A Course in Mechanics by Dr. J. Tinsley Oden
Part II - Homework 2 - Solutions

Pablo Seleson

November 16, 2010

Set 11.2:
1. Let u = (Q— <Q>) U and v = (M— <M>) U,
(a) We now calculate

0g = (Q%) — (Q)% = (L, Q*T) — (Q)*(¥, V) = (¥, QQ¥) — (¥, (Q)*¥)
=(2,Q(QY)) — ((Q)¥,(Q)).

Where we use the fact that (Q) is a scalar. An Hermitian operator Q satisfies (¥, Qg) =

(Q\I/,@, then

o = (QU,QT) — ((Q)T, (Q)T)
= (QU, QW) — ((QW,(Q)T) + ()W, (Q)T) — ((Q)¥,(Q)V)
= (QU,QT) — ((Q)T,Q¥) + ((Q)¥,(Q)T) — {(Q)T,Q¥)
= ((Q —(Q)T, Q) — ()T, (Q — (Q)T)
= ((Q— (@)%, QW) — ((Q — (QNV,(Q)V)
= ((Q = (@)Y, (Q —(Q)¥)
= (u,u) = |Jul|?

where we used the following:

i ((Q)T,QW) = (Q){T,Q¥) = (Q)(Q) = ((Q)¥,(Q)V),

ii. @ is Hermitian, then: ((Q)¥,(Q — (@Q))¥) = (Q — (Q))¥, (Q)V).
iii. (@) is real.
By replacing Q by M we obtain

2
ot = (v,v) = [[v]]*.

Then, by the Cauchy-Schwarz inequality we obtain

211,112 2
agyoir = lull*[[o]]* = (u, u)(v,v) = [(u,v)[* |




(u,0) = (Q — (@)W, (M — (M))¥)
= (QU, (M — (M))T) — ((Q)U, (M — (M))P)
= (QU, M) — (QU, (M)T) — ((Q)¥, MT) + ((Q)T, (M)V)
= (U, QMT) — (QU, T)(M) — (Q)(T, M) + (Q)(T, ¥)(M)
= (U, QM) — (Q)(M) — (Q)(M) + (Q)(M)
= (QM) — (Q)(M).

‘We then obtain

[(u,0) = (QM) — (Q)(M) |

(¢) For any complex number z = a + ib we have |z

addition

> =22 = (a—ib)(a+ib) = a® + b*. In

Re(z) = =(2 + 2") = =((a +ib) + (a — ib)) = a,

2

(d) From (b) we have

Q
(u’ U> - <’U,u> = <QM>

Then, from (c) we have

UCQQU

2>

vl =

i.e., Equation (11.27) in the notes.



(a) The Schodinger’s equation is

—h? 52

om Oz S5, t) +V(z)¥ (%t)—i-ég\l’(:v,t) =0.

i 0t

Inside the well: Inside the well no forces act on the particle, because V(z) = 0 for
0 <z < a, so we expect a solution similar to a free particle inside the well.

Outside the well: Outside the well, the probability of finding the particle is zero, so that
p(x,t) = U(x,t)*¥(z,t) =0, then ¥(z,t) = 0 outside the well.

Assume a solution using separation of variables ¥(z,t) = )(x)e *#*/" so that we obtain
inside the well the time-independent Schodinger’s equation

—h% d?
%Tw( r) — EY(z) =

We can rewrite this equation, together with the boundary conditions as

2
@) Y@ =0, 9(0) = v(a) =0}

with k? = 2mE/h>.
(b) We assume a solution of the form ¢(z) = Asin(kx)+ B cos(kz). By using the boundary
conditions, we find
0 =1(0) = Asin(k0) + B cos(k0) = B = B = 0.
0 =1¢(a) = Asin(ka) = ka = nm,

with n an integer. We assume A # 0, otherwise ¢*(x)y(z) = 0 and thus it cannot
represent a density function. Then,

2mE nm\ 2 n2n2h?
2 2By e
h2 a 2ma?
so we get
2 272
“h
EF=— =1,2,3,...}
2ma27 n P ]

