients ofEV and
A(a) in the linear combination are positive, which is gua
anteed ifĒ<E0, then it follows that the absolute minimum
of B(a) occurs atF5F0. Using this method withĒ<E0
allows optimization only of the ground-state wave functio
in
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Although minimization ofA(a) or B(a) using correlated
sampling methods has often been successful, in some c
the procedure can exhibit a numerical instability. Two situ
tions where this is likely to occur have been identified. T
first is when the nodes of the trial wave function are allow
to alter during the optimization process. A similar instabili
can arise when the number of electrons in the systems
comes large, which can result in an instability even if t
nodes of the trial wave function remain fixed. The charact
istic of these numerical instabilities is that during the min
mization procedure a few configurations~often only one!
acquire a very large weight. The estimate of the varianc
then reduced almost to zero by a set of parameters tha
found to give extremely poor results in a subsequent QM
calculation. When the nodes of the trial wave function a
altered large weights are most likely to occur for configu
tions close to the zeros of the probability distributio
F2(a0). Large weights can also occur when varying the
strow factor if the number of electronsN is large. For a small
change in the one-body functiondx the local energy change
by an amountproportional to Ndx, but the weight is multi-
plied by a factor that isexponentialin Ndx, which can result
in very large or very small weights ifN is large. A similar
argument holds for changes in the two-body term, wh
shows an even more severe potential instability because
change in the two-body term scales likeN2.

The instability due to the weights has been noticed
many researchers. In principle one could overcome this
stability by using more configurations, but the number
quired is normally impossibly large. Various practical wa
of dealing with this instability have been devised. O
method is to limit the upper value of the weights7 or to set
the weights equal to unity.8,9 Schmidt and Moskowitz8 set
the weights equal to unity in calculations for small syste
in which the nodes were altered. An alternative approac
to draw the configurations from a modified probability di
tribution that is positive definite, so that the weights do n
get very large.10 In our calculations for large systems of up
1000 electrons,11 we also set the weights equal to unity whi
optimizing the Jastrow factor. When using the correla
sampling approach, whether or not the weights are modifi
better results are obtained by periodically regenerating a
set of configurations chosen from the distributionF2(a),
where$a% is the updated parameter set. This helps the c
vergence of the minimization procedure. One can also
strict the allowed variation in the parameters$a% before re-
generating a new set of configurations, but this can slow
convergence. We found9 that setting the weights to unity
allowed us to alter the parameters by a larger amount be
we had to regenerate the configurations with the new se
parameters. After a few~typically three or four! regenera-
tions we found that the parameters had converged to st
values giving a small variance and low energy in a sub
quent VMC calculation.

These strategies can often overcome the numerical in
bility. Our goal is to apply QMC methods to large system
with many inequivalent atoms, which will require wav
functions for many electrons with many variable paramete
We would like to be able to optimize the determinantal p
of the wave function as well as the Jastrow factor, which h
only recently been attempted for solids,12 and we would also
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like to optimize excited states as well as ground states
order to accomplish these goals, we will need to improve
optimization techniques. In this paper, we analyze ene
and variance-minimization techniques, in the expectat
that a deeper understanding of the issues of numerical st
ity will lead to improved algorithms.

First, we analyze the procedure of setting the weights
unity, which gives a new objective functionC(a), where

C~a!5

E F2~a0!@EL~a!2EC~a!#2dR

E F2~a0!dR
, ~7!

and

EC5

E F2~a0!@F21~a!ĤF~a!#dR

E F2~a0!dR
, ~8!

is the unweighted energy. The objective functionC(a) has
the property that its absolute minimum is zero and that
value is obtained if and only ifF(a) is an exact eigenstat
of Ĥ, because for an exact eigenstateEL5EC . The absolute
minima ofC(a) are therefore at the same positions as th
of A(a) and thereforeC(a) should be a satisfactory objec
tive function. As we will show by explicit example in Se
IV, the advantage ofC(a) is that it has a lower variance tha
A(a), especially whena0 anda differ significantly. A simi-
lar analysis can be applied to the case where the weights
subject to an upper limit, and we will refer to all such e
pressions with modified weights as variants ofC andEC .

