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Pseudopotentials for correlated-electron calculations
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~Received 10 May 2000; revised manuscript received 31 July 2000!

We describe a semiempirical method for constructing pseudopotentials for use in correlated wave-function
calculations which involves using a combination of calculated and experimental quantities. The pseudopoten-
tials are generated from single-valence-electron configurations and satisfy a norm-conservation condition. Core
relaxation and core-polarization effects are taken into account. Detailed results for a typical atom withs andp
valence electrons~silicon! and a transition metal atom~titanium! are given. The method works very well for
silicon but is not satisfactory for titanium.
m
th
th
or
a
um
-
m
r

re
th
it

.
ct
he
li-
e
ns

ie

o
ad

fo
om
m
cl
p

ilit
os

xa
-

i
op
c

rm
an
th
l.

ay
al-

idly
the
of

the

ten-
he
ons
T
he
acy
nt
ro-

ula-
the
the
ted,
ut,
s to
re-

the
ur

or-
ion
e
a

e
ten-

tside
for
mi-
of

y
on
I. INTRODUCTION

Pseudopotentials or effective core potentials are co
monly used in electronic structure calculations to remove
inert core electrons from the problem and to improve
computational efficiency. In this paper we study the perf
mance of pseudopotentials in correlated wave-function
proaches. Our particular interest is in the diffusion quant
Monte Carlo~DMC! method.1,2 This is a very accurate tech
nique which is promising for applications to large syste
because the computational effort scales as the third powe
the number of electrons, which is very favorable compa
with other correlated wave-function approaches. Despite
favorable scaling with the number of atoms the scaling w
the atomic numberZ of the atoms is approximatelyZ5.5–6.5,
which effectively rules out applications to heavy atoms3,2

The use of a pseudopotential serves to reduce the effe
value ofZ, and although errors are inevitably introduced, t
gain in computational efficiency is sufficient to make app
cations to heavy atoms feasible. Although our study has b
performed with the DMC method in mind, the conclusio
are relevant to other correlated wave-function methods.

Accurate pseudopotentials for single-particle theor
such as Kohn-Sham density functional theory~KS-DFT! and
Hartree-Fock~HF! theory are well developed, but pseudop
tentials for correlated wave-function calculations present
ditional challenges. HF-based pseudopotentials4 give quite
good results within correlated wave-function calculations
many atoms. The reason is presumably that for many at
core-core and core-valence correlations have only a s
influence on the valence electrons. Within single-parti
theories such as KS-DFT and HF theory modern pseudo
tentials often give very accurate results. The transferab
of these pseudopotentials is significantly improved by imp
ing the ‘‘norm-conservation’’5,6,4 condition, which ensures
that for the reference configuration they reproduce the e
orbitals ~including the normalization! outside of the core ra
dius. The importance of the norm-conservation condition
that it ensures that the linear variation of the scattering pr
erties of the core with the energy of an incident valen
electron is correctly reproduced. For many atoms no
conserving pseudopotentials generated within KS-DFT
HF theory are quite similar, so the precise treatment of
electron-electron interaction does not appear to be critica
PRB 620163-1829/2000/62~20!/13347~9!/$15.00
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addition, some of the effects of core-valence correlation m
be included in pseudopotential correlated wave-function c
culations by adding ‘‘core-polarization potentials’’~CPP’s!.7

The basic idea is that the core electrons respond very rap
to changes in the positions of the valence electrons and
effect can be approximately described by a polarization
the core arising from the instantaneous electric field of
valence electrons.

There is, however, a need for more accurate pseudopo
tials for use in correlated wave-function calculations. T
pseudopotentials currently used in correlated calculati
perform significantly worse than, for example, KS-DF
pseudopotentials in a KS-DFT calculation. Given that t
idea of using correlated methods is to obtain higher accur
than in KS-DFT or HF calculations, this is a significa
shortcoming. In this paper we describe a semi-empirical p
cedure for obtaining pseudopotentials for correlated calc
tions. We use a combination of calculated quantities and
experimental ionization energies for a single electron in
field of an isolated ion. These energies could be calcula
which would yield a scheme free from experimental inp
but we believe that using the experimental energies lead
improved accuracy. Our procedure is similar in some
spects to the empirical procedures used in the 1960s,8,9 in
which pseudopotentials were generated for an electron in
field of an ion using experimental energies. However, o
procedure differs from these earlier versions in four imp
tant ways:~i! our pseudopotentials obey a norm-conservat
condition, ~ii ! we improve the description of core-valenc
correlation effects by including core-polarization effects in
consistent manner,~iii ! we include corrections for the cor
relaxation effects arising from generating the pseudopo
tial in ionized configurations, and~iv! we include an accurate
representation of the Hartree and exchange potentials ou
of the core. The method is illustrated with detailed results
the silicon and titanium atoms, and the accuracy of our se
empirical pseudopotential is compared with a number
other potentials.

