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Abstract.
The Cray X1 in the Center for Computational Sciences at Oak Ridge National Laboratory

as well as algorithmic improvements over the past decade enable significant new science in the
simulation of high-temperature “cuprate” superconductors. We describe the method of dynamic
cluster approximation with quantum Monte Carlo, along with its computational requirements.
We then show the unique capabilities of the X1 for supporting this method and delivering near
optimal performance. This allows us to study systematically the cluster size dependence of
the superconductivity in the conventional two-dimensional Hubbard model, which is commonly
believed to describe high-temperature superconductors. Due to the non-locality of the d-wave
superconducting order parameter, the results on small clusters show large size and geometry
effects. In large enough clusters, converged results are found that display a finite temperature
instability to d-wave superconductivity. The results we report here demonstrate for the first
time that superconductivity is possible in a system of strongly correlated electrons without the
need of a phonon mediated attractive interaction.

1. Introduction
Superconductivity is, from an energy point of view, usually mentioned in the context of power
transmission. The fact that metallic wires have non-zero electrical resistance currently imposes
constrains on how electric power is used and distributed. For example, in order to minimize
energy losses alternating currents (ac) at high voltage are used in transmission, while the
majority power sources and consumption operate with direct currents (dc) and at low voltage.
Availability of wires with zero resistance that can sustain large enough electrical currents, would
allow to directly connect power sources to end-users and open new avenues to power generations.
For example, photovoltaic energy sources could be concentrated in remote locations while making
the generated power available in major urban agglomerations. These and many other very
appealing applications in electronics and medicine seem to explain the continued interest in
superconductivity, a state of mater with zero electrical resistance. But the implications on
science and technology are potentially much broader. The superconducting state is one of
few known macroscopic quantum state, where of the order of 1023 electrons are coherent (or
entangled in the terminology of quantum computing). In high temperature superconductors
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(HTSC), this state persists up to 150 degrees Kelvin. Understanding the mechanism how this
state forms could, for example, fundamentally impact the way quantum computing and quantum
teleportation is approached.

In 1913, Kamerling Onnes managed to liquefy helium and thereby reached low enough
temperatures to observe a sudden drop in the resistance of mercury. He was trying to
confirm experimentally a transition to an insulating state at zero temperature that was
predicted by Kelvin, but instead discovered a transition to a perfect conductor. The work[1],
which was awarded the 1913 Nobel Prize, evolved into what is now known as conventional
superconductivity. It took half a century for a microscopic theory of superconductivity to emerge,
when in the 1950s, Bardeen, Cooper, and Schriffer (BCS)[2] showed that in metallic conductors:
(1) electrons form pairs due to an attractive interaction mediated by lattice vibrations (phonons);
and (2) these so-called Cooper pairs condense into a new thermodynamic state with zero
resistance. BCS theory successfully explained all known phenomena of superconductivity and
predicted the existence of a gap in the electronic excitation spectrum that was subsequently
measured experimentally - BCS were awarded the 1972 Nobel Prize. All known superconductors
until the early 1980s had transition temperature below 25 K, which appeared consistent with
BCS theory. Stronger random lattice vibrations at higher temperatures would destroy the
attractive interaction between electrons and hence suppress the formation of Cooper pairs. It
was believed that 25 K represents a fundamental limit, above which superconductivity could
not be observed. The discovery[3] in 1986 by Bednorz and Mller of superconductivity with
transition temperature above 30 K in Ba doped LaCuO2, a poor conductor (LaCuO2 is an
insulator), marked the beginning of a new era in condensed matter research. Within a few years
new transition metal oxides were discovered with superconducting temperatures as high as 150
K - Bednorz and Mller were awarded the Nobel Prize in 1987)[4]. It was soon recognized that
these new materials were fundamentally different from conventional metallic superconductors.
While the superconducting state is still due to Cooper pairs and hence the second part of BCS
theory holds, the prevalent view today is that the paring mechanism is not phonon mediate.
However, despite two decades of intense research, the pairing mechanism in high temperature
superconductors remains a mystery and represents one of the most important outstanding
problems in condensed matter science today. This is largely because HTSC cuprates are strongly
correlated electronic materials, a subject that in itself represents one of the most challenging
problems in physics today.

