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We describe a semiempirical method for constructing pseudopotentials for use in correlated wave-function
calculations which involves using a combination of calculated and experimental quantities. The pseudopoten-
tials are generated from single-valence-electron configurations and satisfy a norm-conservation condition. Core
relaxation and core-polarization effects are taken into account. Detailed results for a typical ataandih
valence electronssilicon) and a transition metal atoftitanium) are given. The method works very well for
silicon but is not satisfactory for titanium.

[. INTRODUCTION addition, some of the effects of core-valence correlation may
be included in pseudopotential correlated wave-function cal-
Pseudopotentials or effective core potentials are comeulations by adding “core-polarization potential§CPP’s.’
monly used in electronic structure calculations to remove thd he basic idea is that the core electrons respond very rapidly
inert core electrons from the problem and to improve thelo changes in the positions of the valence electrons and the
computational efficiency. In this paper we study the perfor-€ffect can be approximately described by a polarization of
mance of pseudopotentials in correlated wave-function apthe core arising from the instantaneous electric field of the
proaches. Our particular interest is in the diffusion quantunyalence electrons.
Monte Carlo(DMC) method!? This is a very accurate tech-  There is, however, a need for more accurate pseudopoten-
nique which is promising for applications to large systemstials for use in correlated wave-function calculations. The
because the computational effort scales as the third power ¢seudopotentials currently used in correlated calculations
the number of electrons, which is very favorable comparederform significantly worse than, for example, KS-DFT
with other correlated wave-function approaches. Despite thigseudopotentials in a KS-DFT calculation. Given that the
favorable scaling with the number of atoms the scaling withidea of using correlated methods is to obtain higher accuracy
the atomic numbeF of the atoms is approximate&SE_ﬁ-S, than in KS-DFT or HF calculations, this is a Significant
which effectively rules out applications to heavy atotis. shortcoming. In this paper we describe a semi-empirical pro-
The use of a pseudopotential serves to reduce the effectivg&dure for obtaining pseudopotentials for correlated calcula-
value ofZ, and a|though errors are inevitab|y introduced, thetions. We use a combination of calculated quantities and the
gain in computational efficiency is sufficient to make appli- €xperimental ionization energies for a single electron in the
cations to heavy atoms feasible. Although our study has beélield of an isolated ion. These energies could be calculated,
performed with the DMC method in mind, the conclusionsWhich would yield a scheme free from experimental input,
are relevant to other correlated wave-function methods. ~ but we believe that using the experimental energies leads to
Accurate pseudopotentials for single-particle theoriegmproved accuracy. Our procedure is similar in some re-
such as Kohn-Sham density functional thets-DFT) and ~ Spects to the empirical procedures used in the 18808,
Hartree-FockHF) theory are well developed, but pseudopo- Which pseudopotentials were generated for an electron in the
tentials for correlated wave-function calculations present adfield of an ion using experimental energies. However, our
ditional challenges. HF-based pseudopoterftigise quite Procedure differs from these earlier versions in four impor-
good results within correlated wave-function calculations fortant waysi(i) our pseudopotentials obey a norm-conservation
many atoms. The reason is presumably that for many atorrfgondition, (ii) we improve the description of core-valence
core-core and core-valence correlations have only a smaqorrelation effects by including core-polarization effects in a
influence on the valence electrons. Within single-particleconsistent mannexjii) we include corrections for the core
theories such as KS-DFT and HF theory modern pseudopd€laxation effects arising from generating the pseudopoten-
tentials often give very accurate results. The transferabilitjial in ionized configurations, an@v) we include an accurate
of these pseudopotentials is significantly improved by imposrepresentation of the Hartree and exchange potentials outside
ing the ‘‘norr‘n_coﬂser\/ationS’va4 condition, which ensures of the core. The method is illustrated with detailed results for
that for the reference configuration they reproduce the exadhe silicon and titanium atoms, and the accuracy of our semi-
orbitals (including the normalizationoutside of the core ra- empirical pseudopotential is compared with a number of
dius. The importance of the norm-conservation condition isother potentials.
that it ensures that the linear variation of the scattering prop-
erties of the core with the energy of an incident valence
electron is correctly reproduced. For many atoms norm-
conserving pseudopotentials generated within KS-DFT and
HF theory are quite similar, so the precise treatment of the Acioli and Ceperle}® showed using perturbation theory
electron-electron interaction does not appear to be critical. Itthat the quality of a many-body pseudopotential depends on

IIl. PSEUDOPOTENTIALS FROM SINGLE-VALENCE-
ELECTRON CONFIGURATIONS
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an accurate description of the one-body, two-body, etc., den-
sity matrices outside the core region. The most important
quantity is the one-body density matrix, whose eigenfunc-
tions are the natural orbitals. It is therefore important to en- I I III
sure that the natural orbitals of the pseudoatom are correct
outside of the core region. For single valence electrons this
theory reduces to the standard concept of norm conservation. r,
Our semiempirical pseudopotentials are constructed from
single-valence-electron configurations; e.g., for Si we use the
[Ne]3s?, [Ne]3p?, and[Ne]3d! configurations. The mini-
mum requirements that a norm-conserving pseudopotential
for angular momentunh must satisfy are that it reproduce
correctly the following quantities in the reference configura-
tion: (i) the potential felt by the valence electron outside of
some core rad|usr,c, (i) the total amount of valence elec-
tronic charge outside cn"c, and (iii) the energy eigenvalue
¢ . In the next sections we explain how each of these three
guantities is calculated.