II. PSEUDOPOTENTIALS FROM SINGLE-VALENCE-
ELECTRON CONFIGURATIONS

Acioli and Ceperley10 showed using perturbation theor
that the quality of a many-body pseudopotential depends
13 347 ©2000 The American Physical Society
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13 348 PRB 62LEE, KENT, TOWLER, NEEDS, AND RAJAGOPAL
an accurate description of the one-body, two-body, etc., d
sity matrices outside the core region. The most import
quantity is the one-body density matrix, whose eigenfu
tions are the natural orbitals. It is therefore important to
sure that the natural orbitals of the pseudoatom are cor
outside of the core region. For single valence electrons
theory reduces to the standard concept of norm conserva

Our semiempirical pseudopotentials are constructed f
single-valence-electron configurations; e.g., for Si we use
@Ne#3s1, @Ne#3p1, and @Ne#3d1 configurations. The mini-
mum requirements that a norm-conserving pseudopote
for angular momentuml must satisfy are that it reproduc
correctly the following quantities in the reference configu
tion: ~i! the potential felt by the valence electron outside
some core radius,r c

l , ~ii ! the total amount of valence elec
tronic charge outside ofr c

l , and ~iii ! the energy eigenvalue
e l . In the next sections we explain how each of these th
quantities is calculated.

A. Hartree-Fock potential

Consider a single valence electron in the field of an i
lated ion. Within HF theory the potential felt by the electro
is the sum of the interaction with the nucleus of chargeZ and
the Hartree and exchange interactions with the core,

V̂HF52
Z

r
1V̂H1V̂X. ~1!

The HF potential accounts for most of the effects felt by
valence electron, but neglects correlation effects.

B. Core-polarization potential

If the core-valence correlation is weak, it is reasonable
write the effective potential felt by the valence electrons
the sum of the HF potential and a correlation potential,V̂C.
An approximate correlation potential can be obtained wit
the framework of core polarization potentials. Callaway11 de-
veloped a theory forV̂C which involves an adiabatic separ
tion between the core and valence electrons, in which
core electrons move instantaneously in response to the
tion of the valence electrons. Callaway showed that, afte
series of approximations,V̂C could be approximated by
dipole term which represents the polarization of the core
to the electric field of the valence electrons~and other ions, if
present!. This leads to the CPP approximation7 for V̂C,

V̂CPP52
1

2
acEc•Ec , ~2!

whereac is the static polarizability of the core andEc is the
effective electric field acting on the core due to the valen
electrons. When a valence electron is within the core
equation overestimates the core polarization, which mus
zero when the electron is at the nucleus. To make the C
vanish at the origin Mu¨ller et al.7 cut off Ec as

Ec5(
i

r i

r i
3

f S r i

r̄
D , ~3!
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wherer i is the position of thei th valence electron, andr̄ is
an adjustable parameter. Mu¨ller et al.7 investigated severa
forms of the cutoff functionf (x), and we use one of thei
forms,

f ~x!5~12e2x2
!2, ~4!

which was also used by Shirley and Martin.12 Inserting Eq.
~3! into Eq. ~2! yields

V̂CPP52
ac

2 (
i

1

r i
4

f 2S r i

r̄
D 2

ac

2 (
iÞ j

r i•r j

r i
3r j

3
f S r i

r̄
D f S r j

r̄
D

5VCPP
e 1VCPP

e2e , ~5!

which is a sum of one- and two-electron terms. The vale
electrons prefer to sit on either side of the core so as
minimize the interaction energy, but the introduction of t
two-electron termVCPP

e-e opposes this because it penaliz
configurations in whichr i•r j,0. The expectation values o
VCPP

e andVCPP
e-e therefore tend to cancel one another.

C. Valence potential in different regions

In order to construct our semiempirical pseudopoten
we divide the radial space into three regions as illustrated
Fig. 1. The core radius of a pseudopotential for a particu
angular momentum,r c

l , is conventionally chosen betwee
the outermost node and extremum of the all-electron vale
orbital, and the values that we have used for Si and Ti
given in Table I. Region I (0,r ,r c

l ) is the core region for
angular momentuml. We do not have to specify the potenti
in region I explicitly as it will be fixed by inversion of the
~pseudo! Schrödinger equation. In the intermediate region
(r c

l ,r ,r o) the single-valence electron experiences the
potential from the core and the correlation potential. W

FIG. 1. The division of space into the core region~I!, 0,r
,r c

l , the intermediate region~II !, r c
l ,r ,r o , and the outer region

~III !, r .r o , for thes valence state of Si. The upper curve shows t
pseudo-orbital while the lower curve shows the pseudopotentia
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write the orbital as the product of radial and angular pa
F lm(r )5@f l(r )/r #Ylm(u,f), and the equation forf l in re-
gion II becomes

S 2
1

2

d2

dr2
1

l ~ l 11!

2r 2
2

Z

r
1VII

H1VII
X1VII

CD w l
II~r !5e lw l

II~r !,

~6!

wheree l is the eigenvalue and

VII
H~r !5(

c
~4l c12!E

0

` 1

r .
w l c

~r 8!w l c
~r 8!dr8,

VII
X~r !52(

c,k
~2l c11!S l k l c

0 0 0D
2 w l c

~r !

w l~r !

3E
0

` r ,
k

r .
k11

w l c
~r 8!w l~r 8!dr8,

VII
C~r !52

ac

2

1

r 4
f 2S r

r̄
D , ~7!

where thew l(r ) represents all-electron restricted HF rad
orbitals for the singly valent configurations,r , (r .) is the
lesser~greater! of r and r 8, and

S l k l c

0 0 0D
is a 3j symbol. The summations are over the core sta
which are denoted byc. Herek is an integer>0, andVII

X(r )
is nonzero foru l c2 l u<k< l c1 l with (k1 l c1 l ) even. Note
that the self-interaction of the single valence electron is om
ted from Eq.~7!.

