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Finite-size errors in quantum many-body simulations of extended systems
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Further developments are introduced in the theory of finite-size errors in quantum many-body simulations of
extended systems using periodic boundary conditions. We show that our recently introduced model periodic
Coulomb interaction@A. J. Williamsonet al., Phys. Rev. B55, R4851~1997!# can be applied consistently to
all Coulomb interactions in the system. The model periodic Coulomb interaction greatly reduces the finite-size
errors in quantum many-body simulations. We illustrate the practical application of our techniques with
Hartree-Fock and variational and diffusion quantum Monte Carlo calculations for ground- and excited-state
calculations. We demonstrate that the finite-size effects in electron promotion and electron addition/subtraction
excitation energy calculations are very similar.@S0163-1829~99!07303-8#
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I. INTRODUCTION

Most simulations of extended quantum systems are
formed using finite-simulation cells. This introduces ‘‘finite
size errors,’’ which are one of the major problems limitin
the application of accurate many-body techniques to
tended systems. The standard method of reducing the fi
size errors is to apply periodic boundary conditions, but i
portant finite-size errors often remain. In this paper
present further developments of the theory of finite-size
fects in quantum many-body simulations subject to perio
boundary conditions. Our motivation is to understand a
reduce the finite-size effects encountered in quantum Mo
Carlo simulations, although the techniques described h
are of wide generality and can be readily applied to ot
many-body electronic-structure methods.

Quantum Monte Carlo~QMC! methods in the variational1

and diffusion2,3 forms are capable of yielding highly accura
results for correlated-electron systems. These methods
very promising because~i! electron correlations are include
essentially without approximation and~ii ! the methods scale
favorably with system size. Nevertheless, for realistic s
tems the cost of these calculations remains large, an
would be highly desirable to reduce the finite-size errors
that accurate results can be obtained using small simula
cells. We stress that all quantum many-body calculatio
which use periodic boundary conditions to model extend
systems suffer from finite-size effects and that the ideas
cussed in this paper are relevant whenever long-ranged i
actions are involved.

Finite-size errors in many-body calculations have tra
tionally been corrected for by extrapolation techniqu
and/or by using the results of more approximate calculatio
such as those based on the density-functional theory~DFT!.
While extrapolation techniques can certainly be succes
they are very costly. In addition, the finite-size errors in p
riodic boundary condition DFT calculations are significan
different from those in the standard formulations of quant
PRB 590163-1829/99/59~3!/1917~13!/$15.00
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many-body techniques such as QMC, and, therefore
simple application of a DFT finite-size correction may n
lead to accurate results. We have understood the reaso
this difference and have found a way to reduce the finite-s
errors in quantum many-body simulations using a new mo
periodic-Coulomb~MPC! interaction, which has the addi
tional advantage that the residual finite-size effects are
sonably well described by standard DFT calculations. T
accuracy can be further increased by using an extrapola
procedure, but the extrapolation corrections are consider
reduced and can, therefore, be evaluated using a sm
range of system sizes.

The layout of this paper is as follows. In Sec. II we d
scribe the Hamiltonian within periodic boundary condition
while in Sec. III we discuss various finite-size correction a
extrapolation procedures. In Sec. IV we review t
independent-particle finite-size effects, showing how o
k-space sampling techniques are related to those use
mean-field theories. In Sec. V we introduce our MPC int
action for reducing finite-size effects in periodic systems a
show that it can be applied to all the Coulomb interactio
We present tests of the MPC interaction within the Hartr
Fock ~HF! theory ~Sec. VI A!, variational Monte Carlo
~VMC! ~Sec. VI B!, and diffusion Monte Carlo~DMC! ~Sec.
VI C!. The latter section includes DMC results for a syste
with 1000 electrons, which is the largest number in a
DMC calculation to date. In Sec. VII we discuss finite-si
errors present in calculations of excitation energies. Te
within the HF theory are presented in Sec. VII A, while
Sec. VII B we present VMC results for the ‘‘optical absor
tion’’ and ‘‘photoemission’’ gaps, the latter being the fir
such calculations for a three-dimensional periodic syste
Calculations with up to 512 electrons demonstrate that
finite-size errors in the ‘‘optical absorption’’ and ‘‘photo
emission’’ gaps are similar and that the finite-size effects
quite small even for a 64-electron simulation cell. We dra
our conclusions in Sec. VIII.
1917 ©1999 The American Physical Society
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II. THE HAMILTONIAN WITHIN PERIODIC-BOUNDARY
CONDITIONS

The many-body Hamiltonian for a system of electrons
positionsr i and static ions at positionsxa is4

Ĥ5(
i

2
1

2
¹ i

21(
i

(
a

va~r i ,xa!1
1

2(i
(
j Þ i

v~r i ,r j !

1
1

2(a (
bÞa

vab~xa ,xb!. ~1!

An infinite system is normally modeled by a finite
simulation cell subject to periodic-boundary conditions. T
model-interaction termsva , v, and vab , are chosen such
that the potential energy of the model system, which
volves only the positions of the particles in the finit
simulation cell, mimics the potential energy of the infini
system as closely as possible. Since the potential energ
the infinite system depends on the positions of all the cha
in the solid, only a few of which are included in the simul
tion, the model-interaction energy is approximate even
crystalline solids. To enforce the periodic boundary con
tions the functionsva , v, andvab must be invariant unde
the translation of either argument by a member of the se
translation vectors of the simulation cell lattice$R%. The
standard approach is to choose the model Hamiltonian s
that the full-potential energy of Eq.~1!, evaluated by sum-
ming the model interactions between all pairs of particles
the simulation cell, equals the potential energy per cell of
infinite array of identical copies of the simulation cell. How
ever, even when we restrict each simulation cell in the ar
of copies to be overall charge neutral, the sum of interp
ticle Coulomb 1/r interactions is only conditionally
convergent,5 and to define this model interaction unique
the boundary conditions at infinity must be specified. T
standard procedure is to define the potential by solving P
son’s equation subject to periodic boundary conditions,
which case the model interaction is the Ewald interactio6

For two electrons separated byr , the Ewald interaction is

vE~r !5
1

V (
$G%Þ0

4p

G2
exp@2G2/4k21 iG–r #2

p

k2V

1(
$R%

erfc~kur1Ru!
ur1Ru

, ~2!

whereV is the volume of the simulation cell,$G% is the set
of reciprocal space-translation vectors of the simulation-
lattice, andk is a positive but otherwise arbitrary constan

III. FINITE-SIZE CORRECTION AND EXTRAPOLATION
FORMULAS

The basic idea behind finite-size correction formulas is
write the energy for the infinite system as

E`5EN1~E`2EN!, ~3!

where the subscript denotes the system size. A highly a
rate many-body calculation for theN-particle system is then
performed to obtain an approximation forEN , and the cor-
t
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rection term in brackets is approximated using a much l
expensive scheme, which can be applied to very large
tems.

In an extrapolation procedure the energyEN is calculated
for a range of system sizes and fitted to a chosen functio
form that contains parameters. Correction and extrapola
procedures can be combined to give an expression

E`.EN1~E8̀ 2EN8 !1F~N!, ~4!

where the prime indicates that a less expensive schem
used andF(N) is an extrapolation function. Clearly, the op
timal form of F(N) depends on the method used to calcul
the correction term. The practical difference between corr
tion and extrapolation is that correction requires a single c
culation ofEN using the accurate~and normally very costly!
many-body technique, while extrapolation requires seve
such calculations for different values ofN and a subsequen
fit to the chosen functional formF(N). The extrapolation
procedure is costly because it involves more calculations
is prone to inaccuracy because one has to perform a fit w
only a few data points. In designing a correctio
extrapolation procedure one therefore tries to make the
trapolation term as small as possible.

