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Further developments are introduced in the theory of finite-size errors in quantum many-body simulations of
extended systems using periodic boundary conditions. We show that our recently introduced model periodic
Coulomb interactiofA. J. Williamsonet al, Phys. Rev. B65, R4851(1997)] can be applied consistently to
all Coulomb interactions in the system. The model periodic Coulomb interaction greatly reduces the finite-size
errors in quantum many-body simulations. We illustrate the practical application of our techniques with
Hartree-Fock and variational and diffusion quantum Monte Carlo calculations for ground- and excited-state
calculations. We demonstrate that the finite-size effects in electron promotion and electron addition/subtraction
excitation energy calculations are very similg80163-1829)07303-4

I. INTRODUCTION many-body techniques such as QMC, and, therefore, a
simple application of a DFT finite-size correction may not
Most simulations of extended quantum systems are peillead to accurate results. We have understood the reason for
formed using finite-simulation cells. This introduces “finite- this difference and have found a way to reduce the finite-size
size errors,” which are one of the major problems limiting errors in quantum many-body simulations using a new model
the application of accurate many-body techniques to experiodic-Coulomb(MPC) interaction, which has the addi-
tended systems. The standard method of reducing the finitgonal advantage that the residual finite-size effects are rea-
size errors is to apply periodic boundary conditions, but im-sonably well described by standard DFT calculations. The
portant finite-size errors often remain. In this paper weaccuracy can be further increased by using an extrapolation
present further developments of the theory of finite-size efprocedure, but the extrapolation corrections are considerably
fects in quantum many-body simulations subject to periodideduced and can, therefore, be evaluated using a smaller
boundary conditions. Our motivation is to understand andange of system sizes.
reduce the finite-size effects encountered in quantum Monte The layout of this paper is as follows. In Sec. Il we de-

Carlo simulations, although the techniques described hergcripe the Hamiltonian within periodic boundary conditions,
are of wide generality and can be readily applied to othegyjle in Sec. 11l we discuss various finite-size correction and
many-body electronic-structure methods. tiorh extrapolation procedures. In Sec. IV we review the
Quantum I\élonte CarlgQMC) methods in the variational  j,qenendent-particle finite-size effects, showing how our
and diffusiorf forms are capable of yielding highly accurate k-space sampling techniques are related to those used in
results for correlated-electron systems. These methods Al an-field theories. In Sec. V we introduce our MPC inter-

;22;2{;;?'S\;\z,?hgl?faaus(%;ﬁ::{igﬂ ;?ﬁgfﬁ]téogseﬁzgégcslggﬁad action for reducing finite-size effects in periodic systems and
y bp show that it can be applied to all the Coulomb interactions.

Ig\rgosramg chgzt sgfsﬁrgszlzfélcl\llﬁgt?;hselfesrsrl’a];ﬁ; rlz?gz?ca%s}ve present tests of the MPC intera}ct@on within the Hartree-
would be highly desirable to reduce the finite-size errors s ock (HF) theory (Sec._ V'A)’ variational Monte Carlo
that accurate results can be obtained using small simulatiofy MC) (Sec. VIB), and diffusion Monte CarléDMC) (Sec.
cells. We stress that all quantum many-body calculationsY! €)- The latter section includes DMC results for a system
which use periodic boundary conditions to model extendedvith 1000 electrons, which is the largest number in any
systems suffer from finite-size effects and that the ideas disPMC calculation to date. In Sec. VII we discuss finite-size
cussed in this paper are relevant whenever long-ranged intefTors present in calculations of excitation energies. Tests
actions are involved. within the HF theory are presented in Sec. VII A, while in

Finite-size errors in many-body calculations have tradi-Sec. VII B we present VMC results for the “optical absorp-
tionally been corrected for by extrapolation techniguestion” and “photoemission” gaps, the latter being the first
and/or by using the results of more approximate calculationssuch calculations for a three-dimensional periodic system.
such as those based on the density-functional th€dFRfT). Calculations with up to 512 electrons demonstrate that the
While extrapolation techniques can certainly be successfuinite-size errors in the “optical absorption” and *“photo-
they are very costly. In addition, the finite-size errors in pe-emission” gaps are similar and that the finite-size effects are
riodic boundary condition DFT calculations are significantly quite small even for a 64-electron simulation cell. We draw
different from those in the standard formulations of quantumour conclusions in Sec. VIIl.
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Il. THE HAMILTONIAN WITHIN PERIODIC-BOUNDARY rection term in brackets is approximated using a much less
CONDITIONS expensive scheme, which can be applied to very large sys-

The many-body Hamiltonian for a system of electrons attems.
Y y y In an extrapolation procedure the enefgy is calculated

positionsr; and static ions at positions, is for a range of system sizes and fitted to a chosen functional

form that contains parameters. Correction and extrapolation
N 1 1 . X .
A=Y — EVinrz > va(ri,x,)+ EZ v(ri,r) procedures can be combined to give an expression
i T« EA
1 E.=En+(E,—E{)+F(N), 4
+ EE ; U ap(Xq 1 Xp)- (1) where the prime indicates that a less expensive scheme is

used and-(N) is an extrapolation function. Clearly, the op-
An infinite system is normally modeled by a finite- timal form of F(N) depends on the method used to calculate

simulation cell subject to periodic-boundary conditions. Thethe correction term. The practical difference between correc-
model-interaction termsa, v, and Vaps are chosen such tion and eXtrapOlatlon is that correction requires a Slngle cal-
that the potential energy of the model system, which in-culation ofEy using the accuratéand normally very costly
volves only the positions of the particles in the finite- many-body technique, while extrapolation requires several
simulation cell, mimics the potential energy of the infinite such calculations for different values hfand a subsequent
system as closely as possible. Since the potential energy &t to the chosen functional fornf(N). The extrapolation
the infinite system depends on the positions of all the chargeg@rocedure is costly because it involves more calculations and
in the solid, only a few of which are included in the simula- is prone to inaccuracy because one has to perform a fit with
tion, the model-interaction energy is approximate even irenly a few data points. In designing a correction/
crystalline solids. To enforce the periodic boundary condi-extrapolation procedure one therefore tries to make the ex-
tions the functions,,, v, andv,z must be invariant under trapolation term as small as possible. . .
the translation of either argument by a member of the set of Candidate methods for evaluating the correction term in-
translation vectors of the simulation cell latti¢®}. The  clude Kohn-Sham DFT and the HF theory. The most conve-
standard approach is to choose the model Hamiltonian sudkieént methods are the local-density approximatibDA) to

that the full-potential energy of Eq1), evaluated by sum- DFT, or extensions such as the generalized gradient approxi-
ming the model interactions between all pairs of particles innation. These methods are very widely applied in periodic-
the simulation cell, equals the potential energy per cell of aPoundary conditions calculations and are computationally in-
infinite array of identical copies of the simulation cell. How- expensive, while retaining a realistic description of the
ever, even when we restrict each simulation cell in the arrapystem. Within an independent-particle theory, such as the
of copies to be overall charge neutral, the sum of interparkohn-Sham DFT, calculations for periodic systems are nor-
ticle Coulomb 1f interactions is only conditionally Mally performed by solving within the primitive unit céll.
convergen?, and to define this model interaction uniquely TO obtain the correct result for the infinite system it is nec-
the boundary conditions at infinity must be specified. Theessary to integrate over thespace, and the integral is nor-
standard procedure is to define the potential by solving Poighally approximated by a sum over a finite setkgfoints. A
son’s equation subject to periodic boundary conditions, irdeterminant formed from the occupied orbitals at a sirigle
which case the model interaction is the Ewald interaction. point in the first Brillouin zon¢BZ) of the primitive unit cell

For two electrons separated bythe Ewald interaction is 1S & many-body wave function for a simulation cell of the
size of the primitive unit cell. Adding a secorkl point

1 Ar - doubles the size of the determinant and is equivalent to dou-
ve(N=gq > —exd —G¥4k*+iG-r]— —— bling the size of the simulation cell, etc.