The objective functionC(a) contains the unweighted en
ergy EC . As we will show by explicit example in Sec. IV
the ground state ofĤ does not necessarily correspond to t
minimum value ofEC . The energyEC is therefore not a
satisfactory objective function in its own right. If we replac
the energyEC(a) in Eq. ~7! by some other energyĒ, then
the minima of the objective function occur at the eigensta
of Ĥ if and only if Ē evaluated with the exact wave functio
is equal to the exact energy of the eigenstate. This requ
ment still allows freedom in the choice ofĒ, and the follow-
ing form is sufficient,

Ē5

E p~R!EL~a!dR

E p~R!dR
, ~9!

where p(R) is any probability distribution. This demon
strates that we can alter the weights in the energyEC and the
varianceC independently, without shifting the positions o
the absolute minima ofC. In this paper, we have not inves
tigated this freedom and we have always used the s
weights forEC andC.

The above analysis applies for wave functions with su
cient variational freedom to encompass the exact wave fu
tion. In practical situations we are unable to find exact wa
functions and it is important to consider the effect this has
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the optimization process. Although the objective functio
A(a) and C(a) are unbiased in the sense that the ex
ground-state wave function corresponds to an absolute m
mum C(a) is biased in the sense that for a wave functi
that cannot be exact the optimized parameters will not
actly minimize the true variance. We refer to this as a ‘‘we
bias’’ because it disappears as the wave function tends to
exact one. In practice this is not a problem because in m
mizing C(a) we regenerate the configurations several tim
with the updated distribution until convergence is obtain
so that minimization ofA(a) and C(a) turns out to give
almost identical parameter values. On the other hand,
unweighted energyEC shows a ‘‘strong bias’’ in the sens
that the nature of its stationary points are very different fro
those of the properly weighted energy. The ability to alter
weights while not affecting the positions of the minima is
important advantage of variance minimization over ene
minimization, which we believe is one of the factors th
leads to the greater numerical stability of variance minim
zation.

III. FURTHER EFFECTS OF FINITE SAMPLING

In the previous section we described the numerical ins
bility arising from the weighting factors. The origin of thi
problem lies in approximating the integrals by the average
the integrand over a finite set of points in configurati
space. There is another important issue connected with
approximation of finite sampling, which is whether the po
tions of the minima of the objective function are altered
the finite sampling itself.

Consider the objective functionA(a), in the case where
the trial wave function has sufficient variational freedom
encompass the exact wave function. Approximating Eq.~4!
by an average over the set$Ri% containingNs configurations
drawn from the distributionF2(a0) gives

ANs5

(
i

Ns

w~Ri ;a!@EL~Ri ;a!2EV~$Ri%;a!#2

(
i

Ns

w~Ri ;a!

. ~10!

The eigenstates ofĤ give ANs50 for any size of sample
becauseEL5EV for an eigenstate. Clearly this result als
holds for C(a). This behavior contrasts with that of th
variational energy,EV . Consider a finite sampling of the
variational energy of Eq.~2!, where the configurations ar
distributed according toF2(a0) and properly weighted,

EV
Ns5

(
i

Ns

w~Ri ;a!EL~Ri ;a!

(
i

Ns

w~Ri ;a!

. ~11!

The global minima ofEV
Ns are not guaranteed to lie at th

eigenstates ofĤ for a finite sample. The fact that the pos
tions of the global minima ofA(a) andC(a) are robust to
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finite sampling is a second important advantage of varia
minimization over energy minimization.

IV. TESTS OF MINIMIZATION PROCEDURES

We now investigate the performance of the various
ergy and variance-minimization techniques for a solid-st
system. We would like to know the exact wave function f
our test system, and therefore we have chosen a noninte
ing system. We model the valence states of silicon in
diamond structure, using periodic boundary conditions
simulate the solid. The fcc simulation cell contains 16 ato
and 64 electrons. The electrons are subject to a local po
tial, which is described by two Fourier componentsV1115
20.1 a.u. andV220520.06 a.u., chosen to give a reaso
able description of the valence band structure of silicon. T
value ofV111 is in good agreement with empirical pseudop
tential form factors for silicon,13 while the value ofV220 is
somewhat larger. Overall, this model gives a reasonable
scription of the valence states of silicon and retains the
sential features for testing the optimization techniques.

The ‘‘exact’’ single-particle orbitals were obtained by d
agonalizing the Hamiltonian in a plane-wave basis set c
taining all waves up to an energy cutoff of 15 a.u. This ba
set is still incomplete, but the square root of the variance
the energy is about 0.02 eV per atom, which is negligible
our purposes. We have added a variational parameter,a, in
the form of ax function with the full symmetry of the dia
mond structure

x~r !5aS (
G

PGeiG.rD , ~12!

where G labels the eight reciprocal lattice vectors of t
@111# star andPG is a phase factor associated with the no
symmorphic symmetry operations. The exact value of
parametera is, of course, zero. To model the situation whe
the wave function does not possess the variational free
to encompass the exact one we used a smaller basis set c
of 2.5 a.u. The variational energy from this wave function
0.35 eV per atom above the exact value, which is typica
the values we encounter in our solid-state calculations.
optimal value ofa for this inexact wave function is very
close to zero.