FIG. 1. The division of space into the core regidn, 0<r
A. Hartree-Fock potential <rc, the intermediate regiofil), r! <r<r,, and the outer region
(1), r>r,, for thesvalence state of Si. The upper curve shows the

Consider a single valence electron in the field of an iso-
9 pseudo-orbital while the lower curve shows the pseudopotential.

lated ion. Within HF theory the potential felt by the electron
is the sum of the interaction with the nucleus of chaZgnd

the Hartree and exchange interactions with the core, wherer; is the position of theth valence electron, andis
an adjustable parameter. Mer et al.” investigated several

. Z e forms of the cutoff functionf(x), and we use one of their
VHF: - F +V7+V7, (1) formS,
The HF potential accounts for most of the effects felt by the f(x):(l—e*XZ)z (@)

valence electron, but neglects correlation effects.
which was also used by Shirley and Martfinserting Eq.

B. Core-polarization potential (3) into Eq.(2) yields
If the core-valence correlation is wealk, it is reasonable to
write the effective potential felt by the valence elect[ons as e 1) a rerg [ r
the sum of the HF potential and a correlation poten¥l, Vepr=— 5 2. Al e e _r-3r-3f = f =
An approximate correlation potential can be obtained within : '1
the framework of core polarization potentials. CallaWaje- =Vt VERE, (5)

veloped a theory foW© which involves an adiabatic separa-

tion between the core and valence electrons, in which theyhich is a sum of one- and two-electron terms. The valence
core electrons move instantaneously in response to the mejectrons prefer to sit on either side of the core so as to
tion of the valence electrons. Callaway showed that, after aninimize the interaction energy, but the introduction of the
series of approximations/C could be approximated by a two-electron termVgse opposes this because it penalizes
dipole term which represents the polarization of the core dueonfigurations in whictr;-r;<0. The expectation values of
to the electric field of the valence electrdiasd other ions, if V&, and V&5 therefore tend to cancel one another.

present This leads to the CPP approximatidior VC,
C. Valence potential in different regions

N 1
Vepp= — EacEc~ E., (2 In.o.rder to construct our semiempiriqal pseqdopotentia}l
we divide the radial space into three regions as illustrated in
wherea, is the static polarizability of the core ar} is the Fig. 1. The core radlus of a pseudopotential for a particular
effective electric field acting on the core due to the valenceéngular momentumg ., is conventionally chosen between
electrons. When a valence electron is within the core thi¢he outermost node and extremum of the all-electron valence
equation overestimates the core polarization, which must b@rbital, and the values that we have used for Si and Ti are
zero when the electron is at the nucleus. To make the CP@iven in Table I. Region | (&r<ry) is the core region for
vanish at the origin Miler et al.” cut off E, as angular momenturh We do not have to specify the potential
in region | explicitly as it will be fixed by inversion of the
_— (pseudd Schralinger equation. In the intermediate region I
Ec=2 —'3f<:'), (3)  (ri<r<r,) the single-valence electron experiences the HF
r potential from the core and the correlation potential. We
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TABLE . Core radii,rl., and the radius defining the outer re- electrons, but not for transition metal atoms, for which the

gionr, in au for Si and Ti. full forms of Eq.(7) must be used.
The outer radius,, is chosen to be large enough so that in
Atom re re re Mo region Ill (r>r,) the correlation potential is negligible and
) the Hartree and exchange potentials from the core dominate
S.I 1.75 1.8 2.0 20.17 so that we have
Ti 2.3 2.6 1.0 30.46
1d®> I(+1) Z-N
st | H=adl'(). 9
write the orbital as the product of radial and angular parts, dr 2r
@m(r) =L (r)/r]Yim(6, ), and the equation fop, in re-  we have chosem, such thatVe,{r=r,)<10° Ry (see
gion Il becomes Table ).