In this paper, we report recent results which for the first time show that superconductivity
is possible in a system of strongly correlated electrons without the need of a phonon mediated
attractive potential. This work was enabled by algorithmic improvements over the past decade
and resulted in the DCA/QMC code[5], as well at the computing capabilities available at the
National Leadership Computing Facility (NLCF) at ORNL, which allows us to systematically
solve the two-dimensional (2D) Hubbard model for the HTSC cuprates. The 2D Hubbard
model is believed to contain all the necessary ingredients to describe HTSC in the cuprate[6],
but remains unsolved until now. With the calculation we report here, we establish for the first
time, that superconductivity is possible in a system of strongly correlated electrons without the
need of a phonon mediated attractive potential. The paper is organized as follows. We introduce
the model and the DCA algorithm in section 2 and 3, respectively. In section 4 we discuss results
that were previously obtained on the IBM p690 and in section 5 we analyze the performance
of the DCA/QMC code on the Cray X1 at ORNL. In section 6 we present the results obtained
on the Cray X1 and discuss the new insight we obtained. Section 7 concludes the paper with a
summary and a discussion of outstanding mathematical and physics issues.
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Figure 1. Crystal structure of YBa2Cu3O5 and two-dimensional Hubbard model of the hole
doped CuO2 planes, with nearest neighbor hopping integral t and on-site Coulomb interaction
U .

2. Hubbard model
The characteristic feature of all HTSC is a strongly anisotropic layered perovskite-like crystal
structure with conducting CuO2-planes separated by insulating layers of other elements (see
right part of Fig. 1). Superconductivity takes place within the two-dimensional CuO2 layers
with the insulating barriers only providing charge carriers, usually holes to the layers and thus
controlling the doping of CuO2 planes.

First-principles calculations for HTSC compounds provide evidence that the band which
crosses the Fermi surface has mainly CuO2 character (see e.g. [7] and references therein). To
reduce the complexity of the problem it thus seems reasonable to restrict calculations to a two-
dimensional model with electrons moving in a single CuO2 layer. Justified by the strong in-plane
CuO bonds, the complexity may be further reduced by constructing a model that treats a whole
CuO2 plaquette as a single site. The resulting two-dimensional Hubbard model [8] is believed
to capture the essential physics of HTSC [9, 10, 11]. A schematic of its Hamiltonian,

H = −t
∑

〈ij〉
c†iσcjσ + U

∑

i

ni↑ni↓ (1)

is illustrated in Fig. 1. The fermionic operator c†iσ (ciσ) creates (destroys) an electron on site i

with spin σ, and niσ = c†iσcıσ is the corresponding number operator. The first term describes
the hybridization between sites with amplitude t, and the second term the Coulomb repulsion
between two electrons residing on the same site. Because of screening, the magnitude of longer-
ranged interactions is believed to be small compared to the on-site interaction.

Despite decades of intensive studies, this model remains unsolved except in one or infinite
dimensions. Analytical methods based on a perturbative approaches suffer from the large
magnitude of U , which renders these calculations at least questionable. Many theorists have
turned to numerical approaches to close the gap between the model defined by its Hamiltonian
and its properties. A large body of work has been devoted to a direct (numerically) exact solution
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Figure 2. Schematic illustration of the DCA formalism. The model is mapped onto a finite-
size cluster self-consistently coupled to a mean-field host. Correlations within the cluster are
treated accurately while the physics on length scales beyond the cluster size is described on the
mean-field level.

of finite-size systems using exact diagonalization or Quantum Monte Carlo (QMC) methods (for
a review see [12]). Exact diagonalization, however, is severely limited by the exponential growth
of computational effort with system size, while QMC methods suffer from what is known as
“the sign problem” at low temperatures. Another difficulty of these methods arises from their
strong finite-size effects, often ruling out the reliable extraction of low-energy scales, which are
important to capture the competition between different ground states often present in correlated
electron systems.

3. Dynamical Cluster Approximation
Mean-field theories are defined in the thermodynamic limit and therefore do not face the finite-
size problems. Generally, mean-field theories divide the infinite number of degrees of freedom
into two sets. A small set of degrees of freedom is treated explicitly, while the effects of the
remaining degrees of freedom are summarized as a mean field acting on the first set. The
Dynamical Mean-Field Theory (DMFT) [13, 14] (for a review see [15]) for itinerant correlated
systems (such as the HTSC or systems described by the model Eq. (1)) is analogous to the
coherent potential approximation for disordered systems [16, 17, 18]. It retains the dynamics of
local degrees of freedom by mapping the lattice onto an impurity self-consistently embedded in
a dynamical mean-field host.