Candidate methods for evaluating the correction term
clude Kohn-Sham DFT and the HF theory. The most con
nient methods are the local-density approximation~LDA ! to
DFT, or extensions such as the generalized gradient appr
mation. These methods are very widely applied in period
boundary conditions calculations and are computationally
expensive, while retaining a realistic description of t
system. Within an independent-particle theory, such as
Kohn-Sham DFT, calculations for periodic systems are n
mally performed by solving within the primitive unit cell.7

To obtain the correct result for the infinite system it is ne
essary to integrate over thek space, and the integral is no
mally approximated by a sum over a finite set ofk points. A
determinant formed from the occupied orbitals at a singlk
point in the first Brillouin zone~BZ! of the primitive unit cell
is a many-body wave function for a simulation cell of th
size of the primitive unit cell. Adding a secondk point
doubles the size of the determinant and is equivalent to d
bling the size of the simulation cell, etc.

An important subtlety arises when finite-size correctio
derived from an independent-particle theory such as LD
DFT are used to correct the results of a true many-bo
method such as QMC. Suppose the many-body calculatio
performed using the Ewald interaction, so that the Coulo
energy is that of an infinite periodic array of copies of t
simulation cell. Given that the solid we are trying to model
crystalline, and hence the charge density is truly periodic,
Ewald interaction gives a good description of the classi
Coulomb or Hartree energy. However, because the electr
positions are mirrored exactly in every copy of the simu
tion cell, the electronic correlations are also forced to
periodic, and the exchange-correlation~XC! energy corre-
sponds to a system with a periodic XC hole. This unphysi
approximation is particularly inaccurate when the simulat
cell is small. In Kohn-Sham DFT calculations the XC ener
is evaluated using a standard functional such as the LDA
Perdew and Zunger,8 which was obtained by fitting to the
results of DMC calculations for jellium.9 There is an impor-
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tant difference, however, in that the DMC results were
trapolated to the infinite-system-size limit before the fit w
made.

The consequences of this difference are nicely illustra
by considering many-body and LDA calculations for jellium
in which the charge density is uniform. The LDA gives th
XC energy for the infinite system irrespective of the size
the simulation cell, but the XC energy obtained from
many-body simulation using the Hamiltonian of Eq.~1! with
the Ewald interaction gives an XC energy, which depends
the size and shape of the simulation cell. Consequen
evaluating the correction term in Eq.~4! within the LDA
does not give a good approximation to the finite-size corr
tion in the many-body simulation and a significant extrap
lation term remains.

The issue of finite-size corrections to both the kinetic a
interaction energies has been addressed by Ceperley
co-workers.10–13 Their approach is to add separate extrap
lation terms for the kinetic and interaction energies. In th
work on hydrogen solids, Ceperley and Alder11 performed
DMC calculations for a number of different system sizes a
fitted to the formula

E`
DMC.EN

DMC1a~T`2TN!1
b

N
, ~5!

wherea andb are parameters, andT is the kinetic energy of
the noninteracting electron gas. Theb/N term accounts for
the finite-size effects arising from the interaction energy a
the difference of the parametera from unity accounts for the
difference between the kinetic energies of the interacting
noninteracting systems. Normally,a.1 because the interac
ing kinetic energy is larger than the noninteracting kine
energy. Engelet al.14 used the following formula for inho-
mogeneous systems:

E`
QMC.EN

QMC1a~E`
LDA2EN

LDA !1
b

N
, ~6!

which reduces to Eq.~5! for a homogeneous system.
As mentioned above, a large part of the finite-size erro

the interaction energy arises from the use of the Ew
interaction.15,16 Our approach to the problem of the finite
size errors differs from that of Ceperleyet al. in an important
respect. We try to reduce the finite-size effects within
many-bodycalculation by modifying the interaction terms
the many-body Hamiltonian. The Ewald interaction is a p
riodic function that differs from 1/r in such a way that the
sum of interactions between pairs of particleswithin one cell
gives the exact Coulomb energy per cell of a periodic latt
of identical cells. This ensures that the Ewald Hamilton
gives the correct Hartree energy, but the deviations fromr
give rise to a spurious contribution to the XC energy, cor
sponding to the periodic repetition of the XC hole discuss
earlier.15,16 Our solution is to change the many-body Ham
tonian so that the interaction with the XC hole is exactly 1r
~see Sec. V! for any size and shape of the simulation ce
without altering the form of the Hartree energy. This sou
of finite-size error is, therefore, eliminated and Eq.~3!, with
the correction term calculated within the LDA, gives a mu
better description of the remaining finite-size errors. Grea
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accuracy can be obtained by adding an extrapolation te
but this term is much smaller than if the Ewald interaction
used.

The idea of changing the Hamiltonian to reduce the fini
size errors may seem strange at first, so it is worth discus
a simple example. Imagine that a periodic boundary con
tion QMC technique is being used to study an isolated m
ecule. If the molecule is placed at the center of the perio
cally repeated simulation cell, the calculated energy is tha
an array of identical molecules, including unwanted interm
lecular interactions. The results improve as the simulat
cell is made larger, but the convergence is slow, especi
for molecules with permanent-dipole moments. A better
lution is to cut off all Coulomb interactions between charg
on different molecules, i.e., to replace the Ewald interactio
by truncated Coulomb 1/r interactions acting only within the
simulation cell. As long as the molecular-wave function h
decayed to zero before the simulation cell boundary
reached, this procedure should give essentially exact res
The changes to the interaction to be discussed in this p
are a generalization of this approach to make it usefu
simulating genuinely periodic systems such as crystals
this case the very ‘‘strict’’ notion of periodicity built into the
Ewald interaction produces an artificial periodic replicati
of the XC hole as well as the required periodic replication
the charge density. Our modified Hamiltonian removes
effects of the unwanted extra periodicity just as the sim
truncation removed the unwanted periodicity in the mole
lar example.

An alternative procedure is to evaluate the correction te
in Eq. ~3! using the HF data. The HF theory is an appro
mate method for solving the many-body Hamiltonian, and
we use the Ewald formula for the electron-electron inter
tion terms in both the many-body and HF theories, the fin
size error in the HF exchange energy will tend to cancel
finite-size error in the many-body interaction energy. At fi
sight this appears to be an excellent solution to the finite-s
problem. However, this procedure gives too large a corr
tion, presumably because the HF exchange hole is sig
cantly different from the screened XC hole of the many-bo
system.

IV. INDEPENDENT-PARTICLE FINITE-SIZE EFFECTS

We call the correction term (E`
LDA2EN

LDA) the
independent-particle finite-size effect~IPFSE!. The finite-
size effect arising from the particular model interaction us
is called the Coulomb finite-size effect~CFSE!. In this sec-
tion we discuss the IPFSE in more detail. The ‘‘finite-si
error’’ in an LDA calculation for a perfect crystal arises fro
errors in the BZ integration. In an LDA calculation the com
putational cost is proportional to the number ofk points
used. However, in a QMC calculation the volume of t
simulation cell is proportional to the number ofk points in
the primitive BZ and the computational cost increases
proximately as the cube of the volume of the simulation c
This means that it is even more important to choose thk
points carefully in a QMC calculation so as to make t
IPFSE as small as possible.

Additional errors arise when using the supercell appro
mation for systems that break translational symmetry. C
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sider a crystal containing a point defect. In the superc
approach a finite simulation cell containing a single defec
repeated throughout space to form an infinite thr
dimensional array. The supercell must be sufficiently la
that the interaction between defects in different cells is n
ligible. This type of finite-size effect is distinct from the B
integration error because it persists even when the BZ i
gration is performed exactly. However, the correction to
defect-formation energy from this type of finite-size err
should be described reasonably well by a (E`

LDA2EN
LDA) cor-

rection term, whereE`
LDA and EN

LDA are, respectively, the
defect-formation energies for a large simulation cell and
smaller one, each containing a single defect.