This model exhibits all the numerical problems we ha
encountered in optimization procedures. In practical sit
tions one may have more electrons and more paramete
optimize, which makes the numerical instabilities more p
nounced. In order to analyze the behavior in detail, we h
evaluated the variance of the objective functions. We fou
that unfeasibly large numbers of electron configurations w
required to obtain accurate values of the variance of the
jective functions for wave functions with many more ele
trons and variables parameters than used in our model
tem. We stress that when the numerical instabilities are m
pronounced it is even more advantageous to adopt the
mization strategies recommended here.

We generated samples of 0.963106 statistically indepen-
dent electronic configurations that were used to calculate
quantities involved in the various optimization schemes.
practical applications, a typical number of configuratio
e
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used might be 104, but we found it necessary to use a mu
larger number to obtain sufficiently accurate values of
different objective functions and, particularly, their var
ances. In a practical application an objective function, e
C(a), is evaluated using, for example, 104 configurations.
The quantities of interest are thenC(a) and its variance
calculated as averages over blocks of 104 configurations. Be-
cause the numerator inC(a) containsEV , which is itself a
sum over configurations, the values ofC(a) and its variance
depend on the number of configurations in the block. T
variance ofC(a) calculated as such a block average is mu
more sensitive to the block size than the value ofC(a). As
the number of configurations in the block increases the v
ues ofC(a) and its variance converge to their true value
@Analagous arguments hold forA(a).# Quoting all our re-
sults as a function of the block size would result in an en
mous increase in the amount of data. However, for our s
con model, the variances of the objective functions are cl
to their true asymptotic values for block sizes of 104 configu-
rations or greater, so the values at the limit of large blo
sizes are the relevant ones for practical applications,
these are the values we quote here.

The configurations were generated by a Metropolis w
distributed according toF2, using the inexact reduced basi
set wave function. An optimization procedure typically sta
with nonoptimal parameter values that are improved dur
the optimization procedure. We present results for confi
rations generated with the nonoptimal value ofa050.03,
which gives results typical of the starting value for an op
mization anda050, which is the final value from a succes
ful optimization procedure. The qualitative behavior is n
strongly influenced by the value ofa0.

First, we consider energy minimization. In Fig. 1, we pl
the weighted and unweighted mean energiesEV andEC and
their variances as a function ofa, with configurations gen-
erated froma050.03 @Fig. 1~a!# anda050 @Fig. 1~b!#. The
unweighted mean energy has amaximumat a0, i.e., the
value from which the configurations were generated. T
result can be understood as follows. Consider a wave fu
tion of the form

F5(
n

bnDn
↑Dn
↓expF(

k
akJkG , ~13!

where theak are parameters, and theJk are correlation func-
tions. The mean unweighted energy can be written as

EC~$ak%!5~ak2ak0!Gkl~a l2a l0!1constant, ~14!

whereak0 are the parameter values from which the config
rations are generated and

Gkl5

2
1

2E F2~$ak0%!(
i

¹ iJk¹ iJldR

E F2~$ak0%!dR
. ~15!

TheGkl and the constant term depend on theak0 but not on
theak . When there is only a single parameter,G is negative,
so thatEC is a quadratic function with a maximum atak
5ak0. When there is more than one parameter the station
point of the quadratic can be a maximum, minimum
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saddle point, which is not acceptable behavior for an ob
tive function. The weights may be altered in other wa
such as limiting their upper value, but if the weights a
altered the minima of the energy are moved, which is
‘‘strong bias’’ in the objective function. If one insists o
using an energy-minimization method, weightingmust be
used.