1d®> I1(+1) Z

2dr2 212 T

D. Valence eigenvalues

+VI+VI+ Vol (N =€ (1),

For the valence eigenvalues we use the experimental val-
(6) ues for the energy differences between the singly-valent ions
and the bare core, i.e., the ionization energy. These energies
were obtained from the compilation of Bashkin and Stbher
%1 by taking degeneracy-weighted averages of the spin-orbit-
viin=> (4l .+ 2)f — (r")e (rH)dr’, split levels. The advantage of using the experimental ener-
¢ of> "¢ ¢ gies is that they contain both relativistic and correlation ef-

wheree, is the eigenvalue and

fects, which are difficult to include in accurate many-body
2 (p|c(l’) calculations. Of course we could obtain these energies from
o(r) calculations, which would remove the need for any experi-
mental input in our scheme. However, for largeatoms it
o r'; would certainly be difficult to calculate highly accurate en-
xf m%c(f')%(f')dr', ergies and therefore we prefer to use the experimental ones.
ors Using the experimental ionization energigsguarantees
that we obtain the correct asymptotic form of the charge
ac 1 f2< f) @ density for the singly-valent configuration,
r4 '

2 pi(r)cexd —2(2] &) V], (10

where theg,(r) represents all-electron restricted HF radial  \yjthin HF theory the asymptotic form of the HF charge
orbitals for the singly valent configurations. (r-) is the  gensity is given by a similar expression, but with the ioniza-

| kI,
00 0

vff(r)z—CZk (21.+1)

Vi) =

lesser(greatey of r andr’, and tion energy replaced by the HF eigenvalue of the highest
occupied state, which is not in general equal to the HF ion-

( Ik lc) ization energy. In our scheme we would like to reproduce the

0 0O correct asymptotic form of the charge density and therefore

. 3 bol. Th . h we follow Eq. (10) and use the experimental ionization en-
IS a 9 Symbol. The summat_|ons are over the corS Statesergy. In Sec. Il F we will equate changes in the HF valence
which are denoted by. Herek is an integer=0, andV;(r)

_ X eigenvalues to changes in the ionization energy arising from
is nonzero for{l;—l|<k<Ic+1 with (k+Ic+1) even. Note  ¢qre relaxation. This procedure is justified because we are

that the self-interaction of the single valence electron is Omit'creating pseudopotentials using single-valent configurations,

ted from Eq.(7). _ _ o for which the change in the eigenvalue is equal to the change
For some atoms, e.g., Si, we find that for realistic corp the jonization energy.

radii (see Table)lVl, V', andV{ are already very close to
their asymptotic values in region I, i.e., E. Norms of the valence wave functions

In single-particle theories there is no ambiguity concern-

Vi =2, ing the definition of core and valence charge densities, which
r is simply a matter of labeling the orbitals as belonging to the

core or valence, but in a correlated many-electron theory one

Vii(r)=0, cannot make a wholly unambiguous definition of the core
and valence charge densities. However, physically, the core

c ag charge density must be contained within some reasonably
Vll(r):_ﬁ' (®) small radius, which can easily be estimated from single-

particle calculations. We can assert that even in a many-body
whereN. is the number of core electrons. In general we havecalculation all charge outside of this radius must be valence
found that the asymptotic forms of E¢B) are accurate to charge.
about 10 3 eV provided tha‘r'C is chosen so that at least 99% By fixing the valence eigenvalue and the potential for
of the total core charge is confined to region I. This criterion?r'C we have fixed the functional form of the valence orbital
allows reasonable core radii for atoms wglandp valence for r>r'c, but not its normalization. To find the normaliza-
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tion we must know the amount of valence chapgjeoutside TABLE II. The experimental ionization energies, the core
of some radiusrnzr'c. We obtain this charge density from relaxation energied ¢, and the change in the norm due to core
all-electron calculations for the single-valent ions. We have€laxation,AN, for Si and Ti.

used a variety of methods to calculaig, including the local

spin-density approximatiofLSDA) to KS-DFT, HF theory Orbital & (Ry) Ae Ry) AN
and configuration interaction with single and double excita-  g; 34 ~3.317903 ~0.00413 0.00140
tions (CISD). For the LSDA calculations we used an atomic Si 3p 5 665468 000415 0.00204
code based on a finely spaced radial grid, while for the HF _. ' ' '
calculations we used the code of BeoFischer which also Si3d —1.856442 ~0.00246 0.00215
uses a radial grid. The CISD calculations were performed | 4S —2.447521 —0.0595 0.0289
using theGAUSSIAN 94 code™® The CISD calculations give ~ T14P —2.009403 —0.0571 0.0369
excellent correlation energies, but tleaussiAN basis set Ti 3d —3.177990 —0.1313 0.0174

gives a poor description of the charge density far from the

atom. Choosing,, too large would therefore lead to an in-

H X :
accurate value of the norm, and in our calculations we havgviherev and V" are the Hartree and exchange potentials,

chosenr,=r\. This choice is not always large enough to ¢. and ¢34 are the core orbitals and the valence orbital, and

ensure that the core charge density is confined withirbut ! denotes the ionized configuration. We now E(erform a sec-
in these cases we correct the norm using the results of LsD&Nd calculation with the core orbitals W" andV* replaced
or HF calculations. In practice these different methods give?y those obtained from a calculation in the neutral atomic
norms in very close agreement with one another, and th@round state¢. . These HF equations are then solved with
norm appears to be insensitive to the description of the eledhe ¢ orbitals fixed to give the energied, and associated
tron correlation. orbitals ¢, . The change in the@eigenvalue due to the core