A determinantal Bloch wave function suitable for use in
QMC calculation may be formed from a set of single-parti
orbitals at a singlek point ks, in the Brillouin zone of the
simulation-cell reciprocal lattice. The IPFSE can be grea
reduced for insulating systems by a careful choice ofks using
the method of specialk points borrowed from the band
structure theory.17,18 We have described the theory of th
specialk points for many-body calculations in our earli
papers,19,20 and here we concentrate on the practicalities
choosingks. Baldereschi17 defined the mean-value poin
which is ak point at which smooth periodic functions of th
wave vector accurately approximate their averages over
BZ, and clearly the Baldereschi mean-value point is a str
candidate forks. However, we find it convenient to choos
ks to be equal to half a translation vector of the simulatio
cell reciprocal lattice (ks5G/2), which allows the construc
tion of real single-particle orbitals and hence is computati
ally more efficient. Some freedom is still left in the selecti
of ks, and we choose from theG/2 according to the symme
trized plane-wave test of BZ integration quality introduc
by Baldereschi.17 For example, for an fcc simulation cell th
half-reciprocal-lattice vectors correspond to theG, X, andL
points of the BZ of the simulation-cell reciprocal lattice. F
a crystal with the full-cubic symmetryks[L gives the best
BZ integration andks[G the worst.

It is illuminating to relate thesek-point schemes to the
multipoint schemes used in LDA and HF calculations.
LDA and HF calculations one normally samples the BZ
the primitive-unit cell, whereas in a QMC calculation on
samples the BZ of the simulation cell. Suppose that the si
lation cell has translation vectorsN1a1 , N2a2 , and N3a3 ,
where theNi are integers and theai are vectors defining the
primitive-unit cell. When unfolded into the BZ of th
primitive-unit cell thek point ks maps onto the regular mes

k lmn5
l

N1
b11

m

N2
b21

n

N3
b31ks, ~7!

where l 50, . . .N121,m50, . . .N221,n50, . . .N321,
and thebi are reciprocal to theai . This mesh is of the sam
type as defined in the widely used Monkhorst-Pack schem18

for BZ integration, differing only by an offset from the or
gin. The multipoint generalization of the Balderesc
scheme, which can be used in LDA and HF calculations
now obvious: one chooses the offsetks to be equal to the
mean-value point17 of the lattice defined by the translatio
vectorsNiai . As mentioned above, for our purposes we p
fer to chooseks to be equal to half a translation vector of th
ll
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simulation-cell reciprocal lattice. This choice gives a smoo
and rapid convergence of the BZ integration with increas
values of theNi .20 For example, as mentioned above, for f
crystals we chooseks to be anL point of the BZ of the lattice
defined by theNiai . In this case the Monkhorst-Pack18 defi-
nition of the offset corresponds to taking anL point for Ni
even, but theG point for Ni odd. The latter choice gives poo
results and this problem has prompted some researche
avoid Monkhorst-Pack meshes with odd values of theNi ,
but in fact odd values can be very efficient if the mesh
offset according to our prescription.

V. COULOMB FINITE-SIZE EFFECTS

In this section we summarize the theory of the MPC
teraction. More details and background are given in Refs
and 16. In Sec. III we described how the CFSE arises fr
the XC energy and the dependence of the Ewald interac
vE on the size and shape of the simulation cell. ExpandingvE
around zero separation gives15,16

vE~r !5const.1
1

r
1

2p

3V
rT
•D•r1OS r 4

V5/3D , ~8!

whereV is the volume of the simulation cell, and the tens
D depends on the shape of the simulation cell.~For a cubic
cell D5I .! The constant term arises from the condition th
the average ofvE over the simulation cell is zero. The term
of order r 2 and the higher-order deviations from 1/r make
the Ewald interaction periodic and ensure that the sum
interactions between the particles in the simulation cell gi
the potential energy per cell of an infinite-periodic lattic
These terms are responsible for the spurious contributio
the XC energy, which is the source of the large finite-s
effect in many-body calculations using the Ewa
interaction.15,16 For cubic cells the interaction at short di
tances is larger than 1/r and, therefore, the XC energy i
more negative than it should be, and because the lea
order correction is proportional to the inverse of t
simulation-cell volume the error per electron is inverse
proportional to the number of electrons in the cell.

Clearly it is desirable to remove this spurious contributi
to the XC energy, but we must remember that the Hart
energy is correctly evaluated using the Ewald interacti
The key requirements for a model Coulomb interaction g
ing small CFSE’s in simulations with periodic boundary co
ditions are therefore:~i! it should give the Ewald interaction
for the Hartree terms, and~ii ! it should be exactly 1/r for the
interaction with the XC hole. Unfortunately, the only per
odic solution of Poisson’s equation for a periodic array
charges is the Ewald interaction, which obeys criterion~ii !
only in the limit of an infinitely large simulation cell. We
therefore abandon the use of Poisson’s equation and
Ewald interaction, and instead use a MPC interaction t
satifies both criteria. This may seem a drastic step, but
point out that we are trying to model an infinite system by
finite one and that the interparticle interaction used in
finite simulation cell must model the effects of all th
charges in the infinite system.

Our MPC interaction16 can be written as
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Ĥe-e5(
i . j

f ~r i2r j !1(
i
E

WS
@vE~r i2r !2 f ~r i2r !#r~r !dr ,

~9!

wherer is the electronic charge density and

f ~r !5
1

r m
. ~10!

The definition of the cutoff Coulomb functionf involves a
minimum-image convention whereby the interelectron d
tance r is reduced into the Wigner-Seitz~WS! cell of the
simulation cell lattice by removal of simulation cell-lattic
translation vectors, leaving a vectorrm. This ensures tha
Ĥe-e has the correct translational and point-group symme
The first term in Eq.~9! is a direct Coulomb interaction
between electrons within the simulation cell and the sec
term is a sum of potentials due to electrons outside the si
lation cell. Note that the second term is a one-body poten
similar to the Hartree potential. It depends on the electro
charge densityr but is not a function of the separation of th
electrons.

The electron-electron contribution to the total energy
evaluated as the expectation value ofĤe-e with the many-
electron wave functionf minus a double-counting term:

Ee-e5^fuĤe-euf&2
1

2EWS
r~r !r~r 8!

3@vE~r2r 8!2 f ~r2r 8!#drdr 8. ~11!

Evaluating the expectation value gives

Ee-e5
1

2EWS
r~r !r~r 8!vE~r2r 8!drdr 8

1S E
WS

ufu2(
i . j

f ~r i2r j !Pkdr k

2
1

2EWS
r~r !r~r 8! f ~r2r 8!drdr 8D , ~12!

where the first term on the right-hand side is the Hart
energy and the term in brackets is the XC energy. We
see immediately that the Hartree energy is calculated w
the Ewald interaction while the XC energy~expressed as th
difference between a full Coulomb term and a Hartree te!
is calculated with the cutoff interactionf.

The charge densityr appears in Eqs.~9!, ~11!, and~12!.
In QMC methods, the charge density is known with great
statistical accuracy at the end of the calculation. This is n
serious complication for VMC simulations as the interacti
energy may be evaluated at the end of the simulation u
the accumulated charge density. In DMC this is not poss
because the local energy2,3 is required at every step. W
investigate this point further in Sec. VI C.

The CFSE may be viewed in another way.15 Consider a
large cluster of identical simulation cells. Almost all possib
configurations of the electrons within the simulation c
have a net-dipole moment. The dipole moments in the p
odic replicas of the simulation cell are aligned, resulting in
depolarization field across the sample.~In real nonferroelec-
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tric solids the dipoles from different regions are not align
and the depolarization field is greatly reduced.! To make the
electrostatic potential periodic deep within the cluster
need to apply a cancelling external-electric field. In the lim
of a very large cluster this is equivalent to using the Ew
interaction. In a cubic system the total energy of interact
between the dipoles, which includes the interaction with
depolarization field, does not contribute to theO(r 2) term in
Eq. ~8!.21 For a cubic system theO(r 2) term in Eq. ~8!
therefore arises solely from the interaction between the
poles and the external field. In a noncubic system theO(r 2)
term contains contributions from both the dipole-dipole
teractions and the interactions of the dipoles with the ex
nal field. The advantage of our MPC interaction is that
prevents theO(r 2) terms contributing to the XC energy.