Despite its success in the description of many correlated phenomena such as the Mott-
Hubbard transition, the DMFT and CPA share the critical flaw of neglecting the effects of
non-local fluctuations. Thus the DMFT is unable to capture the effects of e.g. spin-waves
in magnetic systems, localization in disordered systems, or spin-liquid physics in correlated
electron systems. Furthermore it cannot capture phase transitions to states with non-local order
parameters, such as the d-wave superconducting phase in the HTSC. Non-local corrections are
required to treat even the initial effects of these phenomena.

Here we use the Dynamical Cluster Approximation (DCA) [19, 20, 21, 5] (for a review see
[22]) to study the properties of the Hubbard model, Eq. (1). The DCA extends the DMFT
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Figure 3. DCA/QMC Temperature-doping phase diagram of the two-dimensional Hubbard
model when t = 0.25 eV, U = 2 eV for a 4-site cluster. Consistent with experiments on HTSC,
regions of antiferromagnetism, d-wave superconductivity and pseudogap behavior are found.

by non-local correlations. Instead of mapping the lattice onto a single impurity, the system is
mapped onto a periodic cluster of size Nc coupled to a mean-field host representing the remaining
degrees of freedom (see Fig. 2). As a result, dynamical correlations up to a range limited by
the cluster size are treated accurately, while the physics on longer length scales is described on
the mean-field level. Translational invariance of the original system assures that the quantity
describing the mean-field host can be self-consistently determined from the solution of the cluster
problem. The complexity of the original problem with an infinite number of degrees of freedom
is thus reduced to a self-consistent finite-size cluster problem with Nc degrees of freedom. The
remaining cluster problem may then be solved numerically by a number of techniques including
the QMC method [5] used here.

4. Small Clusters
Computations with a cluster of only four sites, the smallest cluster that can capture
superconductivity with a d-wave order parameter, on the IBM p690 at the Center for
Computational Sciences (CCS) show very good general agreement with HTSC. These results
are summarized in the temperature-doping phase-diagram shown in Fig. 3 (see also [23, 24]).
At low doping, δ, the system is an antiferromagnetic insulator below the Neél temperature
TN. At finite doping, δ ≤ 0.3, an instability is found at the critical temperature Tc to a
superconducting state described by a dx2−y2-wave order parameter. In the normal state, low-
energy spin excitations become suppressed below the crossover temperature T ∗. Simultaneously
the electronic excitation spectrum displays a pseudogap, i.e. a partial suppression of low-
energy spectral weight. Consistent with optical experiments, computations for a four-site cluster
show that the superconducting transition is accompanied by a lowering of the electronic kinetic
energy [25]. This result further shows the unconventional character of superconductivity in these
systems. It is fundamentally different from the BCS theory for conventional superconductors
[26], where pairing occurs through a reduction of the electronic potential energy accompanied
by a slight increase in kinetic energy.

The apparent violation of the Mermin-Wagner theorem [27], according to which no phases
with conventional long-range order can occur at finite temperatures in the two-dimensional
Hubbard model, is a consequence of the small cluster size, and hence large mean-field character,
in these simulations. In the case of antiferromagnetism, the Mermin-Wagner theorem thus
necessarily translates to TN = 0 for the two-dimensional system. Superconductivity however can
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Figure 4. Runtimes for a series of DCA/QMC production runs. Each run is indicated by its
value of N = NcNl. The lines connecting the data points are only guides to the eye.

exist even at finite temperatures as topological order below the Kosterlitz-Thouless transition
temperature [28]. Therefore, larger-cluster-size studies are needed to see if the simulations
recover the Mermin-Wagner theorem and if superconductivity survives as topological order in
the infinite cluster size limit where the DCA becomes exact.

In the HTSC, on the other hand, a small but finite coupling between the two-dimensional
CuO2 layers induces long-range order at finite temperatures.