relaxation is then
F. Core relaxation

_ 0 i
Core relaxation in an isolated atom refers to the change in A€g= €34~ €30 (12
the distribution of the core electrons which occurs when theynd the change in the amount of charge in the core region is
configuration of the valence electrons is altered. We generate
pseudopotentials from a particular reference configuration of =20 -
the atom, which therefore includes the effect of the core ANd:fo (| p3al“—[ ¢34l )dr. (13
frozen in this configuration. The semiempirical pseudopoten-

tials are generated in highly ionized configurations although The values of\ e andAN for Si and Ti are given in Table

we would normally like to use them in near neutral configu-|; “cjearly one can make an analogous definition within KS-
rations. Clearly errors will be introduced if the relaxation of 5 theory which we have found gives similar results. We
the core on going from the ionized to the neutral configura-have calculated tha e of Eq. (12) and theAN of Eq. (13)

tion is significant. The idea of our core relaxation correctionfor the's, p, andd channels of all atoms up to Zn. Thiee
procedure is as follows. Core relaxation changes the pseUdﬂicreasés ’in magnitude across the rows and down the col-

potential and hence alters the valence eigenvalue and ﬂlﬁnns of the periodic table. ThaN shows similar trends
amount (,)f valence charge _OUtS,'de Dg' , Howevgr, the although for many atoms they are small. We find thatis
changes' in the pseudopotential will be_ mainly conf[ned to they most always negative whil&N is almost always positive.
core region and therefore we can retain the potentials of EQSihe reason for this is that the core of the ionized atom is

(6) and(9) in regions Il and Il while applying corrections t0 \qre compact so that the nuclear charge is more effectively

the valence eigenvalue and norm. Our correction procedurgqreened and consequently the potential felt by the valence
is therefore to generate the pseudopotential without changingiactrons is less attractive.

the potential outside the core region, but adding small cor-

rections to the norms of the valence orbitals and their eigen-

values. Ill. CONSTRUCTION OF THE PSEUDOPOTENTIALS
Although the idea of core relaxation corrections is natural The required solution of the Schj'm]ger equation in re-

enough, it turns out that they are difficult to define math-gjon 111 [Eq. (9)] is

ematically. We have used the following definition which is

meaningful within independent electron theories such as HF "

and KS-DFT. Suppose we construct the Bseudopotential o (r)“Wx,|+1/2<

for Ti within our semiempirical scheme which uses single-

valence-electron configurations. What is the change in thahere nyy(z)=e*2’zzy“’2U(y—x+ 1/2,2y+1;z) is the

€34 €igenvalue due to using the core of the ionized atomWhittaker function of the second kindJ is the confluent

rather than the core of the neutral atomic ground state? Theypergeometric function of the second kitfdand x=(Z

2(Z—N,) )
—r

. 14

HF equations for the ionized configuration are —Ng)/ V2] €|. The asymptotic form of this expression yields
5 Eqg. (10), as required.

_Ed_+ I(1+1) —E+VH a1V g i The Whittaker function gives the form of the solution

2dr2 2r2 ot [e:daal #V 1 der baal | throughout region Ill. We proceed by choosing a value for

"(r,). The corresponding radial derivative @' (r,) is

= enibni» (1) then fixed from Eq.(14). Using the desired value of the
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valence eigenvalue we then integrate &j.inwards fromr We have also generated pseudopotentials within LSDA

tor=r., numerically. At this point we evaluate the norm of and HF theory using the same core radii and the TM scheme.

¢, over regions Il and Ill and then renormalizi to the  These pseudopotentials were generated in the neutral ground

desired value. state. HF pseudopotentials created by such a scheme have a
So far we have fixed the pseudo-orbital in regions Il andlong-range tail due to the exchange interaction, which we

IIl. We now proceed to calculate the pseudo-orbital inside have cut off, as others have done beftt& We have also

and invert the Schidinger equation to obtain the corre- tested the Hay-Wadt pseudopotentials fofff. 20 and Ti

sponding pseudopotential. For this purpose we use the stafRef. 23, and the Hay-WadtHW) small coré® pseudopo-

dard Troullier-MartingTM) schemé&’ which was developed tential for Ti, in which the 3 and 3 electrons are included

for generating pseudopotentials within KS-DFT. Within this in the valence. For Ti we also tested the Dirac-FoDi)

scheme the pseudo-orbital in the core region is given by Ppseudopotential of Hurlegt al*®