If the simulation cell is not big enough to accommoda
the true XC hole then the XC hole is squeezed into the
and a finite-size error ensues. This appears to be the lar
finite-size error in the interaction energy after the CFSE
been removed. Extrapolation currently appears to be the
method of correcting this error. When the XC hole
squeezed by the finite-simulation cell the XC energy cal
lated using the MPC interaction is too negative. The effec
the O(r 2) term in the Ewald interaction is to make it eve
more negative, however, and so the MPC interaction is
better than the Ewald interaction.

A. Systems of electrons and nuclei

In the previous sections we considered the electr
electron interaction only, and did not discuss the electr
nucleus and nucleus-nucleus interactions. If the MPC in
action is physically reasonable we should, however, be a
to apply it to all the interactions in the problem, not just t
electron-electron terms. Here we apply the MPC interact
to a system of electrons and nuclei, showing that under
tain common conditions the expressions simplify so that
electron-nucleus and nucleus-nucleus terms reduce to
Ewald form.

Consider a simulation cell with periodic boundary cond
tions containingN electrons at positionsr i andM nuclei of
chargeZa at positionsxa . The wave function of the elec
trons and nuclei isC($r i%,$xa%), and the total charge densit
~electrons and nuclei! is rT(r ). The interaction energy cal
culated with the MPC interaction is

Eint5
1

2EWS
rT~r !rT~r 8!@vE~r2r 8!2 f ~r2r 8!#drdr 8

1E
WS

uCu2F(
i . j

f ~r i2r j !2(
i

(
a

Za f ~r i2xa!

1 (
a.b

ZaZb f ~xa2xb!GPkdr kPgdxg . ~13!

We now employ the adiabatic approximation to separ
the electronic and nuclear dynamical variables:

C~$r i%,$xa%!5f~$r i$xa%!F~$xa%!, ~14!

where the$xa% appear only as parameters inf. To make
further progress we must assume a form for the nuclear
of the wave functionF. The simplest assumption is thatF
can be written as an appropriately symmetrized produc
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very strongly localized nonoverlapping single-nucleus fu
tions. Regardless of whether the product is antisymmetriz
symmetrized, or not symmetrized, Eq.~13! reduces to

Eint5
1

2EWS
r~r !r~r 8!@vE~r2r 8!2 f ~r2r 8!#drdr 8

1E
WS

ufu2(
i . j

f ~r i2r j !Pkdr k

2E
WS

ufu2(
i

(
a

ZavE~r i2 x̄a!Pkdr k

1 (
a.b

ZaZbvE~ x̄a2 x̄b!, ~15!

where thex̄a denote the centers of the single-nucleus fu
tions andr is the electron density. Note that the electro
nucleus and nucleus-nucleus terms involve only the Ew
interaction and that the first two terms of Eq.~15! correspond
precisely to the electron-electron interaction of Eq.~12!. This
result justifies the use of Eq.~9! for the electron-electron
interactions while retaining the Ewald interaction for t
electron-nucleus and nucleus-nucleus terms.

VI. TESTS OF THE MPC INTERACTION

A. Application to the HF calculations

We have tested the MPC interaction by performing a
ries of calculations on diamond-structure silicon using
simulation cells whose translation vectors aren times those
of the primitive-unit cell. In a previous publication we gave
few results from such tests,16 but here we present new tes
and subject them to a more detailed analysis.

In our first set of tests we compare LDA and HF resu
These tests are inexpensive, which allows us to study v
large systems, and they are not subject to statistical er
because Monte Carlo techniques are not involved. We c
sider simulation cells withn51, 2, 3, 4, and 5, which con
tain 2, 16, 54, 128, and 250 ions, respectively. The Si41 ions
were represented by normconserving nonlocal LDA pseu
potentials and the calculations were performed using a pla
wave basis set with a cutoff energy of 15 Ry. To facilita
comparison we evaluate the HF energy with the LDA orb
als, so that the energy differences arise solely from the
ference between the LDA XC energy and the HF excha
energy. We performed calculations usingks[L andks[G.
The HF energy evaluated with the MPC interaction is

EHF5(
i

2
1

2E f i* ~r !¹2f i~r !dr

1
1

2E r~r !r~r 8!vE~r2r 8!drdr 82
1

2(i , j
N

dsisj

3E f i* ~r !f i~r 8! f ~r2r 8!f j* ~r 8!f j~r !drdr 8

1E Vext~r !r~r !dr1EI-I , ~16!
-
d,

-
-
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-
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e

whereEI-I is the ion-ion energy calculated with the Ewa
interaction. Note that the Hartree energy is evaluated w
the Ewald interaction while the exchange energy is evalua
with the cutoff Coulomb interaction.

In Fig. 1 we show the deviations of the LDA and H
energies from the fully converged values as a function
system size forks[G wave functions. The LDA energy con
verges smoothly with system size but for small system si
the IPFSE error is large because of theG-point sampling. We
show HF energies calculated with the Ewald and MPC int
actions, with and without incorporating the IPFSE corre
tions obtained from the LDA data. The data incorporati
the IPFSE~filled symbols! show the residual CFSE errors
The IPFSE is positive while the CFSE is negative, in acc
with the analysis of the CFSE given in Sec. V. The IPF
corrected data show that the CFSE for the MPC interactio
roughly half that for the Ewald interaction.

In Fig. 2 we show similar data forks[L. The LDA en-
ergy converges rapidly and smoothly with system size, a
therefore the IPFSE is small, which demonstrates the e
cacy of the specialk-points method. The IPFSE and CFS
errors tend to cancel and forks[L sampling the HF data
converge more rapidly without the IPFSE corrections. F

FIG. 1. Convergence of the LDA and HF ground-state energ
per atom of silicon as a function of simulation cell sizen using
G-point BZ sampling.

FIG. 2. The LDA and HF ground-state energies per atom
silicon as a function of simulation cell sizen using L-point BZ
sampling.
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n53, corresponding to a 54 atom simulation cell, the LD
finite-size error~IPFSE only! is 0.011 eV per atom, which is
very much smaller than the HF~Ewald! finite-size error of
20.211 eV per atom or the equivalent HF~MPC! error of
20.071 eV per atom. As in the case ofG-point sampling,
the CFSE for the MPC interaction is roughly half that for t
Ewald interaction.

After applying the IPFSE correction obtained from t
LDA data the HF results forks[G andks[L sampling are
very similar. The correspondence of the IPFSE correc
data for theL andG points demonstrates that to a very go
approximation the IPFSE and CFSE are independent. E
mating the energy of the infinite system by averaging
energy over a set ofks vectors removes the IPFSE but do
not remove the CFSE.

We have fitted the CFSE errors from the filled data poi
in Figs. 1 and 2 to the formb/Nx, whereb andx are param-
eters andN58n3 is the number of electrons in the simul
tion cell. The fits give values ofx in the region of unity for
both the Ewald and MPC interactions. This extrapolat
function is therefore suitable for both interactions, althou
the size of the extrapolation term is smaller for the MP
interaction.

The Ewald and MPC interactions differ by an amou
inversely proportional to the volume of the simulation ce
This means that although the energies per particle conv
to the same value as the volume of the simulation cell
creases, the difference between the Ewald and MPC ene
of the whole simulation cell tends to a finite constant as
simulation-cell volume goes to infinity. We have evaluat
this constant value for the fixed-LDA-orbital HF calculatio
described in this section by extrapolating the energy diff
ence between the Ewald and MPC energies. This give
value of approximately 14 eV.