5. A performance boost with the Cray X1
The central quantity of the DCA code is the single-particle cluster Green function Gc, which is
a matrix of size N × N [5]. Here N = Nc × Nl where Nl is the number of “time-slices” in the
time direction. The majority of the CPU time is spent in the inner loop of the QMC simulation,
which updates the Green function matrix according to the vector outer product

G′ = G + a ∗ bT , (2)

where a and b are two vectors of dimension N . This computation is handled by the BLAS
[29] call DGER, which performs a double-precision rank-one matrix update representing O(N2)
operations. Each iteration requires N such calls, however, resulting in O(N3) operations.

Another CPU-intensive task is the evaluation of two-particle correlation functions. In the
QMC technique this reduces to evaluating products of Green functions and thus to computing
matrix products. This is done by using the BLAS call CGEMM, which performs single-precision
complex matrix-matrix multiplication, and one call again is O(N3).

Porting and tuning the DCA/QMC implementation on the Cray X1 was straightforward. The
port required no changes beyond the “Makefile”, and tuning involved performance profiling and
adding “concurrent” directives to one file. This file contains a number of nested loops using
indirect addressing, or index arrays. The bulk of the tuning effort was in determining which
loops did and did not iterate over repeated indices.

The Cray X1 has a number of advantages over general-purpose systems in performing
DCA/QMC computations, particularly with increasing cluster size. This advantage is
demonstrated in Fig. 4, which compares runtimes of some early DCA runs on the X1 and
the IBM p690 in the CCS, using 8 and 32 processors (MSPs) on each.The figure shows runtimes
for production runs with a fixed value of Nc = 64 and increasing values of Nl and thus N ,
where the value of N is shown. Eight X1 MSPs easily outperform thirty-two 1.3-GHz Power4
processors for the larger problem sizes.
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Figure 5. Left panel: per-processor performance of concurrent DGER calls using N = 4480
matrices. Right panel: DGER performance of a fully loaded IBM p690 using different numbers
of processors per threaded process. The dotted line is the per-MSP performance of loaded Cray
X1 nodes.

As discussed above, the DCA implementation includes two O(N3) computations built on
the BLAS calls CGEMM and DGER. CGEMM is a BLAS3 call, which implies that it can be
blocked effectively for cache memory, and many modern general-purpose processors can perform
the operations near their peak. The X1 processors can also, but they have the added benefit of
a very high peak rate augmented by the ability to perform single-precision operations at twice
the rate of double-precision.

The Cray X1 has a more significant advantage over the prevailing cache-dependent
architectures in the DGER operations. Each call depends on the results of the previous call, so
the operations cannot be interleaved. DGER is a BLAS2 call, which implies that it does much
fewer computations per memory access than CGEMM, and thus is typically limited by memory
bandwidth.

We conducted separate DGER benchmarks to measure the advantage of the Cray X1 in this
operation, and results for the CCS Cray X1, SGI Altix (1.5 GHz Itanium2), and IBM p690 (1.3
GHz Power4) are in Fig. 5 (left panel). The vendor-optimized DGER was used for each system.
The figure shows the performance of DGER for a matrix of size N = 64 × 70 = 4480, which
is representative of large DCA runs. Separate DGER instances were run concurrently across
increasing numbers of processors (MSPs), mimicking the processes of a Monte-Carlo simulation.
The X1 memory system is able to maintain performance and efficiency with added processors,
while the p690 steadily degrades. The Altix degrades going from one to two processors because
memory bandwidth is shared between processor pairs. The X1 maintains 8–25 times the
performance and 4–10 times the efficiency of the other systems.

Despite the Monte-Carlo nature of the DCA/QMC algorithm, the Cray X1 also has an
important scalability advantage over systems with weaker processors. Each DCA/QMC process
has a significant fixed start-up cost, which favors splitting the Monte-Carlo iterations across
fewer, faster processors.

Another option would be to multithread each Monte-Carlo process, effectively using an
SMP as a large single “processor”. We explore this possibility in Fig. 5 (right panel), which
shows the performance of IBM’s multithreaded DGER on a p690, again using a matrix size of
N = 4480. The dashed line shows the per-MSP performance of an X1 performing concurrent
DGER operations on 32 MSPs, thus simulating a loaded system. The solid line shows the
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performance of a 32-processor p690 loaded with concurrent DGER computations, but using
different numbers of processors per DGER process.