IV. TESTING THE PSEUDOPOTENTIALS
. (19

6
d)}(r):r'*lex;{ > ey
ey

We have tested all of our pseudopotentials by performing
atomic calculations using the fixed-node DMC method.
where thec; are coefficients to be determined. In the TM Some of the tests have been repeated with the configuration-
scheme seven conditions are used to determine the sevéeraction method with single and double excitations
coefficients: continuity of the pseudo-orbital and its first four (CISD) using theGAussiAN94 package’y which gave very
derivatives at the core radius, zero curvature of the pseudeimilar results. For the single-valence-electron states we also
potential at the origin, and the norm-conservation conditioncalculate the energies by numerical integration on a grid,
Troullier and Martins investigated a number of variants ofwhich yields essentially exact results.
this scheme and found that this one gave smooth and trans- In DMC (Refs. 1 and Rimaginary time evolution of the
ferable pseudopotentials. Note that the exponent in(Eg.  Schralinger equation is used to evolve an ensemble of
contains only even powers. The absence of the odd powers BN-dimensional electronic configurations towards the
the exponential of Eq(15) ensures that all the odd deriva- ground state. Importance sampling is incorporated via a
tives of the screened pseudopotential are zero at the origiguiding wave functiond;. We use the fixed-node approxi-
which helps to keep the pseudopotential smooth. The abmation, in which the nodal surface of the wave function is
sence of the term linear inforces the pseudopotential to be constrained to equal that ob;. The fixed-node DMC
finite at the origin. This allows the use of larger time steps inmethod generates the distributidnV', whereW is the best
DMC calculationst® and it could also be advantageous in (lowest energywave function with the same nodes &s .
other correlated wave-function methods. Our guiding wave functions are of the Slater-Jastrow type:

Once ¢|(r) is determined, the pseudopotentigl(r) is

obtained in region | by inverting the radial Schioger equa-
tion, =20 anDjDy X —~ 2 Us, g, (i 11 [, (1)
I(1+1) 1 d?¢ where there ardl electrons in the system,is a two-electron
V(r)=¢— 5 — 2' (16)  correlation factor which depends on the relative spins of the
2r 2¢ dr electronso; andoj, ry; is the separation of the electrons, and

ri andr; are their distances from the nucled, andD}, are

This Completes the construction of the Semiempirical pseus|ater determinants of up- and down-spin Sing|e-partic|e or-
dopotential. bitals which were obtained from LSDA calculations for the

When testing the effects of core polarization we haveglectronic configurations of interest. Some calculations were
used the CPP defined by E¢8)—(5), with the parameters of repeated using HF orbitals, but they gave almost identical
Shirley and Martin'* Shirley and Martin calculated core- results. Theu function was expanded as a polynomiaf p,
polarizabilitiesa, and parameters for 32 elements. The  r;, andr; which was constrained to obey the electron-
parameters were obtained by forcing the expectation valueslectron cusp conditiorfs. For Si we included only powers
of the CPP and of their calculated generaliZ8dV self-  of r;; andr;, giving a total of 24 parameters, but for Ti we
energy to be equal for the lowest valence states in bare ioadded terms irri“r]-ﬁ, rirlj, and ri“rjﬁriyj (a,B,y intege),
configurations. They give CPP’s for use with relativistic HF giving a total of 34 parameters. The optimal parameter val-
(i.e., Dirac-Fock pseudopotential§Table 1a) of Ref. 12  ues were obtained by minimizing the variance of the
and nonrelativistic oneTable Ib) of Ref. 12. We use the energy?>?® The nonlocal component of the electron-ion en-
parameters of Table(h) for our HF pseudopotentials but ergy was evaluated using the “locality approximatiof.”
those of Table (a) for our semiempirical pseudopotentials The error in making this approximation is of orded<{
because these incorporate the experimental valence eigenvalay)2, so that it is important that the trial wave function be
ues which contain relativistic effects. The differences be-accurate.
tween using the relativistic and nonrelativistic parameters is The DMC method can also be used to study excited
small for the atoms we have considered. Note that our semktates. It is straightforward to show that if the nodal surface
empirical pseudopotential includes the one-electron CPRf the guiding wave function is equal to that of an exact
term Vpp, and therefore to form a consistent CPP potentiakigenstate, then the fixed-node DMC algorithm gives the ex-
we add only theVgspterm from Table 1) of Ref. 12. act energy of that eigenstai@part from the locality approxi-
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TABLE IIl. Acronyms for the different pseudopotentials and a measure of the error in the pseudopoten-

tials, A.

Acronym Pseudopotential A Si ATi
HWL Hay-Wadt large core, Refs. 20,21 0.139 0.671
HWS Hay-Wadt small core, Ref. 22 0.185
DF Dirac-Fock, Ref. 23 0.379
HF Hartree-Fock 0.052 0.056
HF+CPP Hartree-Fock with CPP 0.015 0.426
LSDA Relativistic LSDA 0.075 0.929
SE Semiempirical 0.022 0.865
SE+VEEe Semiempirical withe-e CPP 0.019 1.006
SE-relax-Vggp Semiempirical with relaxation anete CPP 0.010 0.803

mation). Recently, the existence of variational theoremsVMC calculations, but in DMC calculations it is less than the
within the fixed-node DMC method have been analyzed bystatistical error bars given in Tables IV, V, VI, and VII,
Foulkes, Hood, and Needs. below.