B. Application to VMC

In the VMC method1,3 the energy is calculated as th
expectation value of the HamiltonianĤ with a trial-wave
function fT yielding a rigorous upper bound to the exa
ground-state energy. The Metropolis algorithm is used
generate electron configurations distributed according tofT

2 ,
and the energy calculation is performed by averaging
local energyfT

21ĤfT over this distribution.
Our trial-wave functions are of the standard Slat

Jastrow type:

fT5D↑D↓expF(
i 51

N

x~r i !2(
i , j

N

u~r i j !G , ~17!

where there areN electrons in the simulation cell,x is a
one-body function,u is a two-body correlation factor tha
depends on the relative spins of the two electrons, andD↑

andD↓ are Slater determinants of up- and down-spin sing
particle orbitals. Theu functions were of the type describe
in Ref. 22, while for thex functions we used sphericall
symmetric functions centered on each atom. Thesex func-
tions give significantly better results than the truncated F
rier series representation used in our earlier papers.22,16 The
trial-wave functions contained 32 variable parameters, wh
optimal values were obtained by minimizing the variance
d

ti-
e

s

n
h

t
.
ge
-
ies
e

r-
a

o

e

-

-

-

se
f

the energy using 10 000–20 000 statistically independ
electron configurations, which were regenerated sev
times during the minimization procedure.22,23 We used the
same pseudopotential as in our LDA and HF calculatio
sampling the nonlocal potential using the techniques of F
et al.24

We have optimized wave functions using both the Ew
and MPC interactions. The wave functions generated us
the different interactions are almost identical. Propert
other than the energy, such as pair-correlation functions,
therefore, hardly affected by the choice of interaction. As
MPC interaction gives the correct interaction between
electrons at short distances it may give a better accoun
for example, the short distance behavior of the pa
correlation function, but more numerical work is required
investigate this point.

In Fig. 3 we show results for VMC calculations of th
energies of the same systems as in the previous sec
These results are similar to those given in Ref. 16, but t
have been recalculated for this work with more accur
wave functions and better sampling, and the data have b
corrected for the IPFSE. The total energies were calcula
to a statistical accuracy of60.01 eV per atom. The VMC
data display a smaller CFSE than the HF data, probably
cause the HF exchange hole is longer ranged than
screened hole obtained in the correlated calculations. Fon
52, the MPC interaction reduces the VMC finite-size err
by more than 50%, from20.403 to20.187 eV per atom.

C. Application to DMC

In the DMC method2,3 imaginary time evolution of the
Schrödinger equation is used to evolve an ensemble ofN
dimensional electronic configurations towards the grou
state. The calculations are made tractable by using the fix
node approximation and by incorporating importance sa
pling. The method generates the distributionfTc, wherec
is the best~lowest energy! wave function with the same
nodes as the guiding wave functionfT . The accuracy of the
fixed-node approximation can be tested on small systems
the results are normally very satisfactory.3

FIG. 3. The VMC ground-state energies per atom of silicon a
function of simulation cell sizen. A correction for the IPFSE is
included. The statistical error bars are60.01 eV per atom.
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We evaluated the nonlocal pseudopotential energy u
the locality approximation.25 The short-time approximation
for the Green’s function was used with a time step of 0
a.u. Li et al.26 found that using a time step of 0.015 a.u. ga
a time-step error of less than 0.03 eV per atom in silicon,
our time-step error should be even smaller. The total en
gies were calculated to a statistical accuracy of60.02 eV
per atom.

Our MPC interaction is more complicated to apply
DMC than in VMC because the evaluation of th
importance-sampled Green’s function requires the local
ergy. The modified Hamiltonian, and hence the local ener
depends on the charge density, and, therefore, we must k
the charge density before we can perform the DMC calcu
tion. Fortunately, however, the local energy is relatively
sensitive to the charge density used in the Hamiltonian@Eq.
~9!# becausevE(r )2 f (r ) is small whenur u is small.

We have tested the sensitivity of the Green’s function
the charge density used in the Hamiltonian. Two candid
charge densities are the charge density of the determina
part of the QMC wave function and the charge density of
VMC guiding wave function. Even for a small system (n
52) we find it sufficient to use the LDA charge densi
during the calculation of the Green’s function and to reeva
ate the charge-density dependent term in the interaction
ergy using the DMC density obtained at the end of the c
culation. The sensitivity rapidly reduces with increasi
system size, and this procedure gives errors of less than
eV per atom forn52, and less than 0.01 eV per atom f
larger system sizes. Therefore, the requirement of havin
good approximation to the charge density in advance of
DMC calculation does not pose a significant difficulty.
successful DMC calculation requires a good quality VM
trial function and its charge density can be obtained dur
the process of wave-function optimization.

In Fig. 4 we show results for DMC calculations on th
same systems as for our VMC study, the largest of wh
contains 1000 electrons. The results include a correction
the IPFSE. The convergence behavior is very similar to
VMC data. The MPC energies are always above those for

FIG. 4. The DMC ground-state energies per atom of silicon a
function of simulation cell sizen. A correction for the IPFSE is
included. The statistical error bars are60.02 eV per atom.
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Ewald interaction and the MPC interaction significantly r
duces the CFSE. These results demonstrate that the fi
size errors within VMC and DMC calculations are very sim
lar and that the MPC interaction is similarly effective in bo
methods.

We have fitted the residual CFSE errors in both the VM
and DMC calculations to the formb/Nx. The fit is reason-
able and gives a value ofx close to unity for both the Ewald
and MPC data. For these data it is possible to obtain m
accurate approximations toE`

QMC by using such an extrapo
lation function, although the calculations for the larg
system sizes are costly, especially within DMC. The extra
lated energies should be more accurate for the M
interaction because the extrapolation term is significan
smaller.

Many interesting applications of VMC and DMC method
will be to problems in which the quantity of physical intere
is the difference in energy between two large systems.
amples of such problems are calculations of excitation en
gies and defect energies in solids. In such cases the ener
interest is approximately independent of the size of the sim
lation cell, so that for each simulation-cell size it is the e
ergy of thewhole simulation cellthat must be converged t
the required tolerance, not the energy per atom as we plo
in Figs. 3 and 4. In these cases extrapolation will be so co
that it can hardly be contemplated. In some cases the C
will largely cancel between the two systems, as occurs in
excitation-energy calculations~see next section!. This can-
cellation cannot always be relied upon, however, especi
when the simulation cells contain different numbers of p
ticles, and the use of the MPC interaction should be parti
larly beneficial in such cases.

VII. EXCITATION ENERGIES

The quasiparticle excitation energies are the energies
adding an electron to the system or subtracting one from
A quasiparticle energy has both real and imaginary parts,
latter giving the quasiparticle lifetime. For the minimum
energy electron and hole-quasiparticle excitations the im
nary parts of the quasiparticle energies are zero and the
siparticles have an infinite lifetime. In this case the ex
quasiparticle energy gap can be written as

Eg5~EN112EN!1~EN212EN!, ~18!

whereEN11 , EN21 , andEN are the ground-state total en
ergies of theN11, N21, andN electron systems. A genera
quasiparticle energy gap cannot be written in terms of diff
ences between energies of exact eigenstates of the sys
but such an approximation is often accurate for low-ene
gaps. The quasiparticle energies are measured in photoe
sion and inverse photoemission experiments. In an opti
absorption experiment a different process occurs in which
electron is excited from the valence to the conduction ba
This introduces two quasiparticles into the system, the e
tron and hole, which interact and can form an exciton,
which case the lowest-excitation energy is smaller thanEg
by the exciton-binding energyEb .