{Gl#0 G k8 An important subtlety arises when finite-size corrections
erfo(k|r +R|) derived from an independent-particle theory such as LDA-
—_— 2) DFT are used to correct the results of a true many-body

{R} [r+R] method such as QMC. Suppose the many-body calculation is
performed using the Ewald interaction, so that the Coulomb
gnergy is that of an infinite periodic array of copies of the
simulation cell. Given that the solid we are trying to model is
crystalline, and hence the charge density is truly periodic, the
Ewald interaction gives a good description of the classical

where() is the volume of the simulation cellG} is the set
of reciprocal space-translation vectors of the simulation-cel
lattice, andx is a positive but otherwise arbitrary constant.

IIl. FINITE-SIZE CORRECTION AND EXTRAPOLATION Coulomb or Hartree energy. However, because the electronic
FORMULAS positions are mirrored exactly in every copy of the simula-
The basic idea behind finite-size correction formulas is tdfion cell, the electronic correlations are also forced to be
write the energy for the infinite system as periodic, and the exc_hange—c_orrglauONC) energy corre-
sponds to a system with a periodic XC hole. This unphysical
E.=En+(E.—Eyp), (3y  approximation is particularly inaccurate when the simulation

cell is small. In Kohn-Sham DFT calculations the XC energy
where the subscript denotes the system size. A highly accus evaluated using a standard functional such as the LDA of
rate many-body calculation for tHé-particle system is then Perdew and Zungérwhich was obtained by fitting to the
performed to obtain an approximation Bk, and the cor- results of DMC calculations for jellium.There is an impor-
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tant difference, however, in that the DMC results were ex-accuracy can be obtained by adding an extrapolation term,
trapolated to the infinite-system-size limit before the fit wasbut this term is much smaller than if the Ewald interaction is
made. used.

The consequences of this difference are nicely illustrated The idea of changing the Hamiltonian to reduce the finite-
by considering many-body and LDA calculations for jellium, size errors may seem strange at first, so it is worth discussing
in which the charge density is uniform. The LDA gives the a simple example. Imagine that a periodic boundary condi-
XC energy for the infinite system irrespective of the size oftion QMC technique is being used to study an isolated mol-
the simulation cell, but the XC energy obtained from aecule. If the molecule is placed at the center of the periodi-
many-body simulation using the Hamiltonian of Efj) with cally repeated simulation cell, the calculated energy is that of
the Ewald interaction gives an XC energy, which depends oman array of identical molecules, including unwanted intermo-
the size and shape of the simulation cell. Consequentlylecular interactions. The results improve as the simulation
evaluating the correction term in E¢) within the LDA  cell is made larger, but the convergence is slow, especially
does not give a good approximation to the finite-size correcfor molecules with permanent-dipole moments. A better so-
tion in the many-body simulation and a significant extrapo-lution is to cut off all Coulomb interactions between charges
lation term remains. on different molecules, i.e., to replace the Ewald interactions

The issue of finite-size corrections to both the kinetic andby truncated Coulomb d/interactions acting only within the
interaction energies has been addressed by Ceperley asumulation cell. As long as the molecular-wave function has
co-workerst®~13 Their approach is to add separate extrapo-decayed to zero before the simulation cell boundary is
lation terms for the kinetic and interaction energies. In theireached, this procedure should give essentially exact results.
work on hydrogen solids, Ceperley and Alfeperformed  The changes to the interaction to be discussed in this paper
DMC calculations for a number of different system sizes andare a generalization of this approach to make it useful in
fitted to the formula simulating genuinely periodic systems such as crystals. In

this case the very “strict” notion of periodicity built into the
DMC —DMC Ewald interaction produces an artificial periodic replication
E."=Ex +a(Tm_TN)+N’ ©) of the XC hole as well as the required periodic replication of
the charge density. Our modified Hamiltonian removes the
wherea andb are parameters, aridis the kinetic energy of effects of the unwanted extra periodicity just as the simple
the noninteracting electron gas. ThéN term accounts for truncation removed the unwanted periodicity in the molecu-
the finite-size effects arising from the interaction energy andar example.
the difference of the parametarfrom unity accounts for the An alternative procedure is to evaluate the correction term
difference between the kinetic energies of the interacting anith Eq. (3) using the HF data. The HF theory is an approxi-
noninteracting systems. Normally;>1 because the interact- Mate method for solving the many-body Hamiltonian, and if
ing kinetic energy is larger than the noninteracting kineticwe use the Ewald formula for the electron-electron interac-
energy. Engekt all* used the following formula for inho- tion terms in both the many-body and HF theories, the finite-
mogeneous systems: size error in the HF exchange energy will tend to cancel the
finite-size error in the many-body interaction energy. At first
sight this appears to be an excellent solution to the finite-size
(6) problem. However, this procedure gives too large a correc-
tion, presumably because the HF exchange hole is signifi-

which reduces to Eq5) for a homogeneous system. cantly different from the screened XC hole of the many-body

As mentioned above, a large part of the finite-size error ir>YStem-
the interaction energy arises from the use of the Ewald
interaction:>'® Our approach to the problem of the finite- |\, |NDEPENDENT-PARTICLE FINITE-SIZE EFFECTS
size errors differs from that of Ceperley al.in an important '
respect. We try to reduce the finite-size effects within the We call the correction term E:PA—EP*) the
many-bodycalculation by modifying the interaction terms in independent-particle finite-size effe@PFSB. The finite-
the many-body Hamiltonian. The Ewald interaction is a pe-size effect arising from the particular model interaction used
riodic function that differs from 1/in such a way that the is called the Coulomb finite-size effe¢(EFSB. In this sec-
sum of interactions between pairs of partickd¢hin one cell  tion we discuss the IPFSE in more detail. The “finite-size
gives the exact Coulomb energy per cell of a periodic latticeerror” in an LDA calculation for a perfect crystal arises from
of identical cells. This ensures that the Ewald Hamiltonianerrors in the BZ integration. In an LDA calculation the com-
gives the correct Hartree energy, but the deviations fram 1/putational cost is proportional to the number lofpoints
give rise to a spurious contribution to the XC energy, corre-used. However, in a QMC calculation the volume of the
sponding to the periodic repetition of the XC hole discussedimulation cell is proportional to the number kfpoints in
earlier’>® Our solution is to change the many-body Hamil- the primitive BZ and the computational cost increases ap-
tonian so that the interaction with the XC hole is exactly 1/ proximately as the cube of the volume of the simulation cell.
(see Sec. Yfor any size and shape of the simulation cell, This means that it is even more important to choosekthe
without altering the form of the Hartree energy. This sourcepoints carefully in a QMC calculation so as to make the
of finite-size error is, therefore, eliminated and E8), with  IPFSE as small as possible.
the correction term calculated within the LDA, gives a much  Additional errors arise when using the supercell approxi-
better description of the remaining finite-size errors. Greatemation for systems that break translational symmetry. Con-

b
EQMC_ EQMC, q(ELPA_ ELPA) 4 5
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sider a crystal containing a point defect. In the supercelsimulation-cell reciprocal lattice. This choice gives a smooth
approach a finite simulation cell containing a single defect isand rapid convergence of the BZ integration with increasing
repeated throughout space to form an infinite threewvalues of the\;.2° For example, as mentioned above, for fcc
dimensional array. The supercell must be sufficiently largecrystals we choosksto be anlL point of the BZ of the lattice

that the interaction between defects in different cells is negdefined by theN;a; . In this case the Monkhorst-Pd€ldefi-
ligible. This type of finite-size effect is distinct from the BZ nition of the offset corresponds to taking arpoint for N;
integration error because it persists even when the BZ inteeven, but thd™ point for N; odd. The latter choice gives poor
gration is performed exactly. However, the correction to theresults and this problem has prompted some researchers to
defect-formation energy from this type of finite-size error avoid Monkhorst-Pack meshes with odd values of khe
should be described reasonably well byEg* — ER>*) cor-  but in fact odd values can be very efficient if the mesh is
rection term, whereE:P* and ERP* are, respectively, the offset according to our prescription.