For some atoms, e.g., Si, we find that for realistic co
radii ~see Table I! VII

H , VII
X , andVII

C are already very close to
their asymptotic values in region II, i.e.,

VII
H~r !5

Nc

r
,

VII
X~r !50,

VII
C~r !52

ac

2r 4
, ~8!

whereNc is the number of core electrons. In general we ha
found that the asymptotic forms of Eq.~8! are accurate to
about 1023 eV provided thatr c

l is chosen so that at least 99
of the total core charge is confined to region I. This criteri
allows reasonable core radii for atoms withs andp valence

TABLE I. Core radii, r c
l , and the radius defining the outer re

gion r o in au for Si and Ti.

Atom r c
0 r c

1 r c
2 r o

Si 1.75 1.8 2.0 20.17
Ti 2.3 2.6 1.0 30.46
,

l

s,

t-

e

e

electrons, but not for transition metal atoms, for which t
full forms of Eq. ~7! must be used.

The outer radiusr o is chosen to be large enough so that
region III (r .r o) the correlation potential is negligible an
the Hartree and exchange potentials from the core domi
so that we have

S 2
1

2

d2

dr2
1

l ~ l 11!

2r 2
2

Z2Nc

r D f l
III ~r !5e lf l

III ~r !. ~9!

We have chosenr o such thatVCPP
e (r>r o)<1026 Ry ~see

Table I!.

D. Valence eigenvalues

For the valence eigenvalues we use the experimental
ues for the energy differences between the singly-valent i
and the bare core, i.e., the ionization energy. These ener
were obtained from the compilation of Bashkin and Stone13

by taking degeneracy-weighted averages of the spin-or
split levels. The advantage of using the experimental en
gies is that they contain both relativistic and correlation
fects, which are difficult to include in accurate many-bo
calculations. Of course we could obtain these energies f
calculations, which would remove the need for any expe
mental input in our scheme. However, for largeZ atoms it
would certainly be difficult to calculate highly accurate e
ergies and therefore we prefer to use the experimental o

Using the experimental ionization energiese l guarantees
that we obtain the correct asymptotic form of the char
density for the singly-valent configuration,

r l~r !}exp@22~2ue l u!1/2r #. ~10!

Within HF theory the asymptotic form of the HF charg
density is given by a similar expression, but with the ioniz
tion energy replaced by the HF eigenvalue of the high
occupied state, which is not in general equal to the HF i
ization energy. In our scheme we would like to reproduce
correct asymptotic form of the charge density and theref
we follow Eq. ~10! and use the experimental ionization e
ergy. In Sec. II F we will equate changes in the HF valen
eigenvalues to changes in the ionization energy arising fr
core relaxation. This procedure is justified because we
creating pseudopotentials using single-valent configuratio
for which the change in the eigenvalue is equal to the cha
in the ionization energy.

E. Norms of the valence wave functions

In single-particle theories there is no ambiguity conce
ing the definition of core and valence charge densities, wh
is simply a matter of labeling the orbitals as belonging to
core or valence, but in a correlated many-electron theory
cannot make a wholly unambiguous definition of the co
and valence charge densities. However, physically, the c
charge density must be contained within some reason
small radius, which can easily be estimated from sing
particle calculations. We can assert that even in a many-b
calculation all charge outside of this radius must be vale
charge.

By fixing the valence eigenvalue and the potential forr
>r c

l we have fixed the functional form of the valence orbi
for r>r c

l , but not its normalization. To find the normaliza
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13 350 PRB 62LEE, KENT, TOWLER, NEEDS, AND RAJAGOPAL
tion we must know the amount of valence charger l
v outside

of some radiusr n>r c
l . We obtain this charge density from

all-electron calculations for the single-valent ions. We ha
used a variety of methods to calculater l

v , including the local
spin-density approximation~LSDA! to KS-DFT, HF theory
and configuration interaction with single and double exc
tions ~CISD!. For the LSDA calculations we used an atom
code based on a finely spaced radial grid, while for the
calculations we used the code of Fro¨se Fischer,14 which also
uses a radial grid. The CISD calculations were perform
using theGAUSSIAN 94 code.15 The CISD calculations give
excellent correlation energies, but theGAUSSIAN basis set
gives a poor description of the charge density far from
atom. Choosingr n too large would therefore lead to an in
accurate value of the norm, and in our calculations we h
chosenr n5r c

l . This choice is not always large enough
ensure that the core charge density is confined withinr n , but
in these cases we correct the norm using the results of LS
or HF calculations. In practice these different methods g
norms in very close agreement with one another, and
norm appears to be insensitive to the description of the e
tron correlation.

F. Core relaxation

Core relaxation in an isolated atom refers to the chang
the distribution of the core electrons which occurs when
configuration of the valence electrons is altered. We gene
pseudopotentials from a particular reference configuratio
the atom, which therefore includes the effect of the c
frozen in this configuration. The semiempirical pseudopot
tials are generated in highly ionized configurations althou
we would normally like to use them in near neutral config
rations. Clearly errors will be introduced if the relaxation
the core on going from the ionized to the neutral configu
tion is significant. The idea of our core relaxation correcti
procedure is as follows. Core relaxation changes the pse
potential and hence alters the valence eigenvalue and
amount of valence charge outside ofr c

l . However, the
changes in the pseudopotential will be mainly confined to
core region and therefore we can retain the potentials of E
~6! and~9! in regions II and III while applying corrections t
the valence eigenvalue and norm. Our correction proced
is therefore to generate the pseudopotential without chan
the potential outside the core region, but adding small c
rections to the norms of the valence orbitals and their eig
values.