The HF method gives approximations to the energies
quasiparticles and the interactions between them. Accord
to Koopmans’s theorem, if orbital relaxation is neglected,

a
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quasiparticle energies are equal to the HF eigenval
Koopmans’s theorem can be extended to include correla
effects.27,28 The extended Koopmans’s theorem has be
used in conjunction with VMC methods to calculate qua
particle energies in silicon.29 In both of these methods th
quasiparticle energies are real as they are obtained as
proximations to the energy differences between exact eig
states of the system.

Recently there has been significant progress in apply
QMC techniques to calculate approximate excitation en
gies from eigenstates using direct methods. In these
proaches an excitation energy is obtained by perform
separate QMC calculations for the ground and excited sta
A Slater-Jastrow wave function is used for the ground st
and for the optical gap the excited state is formed by rep
ing a valence-band single-particle orbital by a conducti
band one. We call this a ‘‘promotion’’ calculation, and su
calculations have been reported for a nitrogen solid30

diamond,31,32 and silicon.33 Photoemission/inverse photo
emission gaps may be obtained by using QMC to calcu
the ground-state energies of theN11, N21, andN electron
systems. Wave functions for theN11 and N21 electron
systems may be formed by adding or subtracting an orb
from the up- or down-spin determinants of theN electron
wave function. We call this an ‘‘addition/subtraction’’ calcu
lation. For calculations with periodic-boundary conditio
the simulation cell is made charge neutral by adding a co
pensating uniform-background charge density. Calculati
of this type have been reported for one-34 and
two-dimensional14 model systems, while results for a thre
dimensional system~silicon! are reported in this paper.

QMC calculations of excitation energies in extended s
tems are computationally very demanding because they
1/N effects, i.e., the fractional change in energy is invers
proportional to the number of electrons in the system. T
means that high-statistical accuracy is required to ob
good results. The largest system for which excitation en
gies have been calculated prior to this paper is 16 atoms~64
electrons!.33 The total finite-size error in the ground-sta
energy for that system was estimated to be about 16 eV
simulation cell, while the energy scale of interest for t
excitations is of order 0.1 eV. Like almost all methods f
calculating excitation energies, QMC calculations of th
type only work because of a strong cancellation of err
between the ground and excited states. It turns out that
finite-size errors tend to reduce the energy gap, while
errors in the trial-wave functions are usually larger for t
excited states than for the ground state and so increase
energy gap. Although good agreement with experimental
citation energies has been found using small simula
cells,31–33one is left with the suspicion that if larger simula
tion cells were used the agreement with experiment migh
significantly worse because the finite-size effects would
smaller. Before these QMC techniques can be relied upon
calculating excitation energies it is necessary that the issu
finite-size effects be properly explored. In the next sectio
we address the following questions.

~1! What are the sizes and origins of the finite-size effe
in excitation-energy calculations?

~2! What are the differences in finite-size effects betwe
promotion and addition/subtraction calculations?
s.
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A. HF theory of excitation energies

First we consider excitation energies for solids within t
HF theory. The HF equations with the MPC interaction a
obtained by minimizing the HF energy of Eq.~16! with re-
spect to the single-particle orbitals, giving

2
1

2
¹2f i1E r~r 8!vE~r2r 8!dr 8f i

2(
i , j

N

dsisj
E f j* ~r 8!f j~r !f i~r 8! f ~r2r 8!dr 8

1Vextf i5e if i . ~19!

If we neglect the relaxation of the orbitals, the energy
quired to excite an electron from thej th ~occupied! orbital
into the i th ~unoccupied! orbital is

DEi j 5~e i2e j !2E r i~r !r j~r 8!vE~r2r 8!drdr 8

1dsisj
E f i* ~r !f j* ~r 8!f j~r !f i~r 8! f ~r2r 8!drdr 8

1
1

2E r i~r !r i~r 8!@vE~r2r 8!2 f ~r2r 8!#drdr 8

1
1

2E r j~r !r j~r 8!@vE~r2r 8!2 f ~r2r 8!#drdr 8,

~20!

whererk5ufku2 is the charge density from thekth orbital.
The first term is the eigenvalue difference for the excitat
while the second and third terms are the Hartree and
change interactions between the electron and hole. Wi
this approximation the electron-hole terms go to zero in
limit of an infinitely large simulation cell. The fourth an
fifth terms on the right-hand side are absent if one uses
Ewald interaction instead of the MPC interaction, i.e., w
replacef by vE. When the relaxation of the orbitals is ne
glected these terms also go to zero when the size of
simulation cell goes to infinity becausevE tends to 1/r over
most of the simulation cell.

The addition/subtraction gap is given by

Eg5~E1 i
HF2E0

HF!2~E0
HF2E2 j

HF!5~e i2e j !1
1

2E r i~r !r i~r 8!

3@vE~r2r 8!2 f ~r2r 8!#drdr 8

1
1

2E r j~r !r j~r 8!@vE~r2r 8!2 f ~r2r 8!#drdr 8, ~21!

whereE0
HF is the HF ground-state energy of theN-electron

system,E1 i
HF is the energy of the state with an electron add

to the i th ~previously unoccupied! orbital, along with the
uniform background charge, andE2 j

HF is the energy of the
state where an electron is removed from thej th orbital, along
with the background charge. The standard Koopmans’s th
rem has been modified and contains two additional ter
which also occur in the promotion energyDEi j . We have
evaluated these additional terms using LDA orbitals a
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have found that even for a small simulation cell (n52) they
are very small, being in the range60.05 eV, and they de
crease rapidly with system size. We do not expect that
use of exact HF orbitals or orbital relaxation will great
affect these results.

In Fig. 5 we show the addition/subtraction energies cal
lated using Eq.~21! for the G258→G15 energy gap and the
valence bandwidth, calculated with both the Ewald and M
interactions, along with LDA values.~The results for other
energies show similar behavior.! We do not show the pro
motion energies in Fig. 5 because they differ from t
addition/subtraction energies only by the exciton-binding
ergy, which decreases with increasing system size quite
idly. Figure 5 shows that the HF results for the Ewald a
MPC interactions are very similar. The bandwidth converg
by aboutn57, but the band gap is still slowly increasing
n512, and the Ewald and MPC values are not yet eq
which they must be at convergence. For the largest sys
size studied (n512) the MPC gap and valence bandwid
are 7.4 and 17.7 eV, respectively, which are a little sma
than the HF values of 8.0 and 18.9 eV given in Ref. 3
Presumably the major reasons for these differences are
we use LDA wave functions and LDA-derived pseudopote
tials, although as noted above there is clear evidence th
our calculations the HF energy gap has still not fully co
verged atn512. The LDA excitation energies converge ve
rapidly with system size. Note that this would not be true
either LDA or HF theory if we studied isolated clusters
atoms. In a recent study of silicon clusters, O¨ ǧüt et al.36

found large differences between the band gap in the L
eigenvalues and the band gap calculated by elec
addition/subtraction. As shown by Franceschettiet al.,37

these differences are due to the charging of the cluster w
an electron is added or subtracted, which does not occu
our calculations because a uniform background is adde
preserve charge neutrality. The slow convergence of the
excitation energies apparent in Fig. 5 therefore arises f
the exchange energy. Moreover, because the results with

FIG. 5. Convergence of theG258→G15 excitation energy and
valence bandwidth of silicon. The data correspond to additi
subtraction energies calculated within the HF theory as a func
of simulation cell sizen using both the MPC and Ewald interac
tions. LDA results are also shown.
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Ewald and MPC interactions are almost the same, the so
of the error is not the interaction with the exchange hole,
the shape of the exchange hole. This is because the excit
energy depends on the change in the exchange hole du
the excitation, which is not strongly localized.