defect-formation energies for a large simulation cell and a
smaller one, each containing a single defect.

A determinantal Bloch wave function suitable for use in a
QMC calculation may be formed from a set of single-particle In this section we summarize the theory of the MPC in-
orbitals at a singlé&k point kg, in the Brillouin zone of the teraction. More details and background are given in Refs. 15
simulation-cell reciprocal lattice. The IPFSE can be greatlyand 16. In Sec. Il we described how the CFSE arises from
reduced for insulating systems by a careful choicksfsing  the XC energy and the dependence of the Ewald interaction
the method of speciak points borrowed from the band- g on the size and shape of the simulation cell. Expandiag
structure theory’® We have described the theory of the around zero separation givés®
specialk points for many-body calculations in our earlier
papers®?® and here we concentrate on the practicalities of

. 7 . - 1 2«
choosingks. Baldereschi’ defined the mean-value point, ve(r)=const+ —+ —r7-D-r+ 0| —
which is ak point at which smooth periodic functions of the ro3Q
wave vector accurately approximate their averages over the
BZ, and clearly the Baldereschi mean-value point is a strongvhere() is the volume of the simulation cell, and the tensor
candidate foks. However, we find it convenient to choose D depends on the shape of the simulation délbr a cubic
ks to be equal to half a translation vector of the simulation-cell D=1.) The constant term arises from the condition that
cell reciprocal lattice K;=G/2), which allows the construc- the average of ¢ over the simulation cell is zero. The term
tion of real single-particle orbitals and hence is computationof orderr? and the higher-order deviations fromr Ihake
ally more efficient. Some freedom is still left in the selectionthe Ewald interaction periodic and ensure that the sum of
of kg, and we choose from th8/2 according to the symme- interactions between the particles in the simulation cell gives
trized plane-wave test of BZ integration quality introducedthe potential energy per cell of an infinite-periodic lattice.
by Balderescht’ For example, for an fcc simulation cell the These terms are responsible for the spurious contribution to
half-reciprocal-lattice vectors correspond to fhe X, andL  the XC energy, which is the source of the large finite-size
points of the BZ of the simulation-cell reciprocal lattice. For effect in many-body calculations using the Ewald
a crystal with the full-cubic symmetrg.=L gives the best interaction*>*® For cubic cells the interaction at short dis-
BZ integration anck;=T" the worst. tances is larger than rl/and, therefore, the XC energy is

It is illuminating to relate thes&-point schemes to the more negative than it should be, and because the leading
multipoint schemes used in LDA and HF calculations. Inorder correction is proportional to the inverse of the
LDA and HF calculations one normally samples the BZ ofsimulation-cell volume the error per electron is inversely
the primitive-unit cell, whereas in a QMC calculation one proportional to the number of electrons in the cell.
samples the BZ of the simulation cell. Suppose that the simu- Clearly it is desirable to remove this spurious contribution
lation cell has translation vectoid;a;, Na,, andNsas, to the XC energy, but we must remember that the Hartree
where theN; are integers and th& are vectors defining the energy is correctly evaluated using the Ewald interaction.
primitive-unit cell. When unfolded into the BZ of the The key requirements for a model Coulomb interaction giv-
primitive-unit cell thek point ks maps onto the regular mesh ing small CFSE's in simulations with periodic boundary con-
ditions are therefore(i) it should give the Ewald interaction
for the Hartree terms, and) it should be exactly t/for the
interaction with the XC hole. Unfortunately, the only peri-
odic solution of Poisson’s equation for a periodic array of
where 1=0,...N;—1m=0,...N,—1n=0,...N3—1, charges is the Ewald interaction, which obeys criteriibh
and theb; are reciprocal to the;. This mesh is of the same only in the limit of an infinitely large simulation cell. We
type as defined in the widely used Monkhorst-Pack sch&me therefore abandon the use of Poisson’s equation and the
for BZ integration, differing only by an offset from the ori- Ewald interaction, and instead use a MPC interaction that
gin. The multipoint generalization of the Baldereschisatifies both criteria. This may seem a drastic step, but we
scheme, which can be used in LDA and HF calculations isoint out that we are trying to model an infinite system by a
now obvious: one chooses the offdetto be equal to the finite one and that the interparticle interaction used in the
mean-value poinf of the lattice defined by the translation finite simulation cell must model the effects of all the
vectorsN;a, . As mentioned above, for our purposes we pre-charges in the infinite system.
fer to choose, to be equal to half a translation vector of the  Our MPC interactiotf can be written as

V. COULOMB FINITE-SIZE EFFECTS

I m n
k|mn:N_1b1+_b2+N_3b3+kS' (7)

N
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R tric solids the dipoles from different regions are not aligned
Heem X f(ri—r)+2> f [ve(ri=r)—=f(r;=r)]p(r)dr,  and the depolarization field is greatly redugebo make the
=) bW electrostatic potential periodic deep within the cluster we
©) need to apply a cancelling external-electric field. In the limit
wherep is the electronic charge density and of a very large cluster this is equivalent to using the Ewald
interaction. In a cubic system the total energy of interaction
1 between the dipoles, which includes the interaction with the
f(r)= o (10 depolarization field, does not contribute to thér?) term in
" Eq. (8).2! For a cubic system th€@(r?) term in Eq.(8)
The definition of the cutoff Coulomb functiohinvolves a  therefore arises solely from the interaction between the di-
minimum-image convention whereby the interelectron dispoles and the external field. In a noncubic systemQiie?)
tancer is reduced into the Wigner-SeitaVS) cell of the  term contains contributions from both the dipole-dipole in-
simulation cell lattice by removal of simulation cell-lattice teractions and the interactions of the dipoles with the exter-
translation vectors, leaving a vectoy,. This ensures that nal field. The agvantage of our MPC interaction is that it
H... has the correct translational and point-group symmetryPr€vents thed(r®) terms contributing to the XC energy.
The first term in Eq.(9) is a direct Coulomb interaction T the simulation cell is not big enough to accommodate
between electrons within the simulation cell and the seconépe trug ).(C hple then the XC holg is squeezed into the cell
term is a sum of potentials due to electrons outside the sim Tn.d a flnlte-5|ze_ error ensues. This appears to be the largest
lation cell. Note that the second term is a one-body potenti jnite-size error in the Interaction energy after the CFSE has
similar to the Hartree potential. It depends on the electroni een removed. Extrapolation currently appears to be the best

charge density but is not a function of the separation of the method of correc.tlr)g th|s error. When the XC hole is
electrons. squeezed by the finite-simulation cell the XC energy calcu-

The electron-electron contribution to the total energy iS‘Iated using the MPC interaction is too negative. The effect of

| h ) ueh ith th the O(r?) term in the Ewald interaction is to make it even
evaluated as the expectation valuettf, with the many- 510 negative, however, and so the MPC interaction is still
electron wave functiorp minus a double-counting term:

better than the Ewald interaction.