For each Si pseudopotential we have calculated the ener-
gies of nine atomic configurations using the DMC method, V. RESULTS
while for each Ti pseudopotential we have calculated the . .
energies of ten atomic configurations. For most states onlyﬁla A list of acronyms for the pseudopotentials we have

single determinant is required to produce a guiding wave sted.|s given in TabIe_ . Qur aim is to construct pseudo-
function with the correct quantum numbers, but for thepotentlals for Si and Ti which work well in environments

. . imil h I i . T ify th
3s13pi(1P) state of Si and the @4si(D) state of Ti two similar to the neutral atomic ground states. To quantify the

\ i accuracy of the pseudopotentials under these conditions we
determinants are required. For th#] neutral ground state y P P

. > define the average errdr,
of Ti it has been suggested that one should allow mixing of

the 3d24p? configuration with the 824s? configuration in \/ EDVC_ goxet 2
A=
2

the trial wave function because the 4evel is nearly degen-
|.29

erate with the 4 level=® We have performed variational EP

quantum Monte CarlgVMC) calculations for a number of WhereEiDMc andE?Xptare the DMC and experimental values

. - - . - 2
d|ffe_rent v_alues of the mixing coefficient for thed34p . for the energy differences from the neutral ground state ob-
configuration, and have found that for each pseudopotenthgined from the data in Tables IV and V for Si and Tables VI

the optimum mixing coefficient is between 0.05 and 0.1.and VIl for Ti.

These mixing coefficients are considerably smaller than thgiates close in energy to the neutral ground state. Other mea-

values of 0.2-0.3 found by MitdS. We have found that  5ures of the accuracy can be constructed from the data, but
when the variational freedom of the Jastrow factor is rene trends are generally similar.

stricted the optimal mixing coefficient increases and we be- For i, all the pseudopotentials tested perform at least
lieve that our smaller mixing coefficients are due to thereasonably well. The HW HF pseudopotential is significantly
greater variational flexibility of our Jastrow factor. The re- poorer than the others, and it performs worse that the HF
duction in the energy of the d¥4s? neutral ground state pseudopotential we have generated. The effects of the CPP
obtained from the multideterminant trial wave function for are small in Si, but it does improve the results for both the
the GF) neutral ground state is between 0.25 and 0.5 eV irHF and semi-empiricalSE) pseudopotentials. The core re-

This measure of the error emphasizes the

TABLE IV. lonization energies of Si in eV calculated within DMC and compared with experimental

values.
First IP Second IP Third IP Fourth IP
35?3p?(3P)—3s?3pl(°P) 3s?3pl(’P)—3s%(!S) 3s%('9)—3si(?S) 3s!(?S)—0

Expt. 8.16 16.32 33.49 45.14
HW 8.33914) 16.51610) 33.1376) 44.4320)
HF 8.16614) 16.27817) 33.17915) 44.5530)
HF+CPP 8.168L2) 16.29710) 33.4486) 45.0850)
LSDA 8.29913) 16.58319) 33.51916) 45.08Q0)
SE 8.13716) 16.35819) 33.55715) 45.1410)
SE+VESs 8.06716) 16.25320) 33.39419) 45.14Q0)

SE-relax- V&S, 8.14812) 16.25913) 33.50110) 45.1970)
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TABLE V. Excitation energies of Si in eV calculated within DMC and compared with experimental

values.

3s3p(3P)— 3s?3p?(3P)— 3s?3p!(?P)— 3s%(19)—

3st3pi(tP) 3s'3p3(°9) 3s'3p2(*P) 3s!3p!(3P)

Expt. 3.72 4.11 5.30 6.56
HW 4.07910) 3.56212) 4.7319) 6.0147)
HF 4.0219) 3.90913) 5.0969) 6.36315)
HF+CPP 3.81(0) 4.05210) 5.2649) 6.571(6)
LSDA 4.0419) 3.82710) 4.99410) 6.23216)
SE 4.0229) 4.02913) 5.22312) 6.47815)
SE+VEEe 3.7749) 4.08414) 5.28210) 6.521(19)
SE-relax- V&S, 3.8079) 4.07710) 5.2499) 6.56110)

laxation correctiongsee Table | are also small, but they The addition of the Shirley-Marti‘ﬁ CPP to our HF Ti
also improve the performance of our SE pseudopotentiapseudopotential reduces the accuracy obtained. Core-
The best performance of any of the pseudopotentials is givepolarization effects are large for Ti because the core is highly
by our SE pseudopotential with core relaxation correctiongolarizable and the energy of a Ti atom with one valende 3
and the full CPP including the two-electron term. electron is lowered by 1.45 eV on adding the CPP from
For Ti our HF pseudopotential gives the best results in ourf able Xb) of Ref. 12. The resulting ionization energy is 2.99
correlated calculations. We have also tested our HF pseud&V larger than the experimental value, which suggests that
potential within HF theory, where it performs very well. The the Shirley-Martin CPP for Ti is too attractive in tdechan-
most significant error in this case is the overestimation of th&€l- This observation largely explains the fairly poor results
s—d promotion energy, which has been noted before in HFPPtained in Tables VI and ViI for the HFCPP pseudopo-