In a very interesting set of calculations Engelet al.14 stud-
ied excited states of a model two-dimensional system us
LDA, GW, VMC, and DMC techniques. They performed
number of VMC calculations with increasing system si
and found that the addition/subtraction gap tended to
crease with system size, which is the same behavior as
have found in our HF calculations. Engelet al. went on to
give an explanation of this effect. Their explanation was t
in the N11 (N21) electron systems there is an addition
electrostatic energy due to the interaction of the extra e
tron ~hole! with the additional electron~hole! in the other
simulation cells. Taking into account the addition
compensating-uniform background charge that was adde
keep each cell neutral, this additional energy is negative a
therefore, the energiesEN11 and EN21 are lower than they
should be. Engelet al. showed that the observed finite-siz
effect is much smaller than the Madelung energy for po
charges, and to explain this they argued that the effect wo
be screened by the response of the other electrons. Thi
gument implies that the finite-size effects in additio
subtraction calculations are larger than those in promo
calculations.

Our analysis of the situation is as follows. For simplici
we consider our HF calculations, where the interaction
ergy can be divided into Hartree and exchange contributio
The significant underestimation of the HF band gaps of sm
systems is not due to the Hartree terms, which by const
tion are the same as for our LDA calculations and give v
small finite-size effects in the band gaps. The finite-size e
in the HF gaps therefore arises from the exchange energy
comparing band gaps calculated with the Ewald and M
interactions we can see whether the problem lies with
interaction or with the shape of the exchange hole. Beca
we find that the band gaps calculated with the Ewald a
MPC interactions are very similar we conclude that the fo
of the interaction is not the important consideration. The
fore, the source of the problem must be the finite-size err
present in the shape of the exchange hole. This argum
implies that the finite-size effects in addition/subtraction c
culations are similar to those in promotion calculations. O
viewpoint is supported by the HF results that have been p
sented in this subsection and also by the VMC results to
discussed in the next subsection.

In summary, the HF excitation energies calculated w
the Ewald and MPC interactions are very similar. Within t
HF theory the largest finite-size error in excitation energ
arises from the shape of the exchange hole, which lead
slow convergence with system size. The finite-size errors
promotion and addition/subtraction HF calculations are
similar size.

B. QMC theory of excitation energies

We now apply the theory developed in the previous s
tion to QMC calculations of excitation energies. Althoug
we have just demonstrated that the HF gaps converge ra
slowly with system size, we showed earlier that the fini

/
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size effects in VMC and DMC ground-state energies
smaller than in the HF theory. It is important to see whet
this also applies to excitation energies.

VMC is computationally cheaper than DMC and so w
are able to compute excitation energies using VMC ove
larger range of system sizes. We expect that the finite-
effects in DMC will follow those in VMC, as our VMC
calculations retrieve about 90% of the fixed-node correlat
energy. We have computed theG258→G15 excitation energy
in silicon within VMC for the system sizesn51,2,3,4 using
both promotion and addition/subtraction methods. The ca
lations were performed withks[G and the other computa
tional details were the same as for the ground-state calc
tions. We used Jastrow factors optimized for the ground s
of each system, which were left unchanged for the exc
state. In tests on then52 system we found that separate
optimizing the Jastrow factors for both ground and exci
states did not significantly change the results. The comp
tional cost of then54 calculations is very large; an error b
in the excitation energies of60.3 eV requires an error ba
of 60.0006 eV per electron. Although the computation
effort is large we believe that such a study is necessar
establish the accuracy of QMC excitation-energy calcu
tions.

In Fig. 6 we show the excitation energies obtained w
the Ewald interaction via the promotion and additio
subtraction methods.~Results for the MPC interaction ar
very similar.! The promotion and addition/subtraction resu
are nearly the same, but the promotion energies are slig
smaller because they include an exciton-binding ene
which decreases as the system size increases. The resu
consistent with a slow increase in the excitation energy w
system size and indicate that reasonable convergence
ready obtained atn52. The increase in excitation energie
with system size is the same trend as in the HF calculatio
although the finite-size errors are smaller in the correla
calculations. The finite-size errors in the promotion a
addition/subtraction methods are not significantly differen
this level of statistical accuracy. On general grounds we

FIG. 6. TheG258→G15 excitation energy of silicon calculate
within the VMC theory as a function of simulation cell sizen. Data
for the Ewald interaction are shown obtained via both the prom
tion and addition/subtraction methods.
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pect the finite-size effect in the promotion calculation to
slightly larger. This follows because the trend for both pr
motion and addition/subtraction calculations is that the ex
tation energy is reduced for small system sizes and this ef
is enhanced in the promotion calculation by the excito
binding energy, which is larger for small systems. The c
culated excitation energy is roughly 4 eV, which is larg
than the experimental value of 3.40 eV,38 and also a little
larger than our DMC value for ann52 simulation cell of 3.7
eV.33 Our study demonstrates that the largest contribution
the error in the VMC band gap forn>2 arises from the
approximate nature of the trial-wave functions, and not fro
finite-size effects.

The exciton-binding energy can be calculated as the
ference between the promotion and addition/subtrac
gaps. The exciton-binding energy for theG258→G15 excita-
tion is small and we can only resolve it from the statistic
noise for the smallest (n51) cell, which gives a value of
0.2860.01 eV. In earlier QMC calculations30–32the exciton
binding energy was estimated using the Mott-Wannier f
mula

Eb;
1

2er
, ~22!

wheree is the relative permittivity andr is the radius of the
localization region. Usinge511.7 and the appropriate radiu
for n51 of r 54.0 a.u. gives an exciton-binding energy
0.29 eV. This is extremely close to the VMC value, but t
excellent agreement is probably fortuitous since then51
cell is so small that it is appropriate to use a value ofe at the
finite-wave vector, which would be smaller. The excito
binding energy may also be evaluated within the HF the
as the sum of the second and third terms on the right-h
side of Eq.~20!. This gives 0.75 eV for then51 cell using
the Ewald interaction, which is considerably larger than
VMC value because the latter calculation includes screen
of the electron-electron interaction.

Note that the promotion and addition/subtraction metho
differ significantly in the required computational effort. Su
pose, for example, that we wish to calculate an ene
gap by either the promotion or addition/subtraction metho
Let us assume that the intrinsic variance of the local ene
is the same for each of the energies, which is a good appr
mation for our silicon calculations, and suppose that an
ceptable error bar is obtained in a promotion calculation
performingM Monte Carlo moves for both the ground an
excited states. A simple calculation shows that the most
ficient way to achieve the same error bar in an additi
subtraction gap is to perform 2M moves for each of theN
11 andN21 systems and 4M for the ground state, giving a
total cost of 8M moves. It is therefore four times more ex
pensive to calculate an energy gap to some given accu
by the addition/subtraction method than by the promot
method.

C. Modified interaction for excitation energies

In this section we introduce a modified electron-electr
interaction specifically designed to describe excitation en
gies within periodic boundary-conditions simulations. Tw
problems arise when trying to model excitations using fin

-
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simulation cells subject to periodic boundary conditions. O
is that the excitation is ‘‘squeezed’’ into the simulation ce
and the other is that there are spurious interactions betw
the periodic replicas of the simulation cell. Here we addr
the problem of the spurious interactions using the ideas
the MPC interaction. With our MPC interaction the replic
interact only via the Hartree energy. The charge density
promotion or addition/subtraction of an electron can be w
ten as the sum of the ground-state charge density and a s
deviation, i.e.,r̃(r )5r(r )1D(r ). We can modify the Har-
tree term so that this charge density interacts with
ground-state density in the replicas. This leads to the in
action energy

Ẽe-e5E uf̃u2(
i . j

f ~r i2r j !)
k

dr k

1E r̃~r !r~r 8!@vE~r2r 8!2 f ~r2r 8!#drdr 8

2
1

2E r~r !r~r 8!@vE~r2r 8!2 f ~r2r 8!#drdr 8,

~23!

where uf̃u2 generates the charge densityr̃ and the ground-
state charge densityr is fixed. A HF analysis of this inter-
action shows that the HF equations are identical to Eq.~19!,
so that the orbitals and eigenvalues are unaltered. Howe
the ground- and excited-state energy expressions are m
fied. For the excited states we obtain analogues of Eqs.~20!
and ~21!, but without the terms involving (vE2 f ), i.e., we
retrieve the standard Koopmans’s theorem. We have alre
shown that these terms are small for silicon, although t
will be significant in cases when the change in the cha
density due to the excitation is strongly localized. Th
analysis provides further evidence that the electrostatic in
actions between the simulation cell and its replicas is
necessarily an important source of finite-size error in excit
state energy calculations.

