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The Electronic Structure Problem
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Find the ground state of the time independent Schrodinger equation

For a many-body system of electron and (fixed) ions



Outline

• Real-world Applications
• Monte Carlo integration
• Variational Monte Carlo
• Diffusion (Greens Function) Monte Carlo
• Improved methods, the Future
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Homogeneous Electron Gas
Ceperley and Alder. Phys. Rev. Lett. 45 566 (1980)

• “Release node” QMC calculation of up to 246 electrons
• Still the most important QMC calculation:

Parameterised in the Local Density Approximation (LDA)



Exchange-Correlation in Real Materials
Hood et al. Phys. Rev. Lett. 78 3350 (1997)
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• Variational Monte Carlo study of exchange-correlation in bulk silicon
• LDA (centre) successful due to significant cancellation of errors
• ADA appears better - at least for silicon



Molecular Applications
High precision total energy calculations of molecules, reactions

• 0.05 eV (0.0018 Ha, 1.2 kcal mol-1) accuracy even for large systems
• Competitive with coupled cluster (CC) techniques
• Advantageous scaling (N^3 compared to CC - N^6), although linear

methods may change this



Optical properties of Quantum Dots
Williamson et al. Phys. Rev. Lett. 89 196803 (2002)

Phys. Rev. Lett. 88 09741 (2002)



Variational Monte Carlo
A direct application of the variational principle:
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1. How to perform the integration? (3N dimensions)

2.   How to choose the trial wavefunction?



Monte Carlo Integration
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More efficient to sample non-uniformly if we can guess where f
is large:
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Better than numeric integration if we have many dimensions &/or
we have good intelligence where f is large. Use the Metropolis
algorithm (or variant) to generate the distribution p(x).



Variational Monte Carlo
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where the points R are sampled from 
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Note: for an exact eigenfunction EL is a constant
Use fluctuations in EL as guide to accuracy “intrinsic variance”

Form suitable for MC sampling:
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Trial Wavefunctions
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Mean-field Hartree Fock determinants and correlated quantum
chemistry wavefunctions provide a controlled starting point:

Jastrow factor: a polynomial parameterised in inter-particle
distances.

Slater-Jastrow wavefunction:

Jastrow factor coefficients (typically 10-50) are determined via an
iterative optimization procedure

e.g. variance minimization, energy minimization

(explicitly antisymmetric/fermionic)



Exchange-Correlation in Real Materials
Hood et al. Phys. Rev. Lett. 78 3350 (1997)
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• Variational Monte Carlo study of exchange-correlation in bulk silicon
• Many-body quantities computed from VMC wavefunction
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VMC Advantages
• Simple

• Reliably obtains 85% (solids) to 85-95% (atoms/molecules) of
correlation energy

• Intrinsic error bars: statistical error and intrinsic variance. 
Unique amongst electronic structure methods

• Easy to evaluate most QM operators



VMC Disadvantages
• “What you put in is what you get out”

Limited flexibility in current trial function forms
Don’t expect to find new physics by accident

• Size scaling is N^3, but Z scaling is ~Z^6 (argued!)
• Unclear how to systematically improve current trial function forms -
determinant expansions from quantum chemistry are too inefficient
• Computationally costly
• No reliable forces - yet
• You have to be a DFT/Q.  Chemistry expert and a QMC expert



Diffusion Monte Carlo
Solve time dependent Schrodinger equation in imaginary time.
Projects out the exact many-body ground state from an initial trial
wavefunction with few approximations. Variational (in principle).
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At large times, we are left with the ground state:
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Diffusion Process
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Interpret Y as density of diffusing particles: potential terms
are rate terms increasing or decreasing the particle density.

Importance sampling
Introduce importance sampling for efficiency:

† 

f (R,t ) = YT (R)Y(R,t )
A VMC optimized wavefunction is ideal.



Fixed node approximation

Problem: Without constraints, ground state solution will not
     be fermionic

Solution: Impose “fixed nodes” (Anderson). Restrict solution to 
    nodes of a trial function. Variational.

In practice: Use optimized VMC wavefunction (usually with DFT
nodes) for importance sampling and fixed node approximation.



“Walker” Evolution



Bulk Diamond DMC



DMC In Practice

• In molecules, 95-98% of correlation energy obtained
• Similar? fraction of correlation energy in solids
• Properties hard to evaluate: density obtained is

• Order of magnitude more expensive than VMC (depends)
• Finite size effects in supercell calculations add to computational cost
• Same scaling as VMC † 

Y0YT



Applications
Chemistry:    Reaction paths, thermodynamics etc.

         “roughly CCSD(T)/aug-cc-pVQZ” accuracy with 
single Determinant

Grossman J. Chem Phys. 117 1434 (2002)

J. Am. Chem. Soc. 122 705(2000)



Applications
Solid state: Defects calculations becoming tractable

e.g. Si self-interstitial Phys. Rev. Lett. 83 2351 (1999)

54+1 atoms DMC
Obtained formation+migration energyin agreement with experiment



Improved DMC algorithms

Release node calculations
Only useful with excellent trial/guiding functions
Label “+” and “-” walkers and allow to cross nodes
Release node energy determined from difference in energies
of “+” and “-” populations
H2O in 1984

An exact fermion algorithm?
M. H. Kalos and F. Pederiva Phys. Rev. Lett. 85 3547 (2000)
Still too costly

Others, e.g. AFMC



The Future
• Expect more “first row” and “simple semiconductor” results

• For real progress, need better wavefunctions: must optimize
orbitals, their nodes, and functional form of trial functions.

• Well suited to grid computing, parasitic computing, PC hardware