We now investigate the distributions of the weights a
the local energies. In Fig. 2, we plot the distributions of t
weights for a050.03 and a50 and for a050 and a
50.03, while in Fig. 3 we plot the corresponding distrib
tions of the local energies. The distributions of the weig
resemble Poisson distributions, but the square roots of
variances are significantly greater than the means, so t
are more configurations at large weights than for a Pois
distribution with the same mean. The local energies foll
normal distributions relatively well. As expected, the dist
butions of the local energies is wider for thea050.03 wave
function. Closer inspection reveals that the distribution of
local energies is not exactly normal because the actual
tributions have ‘‘fat tails.’’ The outlying energies result from
outlying values of the kinetic energy. We have examin
other systems, including interacting systems with wave fu
tions obeying the cusp conditions, and have found that

FIG. 1. Weighted and unweighted mean energies and stan
deviations, shown as error bars, for configurations generated
~a! a050.03 and~b! a050.
c-
,

a

s
he
re
n

e
is-

d
-
e

outlying energies arise from the kinetic energies in almost
cases. The standard deviations ares50.964 and s
50.726 a.u., fora050.03 and 0, respectively. The expecte
percentage of configurations beyond 3s from the mean of a
normal distribution is 0.27%, but the actual percentages
0.443% and 0.608% fora050.03 and 0, respectively. Al-
though these outlying local energies give a negligible con
bution to the mean energy, calculated with or witho
weighting, and only a very small contribution to the valu
of the variance like objective functions,A(a), B(a), and
C(a), they give significant contributions to the variances
the variancelike objective functions.

It is highly undesirable for an objective function to have
large variance. A larger variance implies that a greater nu
ber of configurations is required to determine the object
function to a given accuracy. However, as noted above, o
the variances and not the means ofA(a), B(a), andC(a)
are significantly affected by these outlying configuration
We therefore limit the outlying local energies. An alternati
would be to delete the outlying configurations, but this intr
duces a greater bias and is not as convenient in correla

rd
ith

FIG. 2. Distributions of weights for configurations generat
with a050.03 anda050, evaluated witha50 anda50.03, re-
spectively.

FIG. 3. Distributions of the local energies fora50 and a
50.03.
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FIG. 4. The effect of limiting outlying energies on@~a! and~b!# objective functionC ~the unweighted variance! and@~c! and~d!# objective
function A ~the weighted variance! with a050.03. Outlying energies are limited as in Eq.~16! with the values ofp shown.
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sampling schemes. The limiting must be done by the in
duction of an arbitrary criterion, which we have implement
as follows. First we calculate the standard deviation of
sampled local energies,s. We then calculate limiting value
for the local energy as those beyond which the total expe
number of configurations based on a normal distribution
less thanD, where

D5Ns3102p, ~16!

Ns is the total number of configurations andp is typically
chosen to be 8, although varyingp from 4 to 12 makes no
significant difference to the results. We include the factor
Ns rather than limiting the energies beyond a given num
of standard deviations to incorporate the concept that
more configurations are included, the sampling is improv
In the limit of perfect sampling,Ns→`, the objective func-
tions are unchanged. For our silicon system, the percen
of configurations having their local energies limited by th
procedure, withp58, is only 0.024% and 0.047% fora0
50.03 and 0, respectively, which corresponds to those
yond 5.7 standard deviations from the mean. The effec
limiting the outlying local energies is illustrated in Fig. 4.
Figs. 4~a! and 4~c! we plot the mean values of the objectiv
-

e

d
s

f
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s
.

ge

e-
f

functionsC andA versusa for configurations generated wit
a050.03, with values of the limiting powerp in Eq. ~16!, of
4, 8, 12, and infinity~no limiting!, while in Figs. 4~b! and
4~d! we plot their variances. The mean values ofC are hardly
affected by the limiting, while those ofA are only slightly
altered. The smaller variances ofC andA obtained by limit-
ing the values of the local energy are very clear. In fact
the local energies are not limited then the variances of
objective function are not very accurately determined, ev
with our large samples of 0.963106 configurations. Similar
results hold for configurations generated witha050. We are
not aware of other workers limiting the local energies in th
way. This method can significantly reduce the variance
the variancelike objective functions without significantly a
fecting their mean values. Limiting the local energies is ev
more advantageous when small numbers of configurat
are used. As mentioned above, in practical applications
evaluates the objective functions as averages over a sa
of some given size, so that the variance of interest is
variance for that block size. When the block size is small
variances of objectives functionsA andC increase, but this
effect is greatly reduced by limiting the local energies. Lim
iting the local energies in the way we have described gi
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significantly better numerical behavior for all the varian
like objective functions and therefore, all data shown in Fi
5–7 have been limited withp58, unless explicitly stated
otherwise.

Limiting the values of the weights is a crucial part of th
variance-minimization procedure for large systems. Co

FIG. 5. The unweighted objective functionC generated with
a050 and with limiting of the weights.