Although the idea of core relaxation corrections is natu
enough, it turns out that they are difficult to define ma
ematically. We have used the following definition which
meaningful within independent electron theories such as
and KS-DFT. Suppose we construct the 3d pseudopotentia
for Ti within our semiempirical scheme which uses sing
valence-electron configurations. What is the change in
e3d eigenvalue due to using the core of the ionized at
rather than the core of the neutral atomic ground state?
HF equations for the ionized configuration are

S 2
1

2

d2

dr2
1

l ~ l 11!

2r 2
2

Z

r
1VH@fc

i ,f3d
i #1VX@fc

i ,f3d
i # D fnl

i

5enl
i fnl

i , ~11!
e
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whereVH and VX are the Hartree and exchange potentia
fc

i andf3d
i are the core orbitals and the valence orbital, a

i denotes the ionized configuration. We now perform a s
ond calculation with the core orbitals inVH andVX replaced
by those obtained from a calculation in the neutral atom
ground state,fc

0 . These HF equations are then solved w
the fc

0 orbitals fixed to give the energiesenl
0 and associated

orbitalsfnl
0 . The change in the 3d eigenvalue due to the cor

relaxation is then

Ded5e3d
0 2e3d

i , ~12!

and the change in the amount of charge in the core regio

DNd5E
0

r c
l 52

~ uf3d
0 u22uf3d

i u2!dr. ~13!

The values ofDe andDN for Si and Ti are given in Table
II. Clearly one can make an analogous definition within K
DFT theory which we have found gives similar results. W
have calculated theDe of Eq. ~12! and theDN of Eq. ~13!
for the s, p, andd channels of all atoms up to Zn. TheDe
increases in magnitude across the rows and down the
umns of the periodic table. TheDN shows similar trends,
although for many atoms they are small. We find thatDe is
almost always negative whileDN is almost always positive
The reason for this is that the core of the ionized atom
more compact so that the nuclear charge is more effectiv
screened and consequently the potential felt by the vale
electrons is less attractive.

III. CONSTRUCTION OF THE PSEUDOPOTENTIALS

The required solution of the Schro¨dinger equation in re-
gion III @Eq. ~9!# is

f l
III ~r !}Wx,l 11/2S 2~Z2Nc!

x
r D , ~14!

where Wx,y(z)5e2z/2zy11/2U(y2x11/2,2y11;z) is the
Whittaker function of the second kind,U is the confluent
hypergeometric function of the second kind,16 and x5(Z
2Nc)/A2ue l u. The asymptotic form of this expression yield
Eq. ~10!, as required.

The Whittaker function gives the form of the solutio
throughout region III. We proceed by choosing a value
f l

III (r o). The corresponding radial derivative off l
III (r o) is

then fixed from Eq.~14!. Using the desired value of th

TABLE II. The experimental ionization energiese l , the core
relaxation energiesDe l , and the change in the norm due to co
relaxation,DN, for Si and Ti.

Orbital e l ~Ry! De l ~Ry! DN

Si 3s 23.317903 20.00413 0.00140
Si 3p 22.665468 20.00415 0.00204
Si 3d 21.856442 20.00246 0.00215
Ti 4s 22.447521 20.0595 0.0289
Ti 4p 22.009403 20.0571 0.0369
Ti 3d 23.177990 20.1313 0.0174
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valence eigenvalue we then integrate Eq.~6! inwards fromr o

to r 5r c
l , numerically. At this point we evaluate the norm

f l over regions II and III and then renormalizef l to the
desired value.

So far we have fixed the pseudo-orbital in regions II a
III. We now proceed to calculate the pseudo-orbital insider c

l

and invert the Schro¨dinger equation to obtain the corre
sponding pseudopotential. For this purpose we use the s
dard Troullier-Martins~TM! scheme17 which was developed
for generating pseudopotentials within KS-DFT. Within th
scheme the pseudo-orbital in the core region is given by

f l
I~r !5r l 11 expF (

k50

6

c2kr
2kG , ~15!

where theci are coefficients to be determined. In the T
scheme seven conditions are used to determine the s
coefficients: continuity of the pseudo-orbital and its first fo
derivatives at the core radius, zero curvature of the pseu
potential at the origin, and the norm-conservation conditi
Troullier and Martins investigated a number of variants
this scheme and found that this one gave smooth and tr
ferable pseudopotentials. Note that the exponent in Eq.~15!
contains only even powers. The absence of the odd powe
the exponential of Eq.~15! ensures that all the odd deriva
tives of the screened pseudopotential are zero at the or
which helps to keep the pseudopotential smooth. The
sence of the term linear inr forces the pseudopotential to b
finite at the origin. This allows the use of larger time steps
DMC calculations,18 and it could also be advantageous
other correlated wave-function methods.

Once f l
I(r ) is determined, the pseudopotentialVl(r ) is

obtained in region I by inverting the radial Schro¨dinger equa-
tion,

Vl~r !5e l2
l ~ l 11!

2r 2
1

1

2f l
I

d2f l
I

dr2
. ~16!

This completes the construction of the semiempirical ps
dopotential.