Ee—e:<¢||:|e—14 ¢>_%f p(Np(r’) A. Systems of electrons and nuclei
ws In the previous sections we considered the electron-
X[vg(r—r")—f(r—r’)]drdr’. (11)  electron interaction only, and did not discuss the electron-
nucleus and nucleus-nucleus interactions. If the MPC inter-
Evaluating the expectation value gives action is physically reasonable we should, however, be able
to apply it to all the interactions in the problem, not just the
1 , , , electron-electron terms. Here we apply the MPC interaction
Ee'e_if p(N)p(r)vg(r—r")drdr | ;
ws to a system of electrons and nuclei, showing that under cer-
tain common conditions the expressions simplify so that the
2 electron-nucleus and nucleus-nucleus terms reduce to the
" st|¢| |§>:1 Fri=rpdry Ewald form.
1 Consider a simulation cell with periodic boundary condi-
o+ , oy / tions containing\ electrons at positions; and M nuclei of
2 Wsp(r)p(r JH(r=rrdrdr’ , (12) chargeZ, at positionsx,. The wave function of the elec-

trons and nuclei is ({r;},{x.}), and the total charge density

where the first term on the rightjhand side is the Hartree{electrons and nuclgis p-(r). The interaction energy cal-
energy and the term in brackets is the XC energy. We capjjated with the MPC interaction is

see immediately that the Hartree energy is calculated with
the Ewald interaction while the XC energgxpressed as the 1 , , , ,
difference between a full Coulomb term and a Hartree yerm Eint:EJWSPT(r)pT(r )ve(r=r")—=f(r—r")]drdr
is calculated with the cutoff interactidn

The charge density appears in Eq99), (11), and(12).
In QMC methods, the charge density is known with greatest + fWSWF[; f(ri_rj)_zi ; Zaf(ri=xa)
statistical accuracy at the end of the calculation. This is not a
serious complication for VMC simulations as the interaction
energy may be evaluated at the end of the simulation using +QZB ZoZ gt (Xa=Xp)
the accumulated charge density. In DMC this is not possible
because the local energyis required at every step. We We now employ the adiabatic approximation to separate

[Ty dr I1,dx, . (13

investigate this point further in Sec. VI C. the electronic and nuclear dynamical variables:
The CFSE may be viewed in another wdyConsider a B
large cluster of identical simulation cells. Almost all possible PAri}Xah) = dUri{Xa) P({Xa}). (14)

configurations of the electrons within the simulation cellwhere the{x,} appear only as parameters i To make
have a net-dipole moment. The dipole moments in the perifurther progress we must assume a form for the nuclear part
odic replicas of the simulation cell are aligned, resulting in aof the wave function®. The simplest assumption is thdt
depolarization field across the sample real nonferroelec- can be written as an appropriately symmetrized product of
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very strongly localized nonoverlapping single-nucleus func- ' ‘ '
tions. Regardless of whether the product is antisymmetrized 8.0 O—OLDA 7
symmetrized, or not symmetrized, HG.3) reduces to O—OHF (Ewald)
6.0 O—O HF (MC)
1 ) @ — ® |IPFSE Corrected HF (Ewald)
, , & — # IPFSE Corrected HF (MPC)
Eim=—f p(Np(r)[vg(r—r")—f(r—r")]drdr 2 ao
2Jws g 4
=
& 20
+f > f(ri—rjIdry 5 7
ws i>j n
<
(1l O
_f 16122 2 Zave(ri—xo) idry
WS i @ P
-20 P .
e
JE— PR //
+ 2 Zazﬁ’v E(Xa_ Xﬁ)i (15) -4.0 { . . .
a>p 1 2 3 4 5

System size

where thex, denote the centers of the single-nucleus func- ,
tions andp is the electron density. Note that the electron- /G- 1. Convergence of the LDA and HF ground-state energies
nucleus and nucleus-nucleus terms involve only the EwaI@er atom of S|I|C(|)_n as a function of simulation cell si@eusing
interaction and that the first two terms of Ef5) correspond -point BZ sampling.
precisely to the electron-electron interaction of Ek). This . L .
result justifies the use of Eq9) for the electron-electron yvhere Ey 1s the ion-ion energy calculated.wnh the Ewalq
interactions while retaining the Ewald interaction for themteractlon: Note Fhat th? Hartree energy is evgluated with
electron-nucleus and nucleus-nucleus terms. th_e Ewald interaction whl_le the e_xchange energy is evaluated
with the cutoff Coulomb interaction.
In Fig. 1 we show the deviations of the LDA and HF
VI. TESTS OF THE MPC INTERACTION energies from the fully converged values as a function of
system size foks=1I" wave functions. The LDA energy con-
verges smoothly with system size but for small system sizes
We have tested the MPC interaction by performing a sethe IPFSE error is large because of thgoint sampling. We
ries of calculations on diamond-structure silicon using fccshow HE energies calculated with the Ewald and MPC inter-
simulation cells whose translation vectors arémes those  actions, with and without incorporating the IPFSE correc-
of the primitive-unit cell. In a previous publication we gave atjons obtained from the LDA data. The data incorporating
few results from such testS,but here we present new tests the |PFSE(filled symbol3 show the residual CFSE errors.
and subject them to a more detailed analysis. The IPFSE is positive while the CFSE is negative, in accord
In our first set of tests we compare LDA and HF results.yith the analysis of the CFSE given in Sec. V. The IPFSE
These tests are inexpensive, which allows us to study veryorrected data show that the CFSE for the MPC interaction is
large systems, and they are not subject to statistical erroigyghly half that for the Ewald interaction.
because Monte Carlo techniques are not involved. We con- |y Fig. 2 we show similar data fdtc=L. The LDA en-
sider simulation cells witm=1, 2, 3, 4, and 5, which con- ergy converges rapidly and smoothly with system size, and
tain 2, 16, 54, 128, and 250 ions, respectively. THE $0ns  therefore the IPFSE is small, which demonstrates the effi-
were represented by normconserving nonlocal LDA pseudocacy of the speciak-points method. The IPFSE and CFSE
potentials and the calculations were performed using a plangsrrors tend to cancel and fd,=L sampling the HF data
wave basis set with a cutoff energy of 15 Ry. To facilitate converge more rapidly without the IPFSE corrections. For
comparison we evaluate the HF energy with the LDA orbit-

A. Application to the HF calculations

als, so that the energy differences arise solely from the dif-
ference between the LDA XC energy and the HF exchange
energy. We performed calculations usikg=L andk,=T".
The HF energy evaluated with the MPC interaction is = 0o
g .
2
HF 1 * 2 g
EFF=2 =5 | #F(NV2ei(r)dr Sl
' @ -2.0 O—OHF (Ewald)
1 1N < L/ O—O HF (MC)
, , , ®- — ® |PFSE Corrected HF (Ewald)
+§J p(N)p(r)ve(r—r’)drdr _EiEj Iss, // & — & IPFSE Corrected HF (MPC)
40¢ 2 s 4 5
System size

XJ $ (DG (r=1)F (1) gj(r)drdr’
FIG. 2. The LDA and HF ground-state energies per atom of

silicon as a function of simulation cell size using L-point BZ
+ f Ve p(r)dr+Ey, (16 sampling. gL-p
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n= 3, corresponding to a 54 atom simulation cell, the LDA 0.0
finite-size error(IPFSE only is 0.011 eV per atom, which is
very much smaller than the HfEwald finite-size error of
—0.211 eV per atom or the equivalent HKIPC) error of
—0.071 eV per atom. As in the case Bfpoint sampling,
the CFSE for the MPC interaction is roughly half that for the
Ewald interaction.