The left-most point thus shows the performance of a single processor when all 32 processors
of the p690 are performing independent DGER operations, while the right-most point shows the
aggregate performance of dedicating all 32 processors to a single DGER. The figure indicates that
dedicating a full IBM p690 to each DGER does not match the performance of a single X1 MSP.
No threaded version of vendor-optimized DGER was available for the Altix or the Cray X1 at the
time of this test. Tests of untuned DGER implemented with Fortran loops and OpenMP showed
little improvement on the X1 for matrices of size 4480, and the Fortran/OpenMP implementation
on the Altix was not competitive with the single-threaded vendor-optimized DGER.

The significant performance advantage of the Cray X1 for DCA/QMC computations, as
illustrated by its dominance in DGER performance, has allowed us to perform simulations that
are out of the reach of other systems, all without having to resort to hybrid parallelization. In
particular, the X1 has provided the capability needed to perform DCA/QMC computation with
much-larger cluster sizes.

6. New insights with large cluster results
The numerical complexity of larger cluster simulations restricts the ability to explore both a
large parameter space and different cluster sizes. The parameters are therefore chosen to favor
superconducting and antiferromagnetic order and cluster geometries are carefully selected. Much
can be learned from simulations of finite size systems, where periodic boundary conditions are
typically used. Betts and Flynn [30] systematically studied the 2D and 3D Heisenberg models
on finite size clusters and developed a grading scheme to determine which clusters should be
used in finite size simulations. The main qualification is the perfection of the near-neighbor
shells: a measure of the completeness of each neighbor shell compared to the infinite lattice.
In finite size calculations of the order parameter and the ground-state energy, they found that
the results for the most perfect clusters fall on a scaling curve, while the imperfect clusters
generally produce results off the curve. We employed some of the cluster geometries proposed
by Betts (see Fig. 6) to study the antiferromagnetic transition at half filling and generalized
Betts’ arguments to generate a set of clusters appropriate to study d-wave superconductivity.

Figure 6. Cluster sizes and geometries used in our study. The shaded squares represent
independent d-wave plaquettes within the clusters. In small clusters, the number of neighboring
d-wave plaquettes zd listed in table 1 is smaller than four, i.e. than that of the infinite lattice.
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To illustrate that the DCA recovers the correct result as the cluster size increases, we plot
in Fig. 7 the DCA results for the Neél temperature TN at half-filling as a function of the cluster
size Nc. TN decreases slowly with increasing cluster size Nc. As spin-correlations develop
exponentially with decreasing temperature in 2D, the Nc > 4 data falls logarithmically with
Nc, consistent with TN = 0 in the infinite size cluster limit. Thus, the Mermin-Wagner theorem
is recovered for Nc → ∞. The clusters with Nc = 2 and Nc = 4 are special because their
coordination number is reduced from four. For Nc = 2 the coordination number is one and for
Nc = 4 the coordination is two. Hence, fluctuations of the order parameter are overestimated,
antiferromagnetism is suppressed and their corresponding TN does not fall on the curve.
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Figure 7. Neél temperature at half-filling when U=8t versus the cluster size. TN scales to zero
in the infinite cluster size limit. The solid line represents a fit to the function A/(B + ln(Nc/2))
obtained from the scaling ansatz ξ(TN ) = Lc. For Nc = 2 a local singlet and for Nc = 4 the
RVB state suppress antiferromagnetism.

The transition to a superconducting state with d-wave symmetry is indicated by the
divergence of the pair-field susceptibility Pd, or equivalently by the node of P−1

d . In contrast
to the order parameter indicating magnetic order, the d-wave order parameter is non-local and
involves four bonds or sites. Thus, large size and geometry effects have to be expected in small
clusters. Similar to the cluster grading scheme Betts developed for magnetic order, we can
classify the different clusters according to their quality for d-wave order. At low temperatures,
local d-wave pairs will form, but phase fluctuations of the pair wave-function prevent the system
from becoming superconducting. Since the DCA cluster has periodic boundary conditions,
each four-site d-wave plaquette has four neighboring d-wave plaquettes. However, as illustrated
in Fig. 6, in small clusters, these are not necessarily independent and hence the effective
dimensionality is reduced. The number zd of neighboring independent d-wave plaquettes in
a given cluster is then a measure for the strength of phase fluctuations which act to suppress
the pairing correlations and hence Tc.