When testing the effects of core polarization we ha
used the CPP defined by Eqs.~2!–~5!, with the parameters o
Shirley and Martin.12 Shirley and Martin calculated core
polarizabilitiesac and parametersr̄ for 32 elements. Ther̄
parameters were obtained by forcing the expectation va
of the CPP and of their calculated generalizedGW self-
energy to be equal for the lowest valence states in bare
configurations. They give CPP’s for use with relativistic H
~i.e., Dirac-Fock! pseudopotentials@Table 1~a! of Ref. 12#
and nonrelativistic ones@Table 1~b! of Ref. 12#. We use the
parameters of Table 1~b! for our HF pseudopotentials bu
those of Table 1~a! for our semiempirical pseudopotentia
because these incorporate the experimental valence eige
ues which contain relativistic effects. The differences b
tween using the relativistic and nonrelativistic parameter
small for the atoms we have considered. Note that our se
empirical pseudopotential includes the one-electron C
term VCPP

e , and therefore to form a consistent CPP poten
we add only theVCPP

e-e term from Table 1~a! of Ref. 12.
d
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en
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We have also generated pseudopotentials within LS
and HF theory using the same core radii and the TM sche
These pseudopotentials were generated in the neutral gr
state. HF pseudopotentials created by such a scheme ha
long-range tail due to the exchange interaction, which
have cut off, as others have done before.19,12 We have also
tested the Hay-Wadt pseudopotentials for Si~Ref. 20! and Ti
~Ref. 21!, and the Hay-Wadt~HW! small core22 pseudopo-
tential for Ti, in which the 3s and 3p electrons are included
in the valence. For Ti we also tested the Dirac-Fock~DF!
pseudopotential of Hurleyet al.23

IV. TESTING THE PSEUDOPOTENTIALS

We have tested all of our pseudopotentials by perform
atomic calculations using the fixed-node DMC metho
Some of the tests have been repeated with the configura
interaction method with single and double excitatio
~CISD! using theGAUSSIAN94 package,15 which gave very
similar results. For the single-valence-electron states we
calculate the energies by numerical integration on a g
which yields essentially exact results.

In DMC ~Refs. 1 and 2! imaginary time evolution of the
Schrödinger equation is used to evolve an ensemble
3N-dimensional electronic configurations towards t
ground state. Importance sampling is incorporated via
guiding wave functionFT . We use the fixed-node approx
mation, in which the nodal surface of the wave function
constrained to equal that ofFT . The fixed-node DMC
method generates the distributionFTC, whereC is the best
~lowest energy! wave function with the same nodes asFT .
Our guiding wave functions are of the Slater-Jastrow typ

FT5(
n

anDn
↑Dn

↓ expF2(
i , j

N

us i ,s j
~r i j ,r i ,r j !G , ~17!

where there areN electrons in the system,u is a two-electron
correlation factor which depends on the relative spins of
electronss i ands j , r i j is the separation of the electrons, an
r i andr j are their distances from the nucleus.Dn

↑ andDn
↓ are

Slater determinants of up- and down-spin single-particle
bitals which were obtained from LSDA calculations for th
electronic configurations of interest. Some calculations w
repeated using HF orbitals, but they gave almost ident
results. Theu function was expanded as a polynomial inr i j ,
r i , and r j which was constrained to obey the electro
electron cusp conditions.24 For Si we included only powers
of r i j and r i , giving a total of 24 parameters, but for Ti w
added terms inr i

ar j
b , r i

ar i j
b , and r i

ar j
br i j

g (a,b,g integer!,
giving a total of 34 parameters. The optimal parameter v
ues were obtained by minimizing the variance of t
energy.25,26 The nonlocal component of the electron-ion e
ergy was evaluated using the ‘‘locality approximation.’’27

The error in making this approximation is of order (FT
2C)2, so that it is important that the trial wave function b
accurate.

The DMC method can also be used to study exci
states. It is straightforward to show that if the nodal surfa
of the guiding wave function is equal to that of an exa
eigenstate, then the fixed-node DMC algorithm gives the
act energy of that eigenstate~apart from the locality approxi-
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TABLE III. Acronyms for the different pseudopotentials and a measure of the error in the pseudop
tials, D.

Acronym Pseudopotential D Si D Ti

HWL Hay-Wadt large core, Refs. 20,21 0.139 0.671
HWS Hay-Wadt small core, Ref. 22 0.185
DF Dirac-Fock, Ref. 23 0.379
HF Hartree-Fock 0.052 0.056
HF1CPP Hartree-Fock with CPP 0.015 0.426
LSDA Relativistic LSDA 0.075 0.929
SE Semiempirical 0.022 0.865
SE1VCPP

e-e Semiempirical withe-e CPP 0.019 1.006
SE-relax1VCPP

e-e Semiempirical with relaxation ande-e CPP 0.010 0.803
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mation!. Recently, the existence of variational theore
within the fixed-node DMC method have been analyzed
Foulkes, Hood, and Needs.28

For each Si pseudopotential we have calculated the e
gies of nine atomic configurations using the DMC metho
while for each Ti pseudopotential we have calculated
energies of ten atomic configurations. For most states on
single determinant is required to produce a guiding wa
function with the correct quantum numbers, but for t
3s13p1(1P) state of Si and the 3d14s1(1D) state of Ti two
determinants are required. For the (3F) neutral ground state
of Ti it has been suggested that one should allow mixing
the 3d24p2 configuration with the 3d24s2 configuration in
the trial wave function because the 4p level is nearly degen-
erate with the 4s level.29 We have performed variationa
quantum Monte Carlo~VMC! calculations for a number o
different values of the mixing coefficient for the 3d24p2

configuration, and have found that for each pseudopoten
the optimum mixing coefficient is between 0.05 and 0
These mixing coefficients are considerably smaller than
values of 0.2–0.3 found by Mitas.29 We have found that
when the variational freedom of the Jastrow factor is
stricted the optimal mixing coefficient increases and we
lieve that our smaller mixing coefficients are due to t
greater variational flexibility of our Jastrow factor. The r
duction in the energy of the 3d24s2 neutral ground state
obtained from the multideterminant trial wave function f
the (3F) neutral ground state is between 0.25 and 0.5 eV
s
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e
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n

VMC calculations, but in DMC calculations it is less than th
statistical error bars given in Tables IV, V, VI, and VI
below.