After applying the IPFSE correction obtained from the
LDA data the HF results foks=I" andk;=L sampling are
very similar. The correspondence of the IPFSE corrected
data for thel andI’ points demonstrates that to a very good
approximation the IPFSE and CFSE are independent. Esti-
mating the energy of the infinite system by averaging the
energy over a set d€; vectors removes the IPFSE but does
not remove the CFSE. 40

We have fitted the CFSE errors from the filled data points 1 2 3 4 5
in Figs. 1 and 2 to the forrh/N*, whereb andx are param- System size

gters a|r|1d\lh— 8;‘ IS the nlumb?;t Qf er:ectrorls in fthe _Sln;ula- FIG. 3. The VMC ground-state energies per atom of silicon as a
tion cell. The fits give va ue; In t_ € reglor_1 of unity or_ function of simulation cell sizen. A correction for the IPFSE is
both the Ewald and MPC interactions. This extrapolation;,,ded. The statistical error bars ate.01 eV per atom.

function is therefore suitable for both interactions, although
the size of the extrapolation term is smaller for the MPCthe energy using 10000-20000 statistically independent
interaction. electron configurations, which were regenerated several
The Ewald and MPC interactions differ by an amounttimes during the minimization procedui&® We used the
inversely proportional to the volume of the simulation cell. same pseudopotential as in our LDA and HF calculations,
This means that although the energies per particle convergg@mpling the nonlocal potential using the techniques of Fahy
to the same value as the volume of the simulation cell inet al**
creases, the difference between the Ewald and MPC energies We have optimized wave functions using both the Ewald
of the whole simulation cell tends to a finite constant as theand MPC interactions. The wave functions generated using
simulation-cell volume goes to infinity. We have evaluatedthe different interactions are almost identical. Properties
this constant value for the fixed-LDA-orbital HF calculations other than the energy, such as pair-correlation functions, are,
described in this section by extrapolating the energy differtherefore, hardly affected by the choice of interaction. As the
ence between the Ewald and MPC energies. This gives BIPC interaction gives the correct interaction between the

-1.0

E (eV per atom)
|
n
o

<

®—@ Ewald
o—eMPC

value of approximately 14 eV. electrons at short distances it may give a better account of,
for example, the short distance behavior of the pair-
B. Application to VMC correlation function, but more numerical work is required to

3 , investigate this point.

In the VMC method® the energy is calculated as the |y Fig. 3 we show results for VMC calculations of the
expectation value of the Hamiltoniad with a trial-wave energies of the same systems as in the previous section.
function ¢+ yielding a rigorous upper bound to the exact These results are similar to those given in Ref. 16, but they
ground-state energy. The Metropolis algorithm is used tdhave been recalculated for this work with more accurate
generate electron configurations distributed accordin@%to wave functions and better sampling, and the data have been
and the energy calculation is performed by averaging theorrected for the IPFSE. The total energies were calculated

local energy¢;1|:| ¢+ over this distribution. to a statistical accuracy af 0.01 eV per atom. The VMC
Our trial-wave functions are of the standard Slater-data display a smaller CFSE than the HF data, probably be-
Jastrow type: cause the HF exchange hole is longer ranged than the

screened hole obtained in the correlated calculationsnFor

N N =2, the MPC interaction reduces the VMC finite-size error

$r=D'D'ex 21 x(r)— 2 u(rij) |, (17) by more than 50%, from-0.403 to—0.187 eV per atom.
i= i<j

where there ard\ electrons in the simulation cell is a C. Application to DMC

one-body functionu is a two-body correlation factor that In the DMC method? imaginary time evolution of the
depends on the relative spins of the two electrons, Bhd  Schralinger equation is used to evolve an ensemble Nf 3
andD' are Slater determinants of up- and down-spin singledimensional electronic configurations towards the ground
particle orbitals. Theu functions were of the type described state. The calculations are made tractable by using the fixed-
in Ref. 22, while for they functions we used spherically node approximation and by incorporating importance sam-
symmetric functions centered on each atom. Thedanc-  pling. The method generates the distributiony, wherey
tions give significantly better results than the truncated Fouis the best(lowest energy wave function with the same
rier series representation used in our earlier paffeéfsThe  nodes as the guiding wave functigr . The accuracy of the
trial-wave functions contained 32 variable parameters, whosfixed-node approximation can be tested on small systems and
optimal values were obtained by minimizing the variance ofthe results are normally very satisfactdry.
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Ewald interaction and the MPC interaction significantly re-
duces the CFSE. These results demonstrate that the finite-
size errors within VMC and DMC calculations are very simi-
lar and that the MPC interaction is similarly effective in both
methods.

We have fitted the residual CFSE errors in both the VMC
and DMC calculations to the fora/N*. The fit is reason-
able and gives a value afclose to unity for both the Ewald
and MPC data. For these data it is possible to obtain more
accurate approximations ©3V by using such an extrapo-
lation function, although the calculations for the large-
system sizes are costly, especially within DMC. The extrapo-
lated energies should be more accurate for the MPC

A E (eV per atom)

$—eMPC interaction because the extrapolation term is significantly
_4.0 s . . smaller.
1 2 s 4 5 Many interesting applications of VMC and DMC methods
System size will be to problems in which the guantity of physical interest

Js the difference in energy between two large systems. Ex-
amples of such problems are calculations of excitation ener-
gies and defect energies in solids. In such cases the energy of
interest is approximately independent of the size of the simu-

We evaluated the nonlocal pseudopotential energy usinbation cell, so that for each simulation-cell size it is the en-
the locality approximatio® The short-time approximation €rgy of thewhole simulation celthat must be converged to
for the Green’s function was used with a time step of 0.01the required tolerance, not the energy per atom as we plotted
a.u. Liet al? found that using a time step of 0.015 a.u. gaveln Figs. 3 and 4. In these cases extrapolation will be so costly
a time-step error of less than 0.03 eV per atom in silicon, sghat it can hardly be contemplated. In some cases the CFSE
our time-step error should be even smaller. The total enefill largely cancel between the two systems, as occurs in our

gies were calculated to a statistical accuracy+di.02 eV  €xcitation-energy calculationsee next section This can-
per atom. cellation cannot always be relied upon, however, especially

Our MPC interaction is more complicated to apply in When the simulation cells contain different numbers of par-
DMC than in VMC because the evaluation of the ticles, and the use of the MPC interaction should be particu-

importance-sampled Green’s function requires the local en@rly beneficial in such cases.

ergy. The modified Hamiltonian, and hence the local energy,

depends on the charge density, and, therefore, we must know VII. EXCITATION ENERGIES
the charge density before we can perform the DMC calcula-
tion. Fortunately, however, the local energy is relatively in-

FIG. 4. The DMC ground-state energies per atom of silicon as
function of simulation cell sizen. A correction for the IPFSE is
included. The statistical error bars ate).02 eV per atom.