FIG. 6. Objective functionB versus a with a050 and Ē
,EV .
.

-

parison of Figs. 4~b! and 4~d! shows that the variance of th
unweighted objective functionC(a) is smaller than that of
the weighted objective functionA(a) for all values ofa,
provided one limits the local energies. The variances clos
the minimum are similar but away from the minimum th
variance ofA increases much more rapidly than that ofC.
The smaller variance ofC indicates the superior numerica
stability of the unweighted function. Qualitatively similarl
behavior occurs for configurations generated witha050. A
commonly used alternative to setting the weights equa
unity is to limit the maximum value of the weights. In Fig. 5
we show data for objective functionC with the largest value
of the weights limited to multiples of 1 and 10 times th
mean weight, along with data for the weights set to unity.
this graph the standard deviations of the objective functi
are plotted as error bars. Figure 5 shows that the varianc
C is reduced as the weights are more strongly limited, but
lowest variance is obtained by setting the weights to unity
addition, when the weights are limited the curvature of t
objective function is reduced, which makes it more difficu
to locate the minimum. We therefore conclude that sett
the weights to unity gives the best numerical stability.

Finally, we study the effect of using the objective functio
B(a) @Eq. ~6!#, in which the variational energyEV is re-
placed by a fixed reference energyĒ, which is chosen to be

FIG. 7. Comparison of variancelike objective functions wi
a050 as a function ofa.
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lower than the exact energy. In Fig. 6, we show the objec
function B(a) versusa for configurations generated wit
a050. The overall shapes of the curves are hardly chan
as Ē is decreased, although the variance of the objec
function slowly increases. IfĒ is chosen to be too low then
significant amount of energy minimization is included a
the numerical stability deteriorates. The objective functionB
does have the property that its variance is independent o
block size, so that it does not show the increase in varianc
short block sizes, but in practice we have not found this to
an important advantage. Using a value ofĒ slightly below
EV appears to offer no significant advantages.

A direct comparison of the different variancelike obje
tive functions is made in Fig. 7. The behavior of the follow
ing objective functions are displayed:~i! A, ~ii ! B with Ē
5EV20.3750 a.u.,~iii ! C, and ~iv! a variant ofC with the
maximum value of the weights limited to 10 times the me
weight. Limiting outlying values of the local energy im
proves the behavior of all the objective functions, so in ea
case we have limited them according to Eq.~16! with p58.
The mean values of the objective functions are plotted in F
7~a!, which shows them to behave similarly, with the po
tions of the minima being almost indistinguishable. Ho
ever, the curve for the variant ofC with limited weights is
somewhat flatter, which is an undesirable feature. The s
dard deviations of the objective functions are plotted in F
7~b!, and here the differences are more pronounced. The
weighted varianceC has the smallest variance, which
slightly smaller than that of the variant ofC with strongly
limited weights. The variances of the objective functions t
include the full weights increase rapidly away froma50.
This rapid increase is highly undesirable and can lead
numerical instabilities.

V. CONCLUSIONS

We have analyzed energy and variance-minimizat
schemes for optimizing many-body wave functions, wh
the integrals involved are evaluated statistically. We ha
tt.

y
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e
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n-
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n-

t

to

n
e
e

suggested two reasons why variance-minimization te
niques are numerically more stable than energy minimiza
techniques:

~1! In variance minimization it is allowable to limit the
weights or set them equal to unity, which reduces the v
ance of the objective function while introducing only
‘‘weak bias,’’ which disappears as the process converg
Altering the weights in energy minimization normally lead
to a badly behaved objective function.

~2! Variance minimization, with or without altering th
weights, shows greater numerical stability against errors
troduced by finite sampling because the positions of
minima of the variance are not shifted by the finite samplin
whereas those of the~properly weighted! energy are.

We have studied optimization strategies for a realis
model of the valence electronic structure of diamon
structure silicon. The best strategy we have found is
follows.

~1! Minimize the variance of the unweighted local ener
@objective functionC, Eq. ~7!#.

~2! Limit outlying values of the local energy according
Eq. ~16!.

~3! Regenerate the configurations several times with
updated parameter values until convergence is obtained

This stategy may be applied to both ground and exci
states of atoms, molecules and solids. It has been design
be optimal for systems containing many electrons. The
havior that we have observed in numerous wave funct
optimizations for large systems is consistent with the ana
sis presented in this paper and indicates that the above
mization strategy is robust, accurate and efficient.
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