V. RESULTS

A list of acronyms for the pseudopotentials we ha
tested is given in Table III. Our aim is to construct pseud
potentials for Si and Ti which work well in environmen
similar to the neutral atomic ground states. To quantify
accuracy of the pseudopotentials under these conditions
define the average errorD,

D5A(
i

S Ei
DMC2Ei

expt

Ei
expt D 2

, ~18!

whereEi
DMC andEi

expt are the DMC and experimental value
for the energy differences from the neutral ground state
tained from the data in Tables IV and V for Si and Tables
and VII for Ti. This measure of the error emphasizes t
states close in energy to the neutral ground state. Other m
sures of the accuracy can be constructed from the data
the trends are generally similar.

For Si, all the pseudopotentials tested perform at le
reasonably well. The HW HF pseudopotential is significan
poorer than the others, and it performs worse that the
pseudopotential we have generated. The effects of the
are small in Si, but it does improve the results for both t
HF and semi-empirical~SE! pseudopotentials. The core re
ntal
TABLE IV. Ionization energies of Si in eV calculated within DMC and compared with experime
values.

First IP Second IP Third IP Fourth IP
3s23p2(3P)→3s23p1(2P) 3s23p1(2P)→3s2(1S) 3s2(1S)→3s1(2S) 3s1(2S)→0

Expt. 8.16 16.32 33.49 45.14
HW 8.339~14! 16.516~10! 33.137~6! 44.432~0!

HF 8.166~14! 16.278~17! 33.179~15! 44.553~0!

HF1CPP 8.168~12! 16.297~10! 33.448~6! 45.085~0!

LSDA 8.299~13! 16.583~18! 33.519~16! 45.080~0!

SE 8.137~16! 16.358~19! 33.552~15! 45.141~0!

SE1VCPP
e-e 8.067~16! 16.253~20! 33.394~19! 45.140~0!

SE-relax1VCPP
e-e 8.148~12! 16.259~13! 33.501~10! 45.197~0!
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TABLE V. Excitation energies of Si in eV calculated within DMC and compared with experime
values.

3s13p1(3P)→ 3s23p2(3P)→ 3s23p1(2P)→ 3s2(1S)→
3s13p1(1P) 3s13p3(5S) 3s13p2(4P) 3s13p1(3P)

Expt. 3.72 4.11 5.30 6.56
HW 4.079~10! 3.562~12! 4.731~9! 6.016~7!

HF 4.021~9! 3.909~13! 5.096~9! 6.363~15!

HF1CPP 3.810~9! 4.052~10! 5.264~9! 6.571~6!

LSDA 4.041~9! 3.827~10! 4.994~10! 6.232~16!

SE 4.022~9! 4.029~13! 5.223~12! 6.478~15!

SE1VCPP
e-e 3.774~9! 4.084~14! 5.282~10! 6.521~19!

SE-relax1VCPP
e-e 3.807~9! 4.077~10! 5.249~9! 6.561~10!
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laxation corrections~see Table II! are also small, but they
also improve the performance of our SE pseudopoten
The best performance of any of the pseudopotentials is g
by our SE pseudopotential with core relaxation correctio
and the full CPP including the two-electron term.

For Ti our HF pseudopotential gives the best results in
correlated calculations. We have also tested our HF pse
potential within HF theory, where it performs very well. Th
most significant error in this case is the overestimation of
s→d promotion energy, which has been noted before in
pseudopotentials.30,31This error arises because the 3d orbital
is large near the outer node of the all-electron 4s orbital. The
nodeless pseudo-4s orbital is very different from the all-
electron 4s orbital in this region and therefore an error
introduced into the Hartree and exchange interactions
tween the two orbitals. In the reference configuration t
error is compensated by the pseudopotential, which by c
struction gives the correct energy eigenvalues, but in o
configurations this compensation is incomplete and an e
is introduced. In Ti the effect is to increase the energy
s1d3 states. We have noticed a similar effect in a LSDA
pseudopotential created with a full nonlinear core exchan
correlation correction.32 This demonstrates that the effect
generic and not dependent on the detailed description of
change and correlation effects. It is therefore interesting
our DMC calculations for Ti with a HF pseudopotential d
not show such an effect for the 3d24s2(3F)→3d34s1(5F)
transition, for which we do not have an explanation.
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The addition of the Shirley-Martin12 CPP to our HF Ti
pseudopotential reduces the accuracy obtained. C
polarization effects are large for Ti because the core is hig
polarizable and the energy of a Ti atom with one valenced
electron is lowered by 1.45 eV on adding the CPP fro
Table 1~b! of Ref. 12. The resulting ionization energy is 2.9
eV larger than the experimental value, which suggests
the Shirley-Martin CPP for Ti is too attractive in thed chan-
nel. This observation largely explains the fairly poor resu
obtained in Tables VI and VII for the HF1CPP pseudopo-
tential.