The guasiparticle excitation energies are the energies for

sensitive to the charge density used in the Hamiltofim adding an electron to the system or subtracting one from it.
B ) . A guasiparticle energy has both real and imaginary parts, the

(9)] becausee(r) —f(r) is small whenr| is small. latter giving the quasiparticle lifetime. For the minimum-

We have tested the sensitivity of the Green’s function to S o . .
energy electron and hole-quasiparticle excitations the imagi-

the charge density used in the Hamiltonian. Two candldat(?]iiry parts of the quasiparticle energies are zero and the qua-

charge densities are the charge density of the Oleterminantg‘lparticles have an infinite lifetime. In this case the exact
part of the QMC wave function and the charge density of the inarticle ener an can be Wr.itten as
VMC guiding wave function. Even for a small system ( quastpar gy gap
=2) we find it sufficient to use the LDA charge density Ey=(Ens1—En)+ (En_1—Ep), (18)
during the calculation of the Green’s function and to reevalu- g
ate the charge-density dependent term in the interaction envhereEy.,, Ey_1, andEy are the ground-state total en-
ergy using the DMC density obtained at the end of the calergies of theN+1, N—1, andN electron systems. A general
culation. The sensitivity rapidly reduces with increasingquasiparticle energy gap cannot be written in terms of differ-
system size, and this procedure gives errors of less than 0.@&hces between energies of exact eigenstates of the system,
eV per atom forn=2, and less than 0.01 eV per atom for but such an approximation is often accurate for low-energy
larger system sizes. Therefore, the requirement of having gaps. The quasiparticle energies are measured in photoemis-
good approximation to the charge density in advance of thsion and inverse photoemission experiments. In an optical-
DMC calculation does not pose a significant difficulty. A absorption experiment a different process occurs in which an
successful DMC calculation requires a good quality VMCelectron is excited from the valence to the conduction band.
trial function and its charge density can be obtained duringrhis introduces two quasiparticles into the system, the elec-
the process of wave-function optimization. tron and hole, which interact and can form an exciton, in
In Fig. 4 we show results for DMC calculations on the which case the lowest-excitation energy is smaller t&gn
same systems as for our VMC study, the largest of whictby the exciton-binding energy,, .
contains 1000 electrons. The results include a correction for The HF method gives approximations to the energies of
the IPFSE. The convergence behavior is very similar to theuasiparticles and the interactions between them. According
VMC data. The MPC energies are always above those for theo Koopmans’s theorem, if orbital relaxation is neglected, the
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guasiparticle energies are equal to the HF eigenvalues. A. HF theory of excitation energies
Koopmans's theorem can be extended to include correlation rjrst we consider excitation energies for solids within the

effects?’*® The extended Koopmans's theorem has beery theory. The HF equations with the MPC interaction are
used in conjunction with VMC methods to calculate quasi-gptained by minimizing the HF energy of E€L6) with re-
particle energies in Si”CO??. In both of these methods the spect to the single-particle orbitals, giving

guasiparticle energies are real as they are obtained as ap-
proximations to the energy differences between exact eigen- 1_, , -
states of the system. —5 Vit | p(r)ve(r—r')dr' ¢,

Recently there has been significant progress in applying

N
QMC techniques to calculate approximate excitation ener- o , o
gies from eigenstates using direct methods. In these ap- _IEJ: S5, | #7 ()¢ gi(r)f(r—ri)dr
proaches an excitation energy is obtained by performing
separate QMC calculations for the ground and excited states. +Vexdi= € i - 19

A Slater-Jastrow wave function is used for the ground stateIlf lect th laxati £ th bitals. th i
and for the optical gap the excited state is formed by replac- we negiect [ne relaxation of the orbitals, the energy re
ing a valence-band single-particle orbital by a conduction-.qUIred tp excite an ?'ec”of‘ frqm teh (occupied orbital
band one. We call this a “promotion” calculation, and such into theith (unoccupiedl orbital is

calculations have been reported for a nitrogen stlid,

diamond®32 and silicon** Photoemission/inverse photo- AEij:(ei_ej)_fPi(r)Pj(r/)UE(r_rl)drdr,
emission gaps may be obtained by using QMC to calculate

the ground-state energies of tNe-1, N—1, andN electron

systems. Wave functions for tHé+1 andN—1 electron +5sisjf (1) dF (r') () i(r")f(r—r")drdr’
systems may be formed by adding or subtracting an orbital

from the up- or down-spin determinants of theelectron 1

wave function. We call this an “addition/subtraction” calcu- + EJ pi(N)pi(r)[ve(r—r")—f(r—r’)]drdr’
lation. For calculations with periodic-boundary conditions

the simulation cell is made charge neutral by adding a com- 1 , , , ,
pensating uniform-background charge density. Calculations +§j pi(Npj(r)lvg(r—r")—f(r—r")]drdr’,

of this type have been reported for otfe-and

two-dimensiondf* model systems, while results for a three- (20)
dimensional systertsilicon) are reported in this paper. where py=|¢/? is the charge density from theth orbital.

QMC calculations of excitation energies in extended syshe first term is the eigenvalue difference for the excitation
tems are computationally very demanding because they aighijle the second and third terms are the Hartree and ex-
1N effects, i.e., the fractional change in energy is inverselychange interactions between the electron and hole. Within
proportional to the number of electrons in the system. Thighjs approximation the electron-hole terms go to zero in the
means that high-statistical accuracy is required to obtaifmit of an infinitely large simulation cell. The fourth and
good results. The largest system for which excitation enerfifth terms on the right-hand side are absent if one uses the
gies have been calculated prior to this paper is 16 at@#s Ewald interaction instead of the MPC interaction, i.e., we
electron$.®® The total finite-size error in the ground-state replacef by ve. When the relaxation of the orbitals is ne-
energy for that system was estimated to be about 16 eV pgjiected these terms also go to zero when the size of the

simyla_tion c_:ell, while the energy scale of interest for thegjmulation cell goes to infinity becausg tends to 17 over
excitations is of order 0.1 eV. Like almost all methods for st of the simulation cell.

calculating excitation energies, QMC calculations of this  Tne addition/subtraction gap is given by

type only work because of a strong cancellation of errors

between the ground and excited states. It turns out that the 1

finite-size errors tend to reduce the energy gap, while thdEg=(EYi—E§") —(Ef"—E™) =(e—¢)) + Ef pi(Npi(r’)
errors in the trial-wave functions are usually larger for the

excited states than for the ground state and so increase the X[vg(r—r’)—f(r—r’)]drdr’

energy gap. Although good agreement with experimental ex- 1

citation energies has been found using small simulation p N fie ,
cells®~*3one is left with the suspicion that if larger simula- +§f pi(Npi(r)lvelr=r’) =f(r=r")]drdr’, (21)
tion cells were used the agreement with experiment might be HE -

significantly worse because the finite-size effects would b&vhereEg" is the HF ground-state energy of theelectron
smaller. Before these QMC techniques can be relied upon fa¥ystemE~ is the energy of the state with an electron added
calculating excitation energies it is necessary that the issue & the ith (previously unoccupiedorbital, along with the
finite-size effects be properly explored. In the next sectionsiniform background charge, ari™; is the energy of the

we address the following questions. state where an electron is removed from jtieorbital, along
(1) What are the sizes and origins of the finite-size effectsith the background charge. The standard Koopmans'’s theo-
in excitation-energy calculations? rem has been modified and contains two additional terms,