Table 1. Number of independent neighboring d-wave plaquettes zd.

Cluster 4 8A 12A 16A 16B 18A 20A 24A 26A
zd 0 (MF) 1 2 3 2 1 4 4 4
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Fig. 6 shows the arrangement of independent d-wave plaquettes in the clusters used in this
study and the corresponding values of zd are listed in table 1. The Nc = 4 cluster encloses
exactly one d-wave plaquette (zd = 0). When a local d-wave pair forms on the cluster, the
system becomes superconducting, since no superconducting phase fluctuations are included.
Thus, the Nc = 4 result corresponds to the mean-field solution. In the 8A cluster, there is
room for one more d-wave pair, thus the number of independent neighboring d-wave plaquettes
zd = 1. Since this same neighboring plaquette is adjacent to its partner on four sides, phase
fluctuations will be overestimated as compared to the infinite system. The situation is similar in
the 16B cluster, where only two independent (and one next-nearest neighbor) d-wave plaquettes
are found (zd = 2). In contrast, zd = 3 in the oblique 16A cluster. We thus expect d-wave
pairing correlations to be suppressed in the 16B cluster as compared to those in the 16A cluster.
With the exception of the 18A cluster, where neighboring d-wave plaquettes share one site and
thus are not independent, the larger clusters 20A, 24A, and 26A all have zd = 4 and are thus
expected to show the most accurate results.

Fig. 8 shows the temperature dependence of the inverse d-wave pair-field susceptibility, 1/Pd,
in the 10% doped system. Since a proper error propagation is severely hampered by storage
requirements, we obtain the error-bars shown on the 16A results from a number of independent
runs initialized with different random number seeds. Error-bars on larger cluster results are
expected to be of the same order or larger. As noted before, the Nc = 4 result is the mean-
field result for d-wave order and hence yields the largest pairing correlations and the highest
Tc. As expected, we find large finite size and geometry effects in small clusters. When zd < 4,
fluctuations are overestimated and the d-wave pairing correlations are suppressed. In the 8A
cluster where zd = 1 we do not find a phase transition at finite temperatures. Both the
12A and 16B cluster, for which zd = 2, yield almost identical results. Pairing correlations
are enhanced compared to the 8A cluster and the pair-field susceptibility Pd diverges at a
finite temperature. As the cluster size is increased, zd increases from 3 in the 16A cluster to
4 in the larger clusters, the phase fluctuations become two-dimensional and as a result, the
pairing correlations increase further (with exception of the 18A cluster). Within the error-bars
(shown for 16A only), the results of these clusters fall on the same curve, a clear indication that
the correlations which mediate pairing are short-ranged and do not extend beyond the cluster
size. The low-temperature region can be fitted by the KT form Pd = A exp(2B/(T − Tc)0.5).
For all clusters with zd ≥ 3 we find a transition temperature Tc ≈ 0.025t. We cannot
preclude, however, the possibility of a very slow, logarithmic cluster size dependence of the
form Tc(Nc) = Tc(∞) + B2/(C + ln(Nc)/2)2 where Tc(∞) is the exact transition temperature.

7. Summary and Conclusions
The Cray X1 in the Center for Computational Sciences at Oak Ridge National Laboratory has
enabled significant new progress in the understanding of HTSC within a minimal microscopic
model, the two-dimensional Hubbard model. DCA/QMC simulations at small cluster size
Nc = 4 show very good general agreement with HTSC, including superconductivity at high
temperatures. Due to the small cluster size however, the results violate the Mermin-Wagner
theorem, according to which no long-range order is allowed at finite temperatures in the two-
dimensional model. The significant performance advantage of the X1 for the DCA/QMC
computations has provided the capability to study much larger cluster sizes. Consistent with
the Mermin-Wagner theorem, the finite temperature antiferromagnetic transition found in the
Nc = 4 simulation is systematically suppressed with increasing cluster size. In small clusters,
the results for the d-wave pairing correlations show a large dependence on the size and geometry
of the clusters. For large enough clusters however, we find converged results that display a finite
temperature instability to a d-wave superconducting phase at Tc ≈ 0.025t at 10% doping when
U = 4t. This established that superconductivity is possible in a system of strongly correlated
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electrons without the need of a phonon mediated attractive interaction.
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