The Hay-Wade small core~HWS! Ti pseudopotential
gives the next best results. It is interesting that the HW
pseudopotential, in which the 3s and 3p electrons are in-
cluded in the valence, performs less well than our HF ps
dopotential for states close in energy to the ground state.
small-core Ti neutral pseudoatom has 12 valence elect
while the large-core one has 4, and the computational cos
performing a DMC calculation using the small-core Ti pse
dopotential is about an order of magnitude greater than u
the large-core one. Note that the HWS pseudopotential
forms quite well for highly ionized configurations, presum
ably because it is able to describe the relaxation of thes
and 3p shells, which is not possible in the large-core pse
dopotentials.

The next most accurate results were obtained with the
Ti pseudopotential. This pseudopotential includes the m
important relativistic effects and might be expected to g
better results than our HF pseudopotential. The DF pseu
ntal
TABLE VI. Ionization energies of Ti in eV calculated within DMC and compared with experime
values.

First IP Second IP Third IP Fourth IP
3d24s2(3F)→3d24s1(4F) 3d24s1(4F)→3d2(3F) 3d2(3F)→3d1(2D) 3d1(2D)→0

Expt. 6.82 13.58 27.49 43.24
HWL 6.544~12! 12.992~8! 27.942~4! 45.917~0!

HWS 6.590~38! 13.386~29! 27.295~38! 43.112~87!

DF 6.759~12! 13.354~7! 27.194~3! 44.113~0!

LSDA 6.799~11! 13.447~7! 26.574~4! 44.336~0!

HF 6.667~14! 13.223~6! 27.247~3! 44.774~0!

HF1CPP 6.724~12! 13.658~6! 28.407~2! 46.228~0!

SE 7.250~12! 14.064~8! 26.307~5! 43.236~0!

SE1VCPP
e-e 7.037~12! 13.997~6! 26.090~2! 43.236~0!

SE-relax1VCPP
e-e 7.119~12! 14.266~4! 27.326~2! 45.022~0!
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TABLE VII. Excitation energies of Ti in eV calculated within DMC and compared with experime
values.

3d24s2(3F)→ 3d24s2(3F)→ 3d24s1(4F)→ 3d2(3F)→ 3d14s1(3D)→
3d34s1(5F) 3d34p1(5G) 3d3(4F) 3d14s1(3D) 3d14s1(1D)

Expt. 0.81 3.29 0.11 4.72 0.42
HWL 0.320~14! 4.155~29! 20.337~10! 6.108~5! 0.415~6!

HWS 0.678~52! 3.078~54! 0.173~47! 4.457~24! 0.488~24!

DF 1.089~13! 3.770~20! 0.537~8! 4.714~4! 0.377~4!

LSDA 1.525~15! 4.118~15! 1.051~10! 4.054~4! 0.125~5!

HF 0.837~16! 3.324~17! 0.181~9! 5.067~4! 0.090~7!

HF1CPP 0.472~14! 3.123~16! 20.107~8! 5.490~3! 0.509~5!

SE 1.427~16! 4.403~17! 1.154~10! 3.280~5! 0.052~4!

SE1VCPP
e-e 1.551~13! 4.465~16! 1.306~8! 3.151~3! 0.383~5!

SE-relax1VCPP
e-e 1.389~14! 4.308~14! 1.084~6! 3.831~3! 0.439~5!
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potential of Hurleyet al.23 was created using a differen
scheme from our pseudopotentials and has a very diffe
functional form, and therefore detailed comparisons of
sults may not be valid. Relativistic effects for the valen
electrons in Ti are in fact fairly small, the major effects bei
to raise thed level and lower thes level slightly. Our HF
pseudopotentials do not contain relativistic effects althou
when we add a CPP we are including relativistic effects
cause they are implicit in the CPP parameters given in Ta
1~b! of Ref. 12. Our SE pseudopotentials contain relativis
effects through the use of experimental energies. Our LS
pseudopotentials for both Si and Ti also contain relativis
effects, although in both cases their performance in co
lated calculations is inferior to the HF pseudopotentials.

Mitas29 has published VMC and DMC results for a T
pseudoatom using the large-core pseudopotential of Pa
and Olcina,31 which is a Dirac-Fock pseudopotential whic
was designed to reproduce energy differences. Mitas29 re-
ported six energy differences, of which four are direc
comparable with our results. For these four energy diff
ences our HF pseudopotential performs a little better.

Our Ti SE pseudopotential does not perform very we
The introduction of the two-electron CPP term actua
makes the results even worse, while the core-relaxation
fects give a small improvement. The core-relaxation effe
are large in Ti, especially for thed level, which is shifted
downwards in energy to 1.79 eV, although we believe t
our corrections for core relaxation are soundly based
should account for the majority of these effects. We
marked above that we believe that the Shirley-Martin C
for Ti is too attractive in thed channel and this introduce
errors into our SE1VCPP

e-e pseudopotential via the two
electron CPP term. To explore the lack of success of the
pseudopotential for Ti in more detail we have perform
Hartree-Fock calculations for the different pseudopotenti
These show that in the neutral ground state thes level of our
SE Ti pseudopotential is 0.47 eV lower than for the H
pseudopotential, while thed level is 1.42 eV higher than fo
the HF pseudopotential. The consequences of these di
ences can clearly be seen in the results of Tables VI and
For example, the first IP of the SE pseudopotential, wh
corresponds to the removal of ans electron, is 0.571 eV
nt
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larger than the HF pseudopotential value, and thes→d pro-
motion energy is 0.578 eV larger than the HF pseudopot
tial value.