(2) What are the differences in finite-size effects betweenwhich also occur in the promotion energyg;; . We have
promotion and addition/subtraction calculations? evaluated these additional terms using LDA orbitals and
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Ewald and MPC interactions are almost the same, the source
of the error is not the interaction with the exchange hole, but
the shape of the exchange hole. This is because the excitation
energy depends on the change in the exchange hole due to
the excitation, which is not strongly localized.
< In a very interesting set of calculations Engehl* stud-
210t - ied excited states of a model two-dimensional system using
3 LDA, GW, VMC, and DMC techniques. They performed a
:.:j \ number of VMC calculations with increasing system size
and found that the addition/subtraction gap tended to in-
51 [ A—/\HF Direct Gap (Ewald) crease with system size, which is the same behavior as we
R Do ey have found in our HF calculations. Enged al. went on to
h At -t S give an explanation of this effect. Their explanation was that
O~——CILDA Band Width intheN+1 (N—1) electron systems there is an additional
0 S S S S S S S electrostatic energy due to the interaction of the extra elec-
t 2 8 4 5 6 7 8 9 10 11 12 tron (hole) with the additional electrorhole) in the other

System si . . Ot o
ysiem size simulation cells. Taking into account the additional

FIG. 5. Convergence of thE s —T 15 excitation energy and COmpensating-uniform background charge that was added to
valence bandwidth of silicon. The data correspond to additionkeep each cell neutral, this additional energy is negative and,
subtraction energies calculated within the HF theory as a functiodherefore, the energieSy.; andEy_, are lower than they
of simulation cell sizen using both the MPC and Ewald interac- should be. Engeét al. showed that the observed finite-size
tions. LDA results are also shown. effect is much smaller than the Madelung energy for point

charges, and to explain this they argued that the effect would
have found that even for a small simulation cei(2) they ~ € screened by the response of the other electrons. This ar-
are very small, being in the range0.05 eV, and they de- gument implies that the finite-size effects in addition/
crease rapidly with system size. We do not expect that thaubtraction calculations are larger than those in promotion
use of exact HF orbitals or orbital relaxation will greatly c@lculations. o o
affect these results. Our analysis of the situation is as follows. For simplicity

In Fig. 5 we show the addition/subtraction energies calcuWe consider our HF calculations, where the interaction en-
lated using Eq(21) for the T',5 —T'y5 energy gap and the ergy can be divided into Hartree and exchange contributions.
valence bandwidth, calculated with both the Ewald and MPC! N€ significant underestimation of the HF band gaps of small
interactions, along with LDA value€The results for other SYS€MS is not due to the Hartree terms, which by construc-
energies show similar behavipMWe do not show the pro- tion are the same as for our LDA calculations and give very
motion energies in Fig. 5 because they differ from thesmall finite-size effects in the band gaps. The finite-size error
addition/subtraction energies only by the exciton-binding en!n the HF gaps therefore arises from the exchange energy. By
ergy, which decreases with increasing system size quite rag°MpParing band gaps calculated with the Ewald and MPC
idly. Figure 5 shows that the HF results for the Ewald andnteractions we can see whether the problem lies with the
MPC interactions are very similar. The bandwidth convergedntéraction or with the shape of the exchange hole. Because
by aboutn=7, but the band gap is still slowly increasing at & find that the band gaps calculated with the Ewald and
n=12, and the Ewald and MPC values are not yet equal',v'PC interactions are very similar we conclude that the form
which they must be at convergence. For the largest syste f the interaction is not the important consideration. There-
size studied if=12) the MPC gap and valence bandwidth ore, the source of the problem must be the finite-size errors
are 7.4 and 17.7 eV, respectively, which are a little smallePreSent in the shape of the exchange hole. This argument
than the HF values of 8.0 and 18.9 eV given in Ref. 35 Implies that the finite-size effects in addition/subtraction cal-

Presumably the major reasons for these differences are th&ltjlations are similar to those in promotion calculations. Our

we use LDA wave functions and LDA-derived pseudopoten-v'eWpomt is supported by the HF results that have been pre-

tials, although as noted above there is clear evidence that ﬁ{ented in this subsection and .also by the VMC results to be
our calculations the HF energy gap has still not fully con-discussed in the next subsection.

verged ah=12. The LDA excitation energies converge very In summary, the !_”: exci_tation energieg, qalculaf[ec_i with
rapidly with system size. Note that this would not be true int"€ Ewald and MPC interactions are very similar. Within the
either LDA or HF theory if we studied isolated clusters of H',: theory the largest finite-size error in excitation energies
atoms. In a recent study of silicon clusteféQED et g3  arises from the shape of the exchange hole, which leads to

found large differences between the band gap in the LDA§IOW convergence Wi.th system s.ize. The finite-s!ze errors in
eigenvalues and the band gap calculated by electropromotion and addition/subtraction HF calculations are of
addition/subtraction. As shown by Franceschettial,?”  Similar size.

these differences are due to the charging of the cluster when
an electron is added or subtracted, which does not occur in
our calculations because a uniform background is added to We now apply the theory developed in the previous sec-
preserve charge neutrality. The slow convergence of the HEon to QMC calculations of excitation energies. Although
excitation energies apparent in Fig. 5 therefore arises fronwe have just demonstrated that the HF gaps converge rather
the exchange energy. Moreover, because the results with tiowly with system size, we showed earlier that the finite-

B. QMC theory of excitation energies
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slightly larger. This follows because the trend for both pro-
motion and addition/subtraction calculations is that the exci-
i tation energy is reduced for small system sizes and this effect
is enhanced in the promotion calculation by the exciton-
binding energy, which is larger for small systems. The cal-
culated excitation energy is roughly 4 eV, which is larger
than the experimental value of 3.40 é¥and also a little
larger than our DMC value for am=2 simulation cell of 3.7
O Promotion (Ewald) eV.* Our study demonstrates that the largest contribution to
@ Add/Subtract (Ewald) the error in the VMC band gap fan=2 arises from the
approximate nature of the trial-wave functions, and not from
finite-size effects.
The exciton-binding energy can be calculated as the dif-
ference between the promotion and addition/subtraction
1 2 3 4 gaps. The exciton-binding energy for thgs, — I 15 excita-
System size tion is small and we can only resolve it from the statistical
FIG. 6. Thel',5;—1I'15 excitation energy of silicon calculated noise for the smallest_r‘(z 1) cell, Which gives a valu_e of
within the VMC tﬁgory aig a function of sir%lation cell simeData 0_'28_45 0.01 eV.In ear“e_r QMC CaIPUIat'Oﬁ%_SZthe eXC'_ton
for the Ewald interaction are shown obtained via both the promoPinding energy was estimated using the Mott-Wannier for-
tion and addition/subtraction methods. mula

5.0 . . % pect the finite-size effect in the promotion calculation to be

S
e

Band Gap (eV)
n
[=)

© 0.0

size effects in VMC and DMC ground-state energies are EbNL,
smaller than in the HF theory. It is important to see whether 2er
this also applies to excitation energies.

