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The dynamical cluster approximation �DCA� with Betts clusters is used to calculate the antiferromagnetic
phase diagram of the three-dimensional Hubbard model at half-filling. Betts clusters are a set of periodic
clusters which best reflect the properties of the lattice in the thermodynamic limit and provide an optimal
finite-size scaling as a function of cluster size. Using a systematic finite-size scaling as a function of cluster
space-time dimensions, we calculate the antiferromagnetic phase diagram. Our results are qualitatively consis-
tent with the results of Staudt et al. �Eur. Phys. J. B 17, 411 �2000��, but require the use of much smaller
clusters: 48 compared to 1000.
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The accurate and efficient solution of lattice Hamiltonians
such as the Hubbard model is a longstanding challenge in the
theoretical condensed matter community. These lattice mod-
els are routinely solved on a finite periodic lattice, for ex-
ample with Monte Carlo, and the calculated properties ex-
trapolated to the infinite limit. Due to the numerical expense
in solving these models for large lattices, it is imperative to
choose lattices that are efficient for the estimation and ex-
trapolation of the physical properties of interest.

In this paper we use the dynamical cluster approximation
�DCA�1–3 �for a review see Ref. 4� to explore the antiferro-
magnetic instability in the three-dimensional �3D� Hubbard
model at half-filling, with

H = − t �
�ij�,�

ci�
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i
�ni↑ −

1

2
	�ni↓ −
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where ci�
�†� �creates� annihilates an electron with spin � on

site i , ni� is the corresponding number operator, t the hop-
ping amplitude between nearest neighbors �i , j�, and U the
on-site Coulomb repulsion. We solve this model on a series
of finite clusters chosen according to the criteria proposed by
Betts et al.5,6 We obtain converged results extrapolating from
clusters of up to only 48 sites, which are in agreement with
the calculations of Staudt et al.,7 who used conventional cu-
bic lattices of up to 1000 sites and obtained the Néel tem-
perature via the specific heat.

To solve the Hamiltonian �1� we utilized the DCA.4 For a
3D system the DCA maps the original lattice model onto a
periodic cluster of size Nc=Lc

3 embedded in a self-consistent
host. Thus, correlations up to a range ��Lc are treated di-
rectly, while the longer length scale physics is described at
the mean-field level. With increasing cluster size, the DCA
systematically interpolates between the single-site dynamical
mean-field result and the exact result, while remaining in the
thermodynamic limit. We solve the cluster problem using
quantum Monte Carlo �QMC�.8 At half-filling there is no
QMC sign problem; the only systematic error in the Monte

Carlo is the time step error, which can be extrapolated away.
In order to calculate the phase diagram of the system in

the thermodynamic limit, we employ the scaling ansatz
��TN

DCA�=Lc, where TN
DCA is the Néel temperature obtained

from a DCA calculation with a cluster of linear cluster size
Lc. This form is justified if we envision the lattice as per-
fectly tiled by a periodic array of nonoverlapping clusters.
This system becomes ordered when the antiferromagnetic
correlations of the cluster reach the linear cluster size. Ac-
cording to this ansatz ��TN

DCA�� 
TN
DCA−TN
−��Lc, so that

TN
DCA = TN + BNc

−1/3�, �2�

where TN is the true antiferromagnetic transition temperature
in the thermodynamic limit. The exponent is well-known for
the 3D Heisenberg model, where one finds ��0.71.9

Betts et al.5,6 systematically studied the 2D and 3D
Heisenberg models on finite size clusters and developed a
grading scheme to determine which clusters should be used
in finite size simulations. The main qualification is the “per-
fection” of the real-space near-neighbor shells: a measure of
the completeness of each neighbor shell compared to the
infinite lattice. A perfect finite size cluster has all neighbor
shells up to the kth shell complete, the kth shell is incom-
plete, and all shells k+1 and higher are empty. The absolute
deviation from this criteria is defined as the imperfection.
I.e., if the cluster neighbor configuration is as described, ex-
cept that the k-1 shell is missing one entry, the cluster im-
perfection is one. The second qualification is the cubicity,6

C=max�c1 ,c1
−1�max�c2 ,c2

−1�, where c1=31/2l /d and c2

=21/2l / f are defined by the geometric mean of the lengths of
the four body diagonals of the cluster, d= �d1d2d3d4�1/4, the
six face diagonals f = �f1f2f3f4f5f6�1/6, and the edges l
= �l1l2l3�1/3. As defined, C�1, and C=1 for a cube, so the
difference of C from one is a measure of the cubic imperfec-
tion. In finite size scaling calculations of the order parameter
and ground state energy, they found that the results for the
most perfect clusters fall on a scaling curve, while the im-
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perfect clusters generally produce results off the curve. We
generated additional 3D clusters following these guidelines
for clusters larger than the 28 site clusters previously
published,6 from which we adopt the labeling conventions
and cluster geometries. For a given cluster size, the best clus-
ters have the smallest imperfection. Where several clusters
share the smallest imperfection, the cluster with smallest cu-
bicity is chosen. Exhaustive search was used to find the clus-
ters. In Table I we list clusters of up to 70 sites, their perfec-
tion and cubicity. In each case, we chose either the bipartite
�labeled B� or nonbipartite cluster �labeled A� with the small-
est imperfection and cubicity closest to one, in this order of
priority. For example, the 38 site cluster 38B is bipartite,
perfect, with only one incomplete neighbor shell, and has a
cubicity of 1.087. Since we are interested in a calculation of
TN