VIII. CONCLUSIONS

Large Coulomb finite-size errors arise in total-energy c
culations when using the Ewald form of the electron-elect
interaction. These finite-size errors may be greatly redu
by using our MPC interaction in which the interparticle i
teraction is exactly equal to 1/r at short distances and th
long-range-interactions are replaced by a mean-field-
one-electron potential. It is consistent to use the MPC in
action in conjunction with ‘‘independent-particle finite-siz
corrections’’ derived from density-functional calculations,
long as the latter calculations are performed with
exchange-correlation functional appropriate to the infin
system. Although the long-range mean-field-like contrib
tion to the MPC interaction involves the charge density
the system, total energies are insensitive to its form and o
an approximate charge density is required.

The MPC interaction can be used consistently for all C
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lomb interactions in the system, although it normally reduc
to using the MPC interaction for the electron-electron int
action, retaining the standard Ewald interaction for t
electron-ion and ion-ion terms. The Ewald and MPC inter
tions may be used in tandem as an efficient diagnostic
Coulomb finite-size errors. If the Ewald and MPC resu
agree then the Coulomb finite-size error should be small

If the simulation cell is too small then the confinement
the XC hole makes the XC energy more negative. T
source of error is intrinsic to using a finite-simulation ce
However, even when the XC hole is artificially confined by
small-simulation cell the MPC interaction still gives a bett
estimate of the XC energy than the Ewald interaction.

Excitation energies calculated within the fixed LDA
orbital HF theory show significant finite-size effects. How
ever, in correlated calculations the finite-size effects
smaller and accurate excitation energies can be obtained
ing quite small-simulation cells. In silicon we find that th
finite-size errors in VMC electron-promotion~‘‘optical ab-
sorption’’! and electron addition/subtraction~‘‘photoemis-
sion’’! calculations are similar, and that the optical prom
tion method has the greater statistical efficiency. The fin
size errors for low-lying excitations in silicon are small, an
quite accurate results may be obtained from 16 atom ce

We have described developments aimed at understan
and reducing finite-size errors in many-body quantum sim
lations using periodic boundary conditions. Since one can
get exact answers for an infinite system from a fini
simulation cell whatever interaction is used, there is no ‘‘e
act interaction’’ for a finite system with periodic bounda
conditions. The Ewald and MPC interactions are alternat
model interactions compatible with periodic boundary co
ditions, and the relevant question is which model interact
gives results that most closely approximate those for v
large simulation cells. The Ewald and MPC interactions d
fer by an amount that is inversely proportional to the size
the simulation cell and, therefore, they give the same ene
per-particle in the limit of an infinitely large simulation cel
However, for finite cells the Ewald and MPC interactio
can give significantly different energies. In every test w
have performed the energy calculated with the MPC inter
tion is closer than the Ewald energy to the value for a v
large system. The MPC interaction is applicable to both m
als and insulators and it is faster to compute than the Ew
interaction. Given these facts we believe that the MPC in
action should be used for all quantum many-body calcu
tions of total energies in systems with periodic bounda
conditions.

ACKNOWLEDGMENTS

Financial support was provided by the Engineering a
Physical Sciences Research Council~UK!. Our calculations
are performed on the CRAY-T3E at the Edinburgh Para
Computing Center and the Hitachi SR2201 located at
University of Cambridge High Performance Computin
Facility.



lde

o

ell
ru
tio

. D

M

A

. C

. J.
m,

tt.

r.,

m.,

nd

-

al,

P.

nd
,

a

PRB 59 1929FINITE-SIZE ERRORS IN QUANTUM MANY-BODY . . .
*Present address: National Renewable Energy Laboratory, Go
Colorado 80401.

1W. L. McMillan, Phys. Rev.138, A442 ~1965!; D. Ceperley, G.
V. Chester, and M. H. Kalos, Phys. Rev. B16, 3081~1977!.

2D. M. Ceperley and M. H. Kalos, inMonte Carlo Methods in
Statistical Physics, edited by K. Binder~Springer, Berlin, 1979!;
K. E. Schmidt and M. H. Kalos, inMonte Carlo Methods in
Statistical Physics II, edited K. Binder~Springer, Berlin, 1984!.

3B. L. Hammond, W. A. Lester, Jr., and P. J. Reynolds,Monte
Carlo Methods in ab initio Quantum Chemistry~World Scien-
tific, Singapore, 1994!.

4All equations are given in Hartree atomic units (\5me5e
54pe051).

5S. W. de Leeuw, J. W. Perram, and E. R. Smith, Proc. R. S
London, Ser. A373, 27 ~1980!.

6P. P. Ewald, Ann. Phys.~Leipzig! 64, 253 ~1921!.
7The reduction of the problem to one within the primitive unit c

is only possible within independent-particle theories; in a t
many-body theory one has to solve over the entire simula
cell.

8J. P. Perdew and A. Zunger, Phys. Rev. B23, 5048~1981!.
9D. M. Ceperley and B. J. Alder, Phys. Rev. Lett.45, 566 ~1980!.

10D. M. Ceperley, Phys. Rev. B18, 3126~1978!.
11D. M. Ceperley and B. J. Alder, Phys. Rev. B36, 2092~1987!.
12B. Tanatar and D. M. Ceperley, Phys. Rev. B39, 5005~1989!.
13Y. Kwon, D. M. Ceperley, and R. M. Martin, Phys. Rev. B58,

6800 ~1998!.
14G. E. Engel, Y. Kwon, and R. M. Martin, Phys. Rev. B51, 13

538 ~1995!.
15L. M. Fraser, W. M. C. Foulkes, G. Rajagopal, R. J. Needs, S

Kenny, and A. J. Williamson, Phys. Rev. B53, 1814~1996!.
16A. J. Williamson, G. Rajagopal, R. J. Needs, L. M. Fraser, W.

C. Foulkes, Y. Wang, and M.-Y. Chou, Phys. Rev. B55, R4851
~1997!.

17A. Baldereschi, Phys. Rev. B7, 5212~1973!.
18H. J. Monkhorst and J. D. Pack, Phys. Rev. B13, 5188~1976!.
19G. Rajagopal, R. J. Needs, S. Kenny, W. M. C. Foulkes, and

James, Phys. Rev. Lett.73, 1959~1994!.
20G. Rajagopal, R. J. Needs, A. James, S. Kenny, and W. M
n,

c.

e
n

.

.

.

.

Foulkes, Phys. Rev. B51, 10 591~1995!.
21See, for example, C. Kittel,Introduction to Solid State Physics,

7th ed.~Wiley, New York, 1996!.
22A. J. Williamson, S. D. Kenny, G. Rajagopal, A. J. James, R

Needs, L. M. Fraser, W. M. C. Foulkes, and P. Maccallu
Phys. Rev. B53, 9640~1996!.

23C. J. Umrigar, K. G. Wilson, and J. W. Wilkins, Phys. Rev. Le
60, 1719~1988!.

24S. Fahy, X. W. Wang, and S. G. Louie, Phys. Rev. B42, 3503
~1990!.

25M. M. Hurley and P. A. Christiansen, J. Chem. Phys.86, 1069
~1987!; B. L. Hammond, P. J. Reynolds, and W. A. Lester, J
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