(22

. , wheree is the relative permittivity and is the radius of the
VMC is computationally cheaper than DMC and so We .47 ation region. Using=11.7 and the appropriate radius

are able to compute excitation energies using VMC over g, 1 ofr=4.0 a.u. gives an exciton-binding energy of

larger range of system sizes. We expect that the ﬁnite'SiZS.ZQ eV. This is extremely close to the VMC value, but the

effects n DMC.W'" follow those in VMC’ as our VMC. excellent agreement is probably fortuitous since thel
calculations retrieve about 90% of the fixed-node correlatlor}:eII is so small that it is appropriate to use a value at the

energy. We have computed tiigs —I'y5 excitation energy finite-wave vector, which would be smaller. The exciton-

in silicon within VMC for the system sizes=1,2,3,4 using bindi s
X - . inding energy may also be evaluated within the HF theory
both promotion and addition/subtraction methods. The calcuz 1o sum of the second and third terms on the right-hand

lations were performed with;=I" and the other computa- side of Eq.(20). This gives 0.75 eV for the=1 cell using

Eonal \c/j\;atans \é"ire tthe sfamte as fc;r the grfou?r(]j-state Cglctm?he Ewald interaction, which is considerably larger than the
lons. VVe used Jastrow factors optimized for the ground stalgy =y a1ue pecause the latter calculation includes screening
of each system, which were left unchanged for the excite f the electron-electron interaction

state. In tests on the=2 system we found that separately Note that the promotion and addition/subtraction methods

optimizing the Jastrow factors for both ground and excitedyitte significantly in the required computational effort. Sup-

s_tates did not significantly ch_ange_ the results. The computaﬁose, for example, that we wish to calculate an energy
F'Onﬁl COSt. of .thm:4 cz_alcu(l)aftmns IS very Igrge, an errorbbar gap by either the promotion or addition/subtraction methods.
in the excitation energies of 0.3 eV requires an error bar | o ;5 assume that the intrinsic variance of the local energy

of £0.0006 eV per electron. Although the computationalig ihe same for each of the energies, which is a good approxi-
effort IS large we believe that such a stpdy IS necessary t@5iion for our silicon calculations, and suppose that an ac-
establish the accuracy of QMC excitation-energy calculagepiaple error bar is obtained in a promotion calculation by

tions. . _ _ __performingM Monte Carlo moves for both the ground and
In Fig. 6 we show the excitation energies obtained withg, cjteq states. A simple calculation shows that the most ef-

the Ewald interaction via the promotion and addition/ficient way to achieve the same error bar in an addition/
subtraction methodgResults for the MPC interaction are subtraction gap is to perform\ moves for each of thél

very similar) The promotion and addition/subtraction results | 1 - N—1 systems andM for the ground state, giving a
are nearly the same, but the promotion energies are slightly ¢t of 81 moves. It is therefore four times more ex-

smaller because they include an exciton-binding energy, ensive to calculate an energy gap to some given accuracy

wh|ch decrez_ases as th_e system size increases. The result_s the addition/subtraction method than by the promotion
consistent with a slow increase in the excitation energy wit ethod

system size and indicate that reasonable convergence is al-
ready obtained ah=2. The increase in excitation energies
with system size is the same trend as in the HF calculations,
although the finite-size errors are smaller in the correlated In this section we introduce a modified electron-electron
calculations. The finite-size errors in the promotion andinteraction specifically designed to describe excitation ener-
addition/subtraction methods are not significantly different agies within periodic boundary-conditions simulations. Two
this level of statistical accuracy. On general grounds we exproblems arise when trying to model excitations using finite

C. Modified interaction for excitation energies
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simulation cells subject to periodic boundary conditions. Ondomb interactions in the system, although it normally reduces
is that the excitation is “squeezed” into the simulation cell, to using the MPC interaction for the electron-electron inter-
and the other is that there are spurious interactions betweedttion, retaining the standard Ewald interaction for the
the periodic replicas of the simulation cell. Here we addresglectron-ion and ion-ion terms. The Ewald and MPC interac-
the problem of the spurious interactions using the ideas ofions may be used in tandem as an efficient diagnostic of
the MPC interaction. With our MPC interaction the replicasCoulomb finite-size errors. If the Ewald and MPC results
interact only via the Hartree energy. The charge density omagree then the Coulomb finite-size error should be small.
promotion or addition/subtraction of an electron can be writ-  If the simulation cell is too small then the confinement of
ten as the sum of the ground-state charge density and a sméhe XC hole makes the XC energy more negative. This
deviation, i.e.,p(r)=p(r)+A(r). We can modify the Har- source of error is intrinsic to using a finite-simulation cell.
tree term so that this charge density interacts with thdiowever, even when the XC hole is artificially confined by a
ground-state density in the replicas. This leads to the intersmall-simulation cell the MPC interaction still gives a better

action energy estimate of the XC energy than the Ewald interaction.
Excitation energies calculated within the fixed LDA-
~ | = - orbital HF theory show significant finite-size effects. How-
Ee'e_f |l ,EJ fri rl)l_k[ dri ever, in correlated calculations the finite-size effects are

smaller and accurate excitation energies can be obtained us-

~ , NPT , ing quite small-simulation cells. In silicon we find that the
+f p(N)p(r)lve(r=r’)=f(r=r")]drdr finite-size errors in VMC electron-promotioffoptical ab-
1 sorption”) and electron addition/subtractioffphotoemis-
- Nolr! r—t")—f(r—r")]drdr’, s_lon”) calculations are similar, and that the optical promo-
Zf p(N)p(r)[vel )~ K )] tion method has the greater statistical efficiency. The finite-

23) size errors for low-lying excitations in silicon are small, and
quite accurate results may be obtained from 16 atom cells.

where|$|? generates the charge densityand the ground- We have described developments aimed at understanding
state charge density is fixed. A HF analysis of this inter- and reducing finite-size errors in many-body quantum simu-
action shows that the HF equations are identical to(E9), lations using periodic boundary conditions. Since one cannot

so that the orbitals and eigenvalues are unaltered. Howeveget exact answers for an infinite system from a finite-
the ground- and excited-state energy expressions are modiimulation cell whatever interaction is used, there is no “ex-
fied. For the excited states we obtain analogues of &f. act interaction” for a finite system with periodic boundary
and (21), but without the terms involvingu—f), i.e., we  conditions. The Ewald and MPC interactions are alternative
retrieve the standard Koopmans’s theorem. We have alreadyodel interactions compatible with periodic boundary con-
shown that these terms are small for silicon, although theglitions, and the relevant question is which model interaction
will be significant in cases when the change in the charg@ives results that most closely approximate those for very
density due to the excitation is strongly localized. Thislarge simulation cells. The Ewald and MPC interactions dif-
analysis provides further evidence that the electrostatic inteifer by an amount that is inversely proportional to the size of
actions between the simulation cell and its replicas is nothe simulation cell and, therefore, they give the same energy-
necessarily an important source of finite-size error in excitedper-particle in the limit of an infinitely large simulation cell.

state energy calculations. However, for finite cells the Ewald and MPC interactions
can give significantly different energies. In every test we
VIIl. CONCLUSIONS have performed the energy calculated with the MPC interac-

tion is closer than the Ewald energy to the value for a very

Large Coulomb finite-size errors arise in total-energy caliarge system. The MPC interaction is applicable to both met-
culations when using the Ewald form of the electron-electromy|s and insulators and it is faster to compute than the Ewald
interaction. These finite-size errors may be greatly reduceghteraction. Given these facts we believe that the MPC inter-
by using our MPC interaction in which the interparticle in- action should be used for all guantum many_body calcula-

teraction is_exactly_ equal to rl/at short distances and the tions of total energies in systems with periodic boundary
long-range-interactions are replaced by a mean-field-likgonditions.

one-electron potential. It is consistent to use the MPC inter-

action in conjunction with “independent-particle finite-size

corrections” derived from der_lsny-functlonal calculatlc_ms, as ACKNOWLEDGMENTS
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