: . : : tential.
pseudopotentiaf®-3 This error arises because thd 8rbital ) : .
is large near the outer node of the all-electr@ofbital. The The Hay-Wade small cor¢HWS) Ti pseudopotential

o . gives the next best results. It is interesting that the HWS
nodeless pseudosdorbital is very different from the all- pseudopotential, in which thes3and 3 electrons are in-

electron 4 orbital in this region and therefore an error is .| ,qed in the valence, performs less well than our HF pseu-
introduced into the Hartree and exchange interactions b&jopotential for states close in energy to the ground state. The
tween the two orbitals. In the reference configuration thissmall-core Ti neutral pseudoatom has 12 valence electrons
error is compensated by the pseudopotential, which by conghijle the large-core one has 4, and the computational cost of
struction gives the correct energy eigenvalues, but in otheperforming a DMC calculation using the small-core Ti pseu-
configurations this compensation is incomplete and an erraiopotential is about an order of magnitude greater than using
is introduced. In Ti the effect is to increase the energy ofthe large-core one. Note that the HWS pseudopotential per-
s'd? states. We have noticed a similar effect in a LSDA Tiforms quite well for highly ionized configurations, presum-
pseudopotential created with a full nonlinear core exchangeably because it is able to describe the relaxation of the 3
correlation correctiod? This demonstrates that the effect is and 3 shells, which is not possible in the large-core pseu-
generic and not dependent on the detailed description of extopotentials.

change and correlation effects. It is therefore interesting that The next most accurate results were obtained with the DF
our DMC calculations for Ti with a HF pseudopotential do Ti pseudopotential. This pseudopotential includes the most
not show such an effect for thed34s2(*F) —3d34s}(°F)  important relativistic effects and might be expected to give
transition, for which we do not have an explanation. better results than our HF pseudopotential. The DF pseudo-

TABLE VI. lonization energies of Ti in eV calculated within DMC and compared with experimental

values.
First IP Second IP Third IP Fourth IP

3d%4s%(°F)—3d%4s'(*F) 3d?4s'(*F)—3d?(°F) 3d?(°F)—3d*(°®D) 3d*(°D)—0
Expt. 6.82 13.58 27.49 43.24
HWL 6.54412) 12.9928) 27.9424) 45.9170)
HWS 6.59038) 13.38629) 27.29%38) 43.11287)
DF 6.75912) 13.3547) 27.1943) 44.1130)
LSDA 6.79911) 13.4477) 26.5744) 44.3360)
HF 6.66714) 13.2236) 27.24713) 44.7740)
HF+CPP 6.72412) 13.6586) 28.40712) 46.2280)
SE 7.25012) 14.0648) 26.3075) 43.2360)
SE+VEse 7.037112) 13.9976) 26.09G2) 43.2360)

SE-relax- V&gp 7.11912) 14.2664) 27.3262) 45.0220)
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TABLE VII. Excitation energies of Ti in eV calculated within DMC and compared with experimental

values.

3d%4s?(°F)—  3d%4s?(°F)—  3d%4s'(*F)—  3d’(°F)—  3d%4s'(®D)—

3d%4st(5F) 3d%4p!(°G) 3d3(*F) 3d%4s!(°D) 3d%4s('D)

Expt. 0.81 3.29 0.11 4.72 0.42
HWL 0.32014) 4.15529) —0.33710) 6.1085) 0.4156)
HWS 0.67852) 3.07854) 0.17347) 4.45724) 0.48824)
DF 1.08913) 3.77G20) 0.53719) 4.7144) 0.37714)
LSDA 1.52515) 4.11815) 1.051(10) 4.0544) 0.1255)
HF 0.83716) 3.32417) 0.1819) 5.0674) 0.0907)
HF+CPP 0.47014) 3.12316) —0.1078) 5.49Q3) 0.5095)
SE 1.42716) 4.40317) 1.15410) 3.2805) 0.0524)
SE+VESe 1.55113 4.46516) 1.3088) 3.1513) 0.3835)
SE-relax- VEgp 1.38914) 4.30814) 1.0846) 3.8313) 0.4395)

potential of Hurleyet al?® was created using a different larger than the HF pseudopotential value, andsthed pro-
scheme from our pseudopotentials and has a very differemnotion energy is 0.578 eV larger than the HF pseudopoten-
functional form, and therefore detailed comparisons of redial value.

sults may not be valid. Relativistic effects for the valence In the single-valent ion the level of our HF pseudopo-
electrons in Ti are in fact fairly small, the major effects beingtential is 0.76 eV above the experimental ionization energy,
to raise thed level and lower thes level slightly. Our HF and the effect of core relaxation on going from the neutral to
pseudopotentials do not contain relativistic effects althougrionized core is to raise it by a further 0.80 eV. Core-
when we add a CPP we are including relativistic effects pel€laxation effects are therefore not the source of the differ-
cause they are implicit in the CPP parameters given in Tabl§NCeS between the HF and SE pseudopotentials. Also core
1(b) of Ref. 12. Our SE pseudopotentials contain relativisticPlarization, even when estimated using the Shirley-Martin

effects through the use of experimental energies. Our LSD,&:PP which we believe overestimates these effects, is too

pseudopotentials for both Si and Ti also contain relat|V|st|cSmall to eprg:un th? differences. The picture that EMerges 1s
. . . that the relative failure of our SE pseudopotentials for Ti is
effects, although in both cases their performance in corre- : N
) L . notdue to core-relaxation effects or core-polarization effects,

lated calculations is inferior to the HF pseudopotentials.