DCA, we utilized only bipartite clusters in the present calcu-
lations. A large set of two- and three-dimensional clusters
generated using the above criteria are given in the auxialiary
data for this paper.10

To obtain the antiferromagnetic phase diagram we per-
formed a series of DCA calculations as a function of U/t,
cluster size, and Monte Carlo time step ��. For a given U/t
and cluster size, we calculated TN

DCA by finding the diver-
gence of the staggered susceptibility as a function of ��, and
extrapolated the value obtained to ��=0. As an example, we
show in Fig. 1 the Néel temperature TN

DCA���� for an 18 site
cluster for U / t=8. One finds a significant �� dependence
which makes an extrapolation to ��=0 mandatory.

Performing this extrapolation for the series of bipartite
clusters from Table I for U / t=8, we obtain the values for
TN

DCA collected in Fig. 2 �full circles�. For comparison we
also included the results for a finite t ·��=1/4 �open circles�.
This unextrapolated data actually lies above the Heisenberg
result of T / t=0.48. One clearly sees that a proper scaling to
��=0 is necessary to obtain both the correct qualitative and
quantitative behavior of TN

DCA�Nc�. The full curves in Fig. 2
were obtained with the scaling ansatz �2� using the � for the
3D Heisenberg model. It yields a linear scaling curve within
our error bars.

To assess the value of Betts clusters, we also study two
bad clusters, 16Z and 26Z, identified in Table II.

Although these clusters are bipartite, they are highly im-
perfect. Both are missing independent neighbors in the first

TABLE I. 3D cluster geometries, imperfection and cubicity of
the best nonbipartite �A clusters� and bipartite �B clusters�. The ai

denote the cluster lattice vectors.