In the single-valent ion thes level of our HF pseudopo-
tential is 0.76 eV above the experimental ionization ener
and the effect of core relaxation on going from the neutra
ionized core is to raise it by a further 0.80 eV. Cor
relaxation effects are therefore not the source of the dif
ences between the HF and SE pseudopotentials. Also
polarization, even when estimated using the Shirley-Ma
CPP which we believe overestimates these effects, is
small to explain the differences. The picture that emerge
that the relative failure of our SE pseudopotentials for Ti
not due to core-relaxation effects or core-polarization effec
but is due to errors in describing the interactions between
s andd valence electrons. The HF pseudopotential genera
in the neutral configuration includes corrections for the d
ference between the all-electron and pseudovalence orb
but our SE pseudopotential does not.

This effect has been discussed before in the context of
calculations.30,31 Attempts have been made to alter thes
pseudopotential to force the pseudo-orbital to look more l
the all-electron 4s orbital, although the success of this a
proach has been limited.30 It would appear, however, tha
some method of correcting the interactions between
pseudo-orbitals is necessary to achieve higher accurac
HF and correlated calculations of Ti. We could of cour
alter the eigenvalues of the SE pseudopotentials to impr
their accuracy for near-neutral configurations. However, t
would run counter to the spirit of our approach, in which w
try and construct the SE pseudopotential using a clearly
fined strategy rather than just fitting to the energy diffe
ences, and it would still not solve the problem of the inte
actions between the pseudo-orbitals.

VI. CONCLUSIONS

We have introduced a method for generating semiem
ical pseudopotentials for use in correlated wave-function c
culations. Our semiempirical pseudopotentials are gener
in single-valent atomic configurations, but we have dev
oped a scheme which enables us to apply core-relaxa
corrections so that the pseudopotential works better in n
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neutral configurations. For Si the semiempirical pseudop
tential is the most accurate that we have been able to gen
ate, giving errors of only a few hundredths of an eV for
wide range of states. This high level of transferability withi
correlated calculations is similar to the transferability ob
tained in density-functional theory pseudopotential calcul
tions ~provided nonlinear core-exchange-correlation corre
tions are included32! and Hartree-Fock pseudopotentia
calculations for Si. We believe that our semiempirica
scheme should work very well for all atoms up to at lea
atomic number 18 and is probably the most accurate c
rently available scheme for generating pseudopotentials
correlated wave-function calculations for these atoms.

Our semiempirical scheme has not proved successful
Ti and the best results we have obtained for this atom a
with a Hartree-Fock pseudopotential. The main reason f
the relative failure of our SE pseudopotential for Ti is that
does not account for the differences in the interactions b
tween the all-electron orbitals and pseudo-orbitals.

In Si and Ti, at least, Hartree-Fock pseudopotentials gi
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better results in correlated calculations than local-sp
density-approximation pseudopotentials. The co
polarization potential of Shirley and Martin12 works well in
Si, but not in Ti where it overestimates the core-polarizat
energy. Core-polarization effects are significant in transit
metal elements and it is important to develop accurate c
polarization potentials for these elements.
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14C. Fröse Fischer, Comput. Phys. Commun.43, 355 ~1987!.
15M. J. Frischet al., GAUSSIAN 94 User’s Manual~Gaussian Inc.,

Pittsburgh, PA, 1995!.
16G. Arfken, Mathematical Methods for Physicists~Academic

Press, Orlando, FL, 1985!.
en,17N. Troullier and J. L. Martins, Phys. Rev. B43, 1993~1991!.
18C. W. Greeff and W. A. Lester, Jr., J. Chem. Phys.109, 1607

~1998!.
19M. Krauss and W. J. Stevens, Annu. Rev. Phys. Chem.35, 357

~1984!.
20P. J. Hay and W. R. Wadt, J. Chem. Phys.82, 284 ~1985!.
21P. J. Hay and W. R. Wadt, J. Chem. Phys.82, 270 ~1985!.
22P. J. Hay and W. R. Wadt, J. Chem. Phys.82, 299 ~1985!.
23M. M. Hurley, L. F. Pacios, P. A. Christiansen, R. B. Ross, an

W. C. Ermler, J. Chem. Phys.84, 6840~1986!.
24T. Kato, Commun. Pure Appl. Math.10, 151 ~1957!.
25C. J. Umrigar, K. G. Wilson, and J. W. Wilkins, Phys. Rev. Lett.

60, 1719~1988!.
26P. R. C. Kent, R. J. Needs, and G. Rajagopal, Phys. Rev. B59, 12

344 ~1999!.
27M. M. Hurley and P. A. Christiansen, J. Chem. Phys.86, 1069

~1987!; B. L. Hammond, P. J. Reynolds, and W. A. Lester, Jr.
ibid. 87, 1130~1987!; L. Mitas, E. L. Shirley, and D. M. Ceper-
ley, ibid. 95, 3467~1991!.

28W. M. C. Foulkes, R. Q. Hood, and R. J. Needs, Phys. Rev. B60,
4558 ~1999!.

29L. Mitas, in Computer Simulation Studies in Condensed Matte
Physics V, edited by D. P. Landau, K. K. Mon, and H. B. Schu¨t-
tler ~Springer, Berlin, 1993!.

30E. C. Walker, P. A. Christiansen, and L. F. Pacios, Mol. Phys.63,
139 ~1988!.

31L. F. Pacios and V. B. Olcina, J. Chem. Phys.95, 441 ~1991!.
32S. G. Louie, S. Froyen, and M. L. Cohen, Phys. Rev. B26, 1738

~1982!.