: . . but is due to errors in describing the interactions between the
9
Mitas*® has published VMC and DMC results for a T', s andd valence electrons. The HF pseudopotential generated

pSEUdO"’_‘tO”I using the large-core pseudopotential of Paciqs the neutral configuration includes corrections for the dif-
and OIC|na3, which is a Dirac-Fock pseudopotential which forence between the all-electron and pseudovalence orbitals,
was designed to reproduce energy differences. Kfites but our SE pseudopotential does not.
ported six energy differences, of which four are directly  Thjs effect has been discussed before in the context of HF
comparable with our results. For these four energy differcalculations’®3! Attempts have been made to alter the
ences our HF pseudopotential performs a little better. pseudopotential to force the pseudo-orbital to look more like
Our Ti SE pseudopotential does not perform very well.the all-electron 4 orbital, although the success of this ap-
The introduction of the two-electron CPP term actuallyproach has been limited]. It would appear, however, that
makes the results even worse, while the core-relaxation esome method of correcting the interactions between the
fects give a small improvement. The core-relaxation effectpseudo-orbitals is necessary to achieve higher accuracy in
are large in Ti, especially for thd level, which is shifted HF and correlated calculations of Ti. We could of course
downwards in energy to 1.79 eV, although we believe thaglter the eigenvalues of the SE pseudopotentials to improve
our corrections for core relaxation are soundly based antheir accuracy for near-neutral configurations. However, this
should account for the majority of these effects. We re-would run counter to the spirit of our approach, in which we
marked above that we believe that the Shirley-Martin CPHry and construct the SE pseudopotential using a clearly de-
for Ti is too attractive in thed channel and this introduces fined strategy rather than just fitting to the energy differ-
errors into our SE V&S, pseudopotential via the two- €nces, and it would still not solve the problem of the inter-
electron CPP term. To explore the lack of success of the SBCtions between the pseudo-orbitals.
pseudopotential for Ti in more detail we have performed
Hartree-Fock calc_ulations for the different pseudopotentials. VI. CONCLUSIONS
These show that in the neutral ground stateshevel of our
SE Ti pseudopotential is 0.47 eV lower than for the HF We have introduced a method for generating semiempir-
pseudopotential, while the level is 1.42 eV higher than for ical pseudopotentials for use in correlated wave-function cal-
the HF pseudopotential. The consequences of these diffeculations. Our semiempirical pseudopotentials are generated
ences can clearly be seen in the results of Tables VI and Vlin single-valent atomic configurations, but we have devel-
For example, the first IP of the SE pseudopotential, whictbped a scheme which enables us to apply core-relaxation
corresponds to the removal of anelectron, is 0.571 eV corrections so that the pseudopotential works better in near-
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neutral configurations. For Si the semiempirical pseudopobetter results in correlated calculations than local-spin-
tential is the most accurate that we have been able to genedensity-approximation  pseudopotentials. The  core-
ate, giving errors of only a few hundredths of an eV for apolarization potential of Shirley and Martthworks well in
wide range of states. This high level of transferability within Si, but not in Ti where it overestimates the core-polarization
correlated calculations is similar to the transferability ob-energy. Core-polarization effects are significant in transition
tained in density-functional theory pseudopotential calculametal elements and it is important to develop accurate core-
tions (provided nonlinear core-exchange-correlation correcpolarization potentials for these elements.
tions are includetf) and Hartree-Fock pseudopotential
calculations for Si. We believe that our semiempirical
scheme should work very well for all atoms up to at least
atomic number 18 and is probably the most accurate cur- We thank Eric Shirley for useful discussions. Financial
rently available scheme for generating pseudopotentials fasupport was provided by the Engineering and Physical Sci-
correlated wave-function calculations for these atoms. ences Research Coun@dK). Computational resources on a
Our semiempirical scheme has not proved successful foEOMPAQ multiprocessofColumbus cluster provided by
Ti and the best results we have obtained for this atom aréhe U.K. Computational Chemistry Facility at the Rutherford
with a Hartree-Fock pseudopotential. The main reason foAppleton LaboratoryDepartment of Chemistry, King’s Col-
the relative failure of our SE pseudopotential for Ti is that itlege London, Strand, London WC2R 2l,Sare acknowl-
does not account for the differences in the interactions beedged. Many of the DMC calculations were performed on
tween the all-electron orbitals and pseudo-orbitals. the Hitachi SR2201 located at the University of Cambridge
In Si and Ti, at least, Hartree-Fock pseudopotentials giveHigh Performance Computing Facility.
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