Nc a�1 a�2 a�3 Imperfection Cubicity

28A �1, 1, 3� �3,−1, 1� �1, 2,−2� 0 1.063

28B �1, 1, 2� �3, 2,−1� �1,−3, 2� 5 1.018

30A �1, 2, 2� �2, 2,−2� �2,−2, 1� 0 1.007

30B �1, 1, 2� �3, 1,−2� �3,−2, 1� 4 1.012

32A �1, 1, 3� �2, 2,−2� �2,−2, 1� 0 1.022

32B �1, 2, 3� �2, 0,−2� �2,−2, 2� 3 1.028

34A �1, 1, 3� �3,−2, 0� �1, 2,−2� 0 1.009

34B �1, 0, 3� �2, 2,−2� �1,−3,−2� 2 1.057

36A �1, 2, 2� �3, 0,−2� �2,−2, 2� 0 1.004

36B �1, 0, 3� �3, 2,−1� �2,−2,−2� 3 1.040

38A �1, 1, 3� �3, 1,−3� �2,−2, 1� 0 1.002

38B �1, 2, 3� �3,−1,−2� �2,−2, 2� 0 1.087

40A �1, 2, 2� �3, 1,−2� �1,−3, 2� 0 1.003

40B �1, 2, 3� �2, 2,−2� �2,−2, 2� 3 1.041

42A �1, 2, 2� �3, 0,−2� �0, 3,−3� 0 1.005

42B �1, 2, 3� �3,−1, 2� �2, 2,−2� 2 1.056

44A �1, 2, 2� �3, 2,−2� �3,−2, 1� 0 1.010

44B �1, 2, 3� �3, 2,−1� �2,−2, 2� 3 1.035

46A �1, 1, 3� �3, 2,−2� �3,−2, 0� 0 1.014

46B �1, 2, 3� �3, 1,−2� �2,−2, 2� 4 1.017

48A �1, 1, 3� �3, 2,−2� �2,−3,−1� 0 1.009

48B �1, 2, 3� �3,−2, 1� �2, 2,−2� 5 1.002

50A �1, 1, 3� �3, 2,−2� �2,−3, 1� 1 1.005

50B �1, 2, 3� �3, 2,−1� �2,−3, 1� 6 1.018

52A �2, 2, 3� �3, 2,−2� �3,−2,−2� 1 1.109

52B �1, 2, 3� �3, 1,−2� �2,−3, 1� 7 1.003

54A �1, 2, 3� �3, 0,−3� �3,−2, 2� 2 1.063

54B �1, 2, 3� �3,−3, 0� �2, 2,−2� 8 1.005

56A �1, 1, 3� �3, 2,−2� �3,−3,−1� 3 1.003

56B �1, 2, 3� �3, 2,−3� �3,−1, 2� 9 1.029

58A �1, 1, 3� �3, 2,−2� �3,−3, 1� 3 1.014

58B �1, 2, 3� �3,−3, 2� �2, 2,−2� 10 1.011

60A �2, 0, 3� �2, 3,−2� �2,−3,−2� 4 1.001

60B �1, 2, 3� �3,−3, 2� �2, 1,−3� 11 1.011

62A �1, 3, 3� �3, 2,−2� �3,−3,−1� 5 1.087

62B �1, 2, 3� �3, 2,−1� �3,−3, 2� 12 1.003

64A �1, 2, 3� �3, 1,−3� �2,−3, 2� 6 1.013

64B �1, 2, 3� �3, 2,−3� �2,−3, 1� 12 1.010

66A �1, 3, 3� �3, 3,−1� �2,−3, 2� 5 1.067

66B �1, 2, 3� �3, 0,−3� �3,−3, 2� 11 1.026

68A �1, 3, 3� �3, 3,−1� �3,−2, 2� 4 1.055

68B �1, 2, 3� �3, 3,−2� �2,−3, 3� 10 1.054

70A �1, 3, 3� �3, 3,−2� �−2, 2,−3� 3 1.063

70B �1, 2, 3� �3, 3,−2� �3,−2, 3� 9 1.034

FIG. 1. TN versus ��2 when U / t=8 for cluster 18A.

KENT et al. PHYSICAL REVIEW B 72, 060411�R� �2005�

RAPID COMMUNICATIONS

060411-2



shell �each have four; whereas a complete first shell has six
neighbors�. As a result of the periodic boundary conditions
on the cluster, this causes the near-neighbor fluctuations to be
overestimated. As a result, the estimates of TN from these
clusters, shown in Fig. 2 for a finite t ·��=1/4 �open tri-
angles� and for the data extrapolated to ��=0 �filled tri-
angles�, fall well below the scaling curve established by the
best cluster geometries listed in Table I. In general, in this
and in other calculations, we find that the less perfect clusters
tend to overestimate the effects of fluctuations.

Finally, Fig. 3 displays the calculated antiferromagnetic
phase diagram obtained from the DCA and extrapolated to
��=0 and Nc=	 �open circles with error bars�. For compari-
son, we included results from other methods: The dynamical
mean-field approximation �DMFA, full circles�, Staudt et al.7

�full curve�, second order perturbation theory �SOPT, dotted
curve�,11,12 the Heisenberg model �dashed curve�13 and the
Weiss mean-field theory for the Heisenberg model �dash-
dotted curve�. We took J=4t2 /U for both Heisenberg calcu-
lations. The results from Staudt et al. are reproduced with
good accuracy, but with much smaller clusters. The DMFA
result is obtained through the methods described above when
Nc=1. Both the DMFA and the Weiss mean field are local
approximations which neglect the effect of nonlocal fluctua-
tions. As expected, they agree in the strong coupling regime,
U
12t=W �W is the bandwidth�. Both DMFA and SOPT
are only accurate at small U / t, indicating that nonlocal fluc-
tuations are not important for small U. At large U / t the DCA
results for TN approach the curve for the Heisenberg model,
as expected. However, for intermediate and large values of
U /W, the deviation between the present results and the
mean-field results is as large as 30% or more, indicating that

the effects of nonlocal fluctuations are significant.
These methods may be extended to treat other order pa-

rameters or cluster geometries. The Betts method selects
clusters to give good finite size scalings for local quantities
such as the magnetic moment on periodic clusters. Addi-
tional considerations are required for nonlocal order param-
eters such as d-wave superconductivity found in the 2D Hub-
bard model.14 The d-wave order parameter may be
represented on a plaquette of four sites. The best clusters for
d-wave order have a complete set of independent plaquettes
in each shell formed from neighboring plaquettes. Betts’
methods may also be generalized to include clusters with
open boundary conditions. Here, one presumably should
choose the clusters for which the neighbor shells of the cen-
tral site�s� are the most perfect.

In conclusion, we have calculated the antiferromagnetic
phase diagram of the 3D Hubbard model at half filling using
the dynamic cluster approximation and Betts clusters. Well-
converged results are found for relatively small cluster sizes
due to the optimized geometries of these clusters. Recent 2D
Hubbard model calculations with Betts clusters also display
significant improvements14 in finite size effects, although ad-
ditional considerations are required for nonlocal order pa-
rameters. The dramatically increased efficiency of these clus-
ters compared to typically used cluster geometries, such as
cubic lattices, suggests that these clusters should be more
widely used for lattice calculations.
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TABLE II. 3D cluster geometries, imperfection, and cubicity of
two poor quality bipartite clusters.

Nc a�1 a�2 a�3 Imperfection Cubicity

16Z �2, 0, 0� �0, 2, 0� �0, 0, 4� 7 1.209

26Z �1, 2, 3� �3, 3,−2� �3,−2, 3� 14 1.295

FIG. 2. Cluster size scaling of TN when U / t=8 and t��=1/4
�open circles� and the result extrapolated to t��=0 �full circles� as
in Fig. 1.

FIG. 3. Antiferromagnetic phase diagram of the 3D Hubbard
model from our results and different approximations.
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