(c) We now find the normalization of the wave function

1:/ U(x da;—/ U(x da;—/oaA%in?(kx)dx:/O A? (1_0028(2]“”)> da

2kx) a 2
_ g2 sin@k)\| a2
(2 4k 5~

a
0

The wave function for a given n is

wn(x):\/zsin(w(;x), 0<z<al




We now show that the functions {1, (x)} are orthonormal in L?(0,a). For that we use
the following:

cos(z + y) = cos(z) cos(y) F sin(z) sin(y) = % (cos(z — y) — cos(z + y)) = sin(z) sin(y).

Then,

/Oa D (@) (2)d = /Oa sin (?) sin (%x) dz

If m = n then

/Oa o (2) o () = /Oa; <1 ~ cos <(m+a”)”)> do

Similarly, if m # n

Therefore, we obtain

/0 (@) ()T = G|

with &, the Kronecker delta. Therefore the functions are orthonormal in L?(0,a). The
solution v (x) is then the superposition of the above functions:

This can be shown as follows:

d2 d2
@w( ) + k2 d ) an + K an = Z <dmzwn(x) + k2¢n(x)) =0,

because each function v, (z) satisfies the equation.

We now use the functions {1,,(x)} as a basis in L?(0,a). We calculate the Fourier series
representation of the function f(z) =z in (0,a) as follows.

= Z ann(x)
n=1

To find the coefficients ¢,, we use the orthogonality of the basis functions so that

/f e dx—/chwn Ve (2 dx—ch/ V()Y (2 dfocnnmfcm



Then, .
cm—/o f (@) (z)dz.

Cm = /Oa P (x)dr = /Oaw\/gsin (m;rx) dzx.

We use the change of variables £ = ™ and get
n =2
a

mToq ) a 2 /7 a \2 ™M™ 2/ a \2, .
/ masm@)mdfz\fa (or) Ssm(é)d€=\/; (=) (sin(©) — € cos(€)
a a2

2
— \/3 (%)2 (—mm cos(mm)) = mﬂ\/g(—l)mﬂ-

Then,

For f(z) ==z

mm

0

and

> 2a nmwx
N (1) <7)
x ;( ) s in .

In Figure 1, we plot partial Fourier series, i.e., we choose N and plot

N
In(z) = Z Cn¥n ()
n=1

in the range (0,a) = (0, 10).

ssssssssssssssssssssss

ssssssssssssssssssssss

(¢) N =1,000 (d) N = 10,000

Figure 1: Partial Fourier Series for f(x) = x in the interval (0, 10), for N = 10, 100, 1000, 10000.



(e) If @ is an Hermitian operator where its eigenfunctions represent a complete set, then @
is an observable. We already found that the eigenfunctions of ) are a complete set, then
we check whether @ satisfies (¥, QW¥) = (QW¥, ¥). We first observe that for 0 <z < a

ot = o (55).

e = (7)o () = () v

W, QW) :/0 “(2) ‘;;’ dac—ZZ/ x)dxzzz/oa%(x) (n%:n)Q\Iin(a:)d:c
EeEy wmwdw;;(?zwm=z<m;“>2-

m

On the other hand

@ dQ\II* dQ\II* ¢ rmmaN? _,
QU = | o (@)¥(a)dr = Z / T3 (@) Ua(a)de = ;Z /0 (F52) (@)W (a)da
mmx . mma\ 2 mmx\ 2
= ;;( » ) /0 U (2)¥,(z)de = ;Zﬂ: ( " ) Om.m —zm: <7a ) .
We then get
(0, QU) = (QU, W) |
Then, @ is an observable.
3. We check whether the operators A and B commute:
B B dp 0 0y dp
[A,Blo = (AB — BA)p = ABp — BAp = T T B (xp) = T Ty =P
Then, [A, B]p # 0 for ¢ # 0, thus the operators do not commute.

Note: The momentum operator is p = i’ 8855 U 7B, and we know that x and p do not commute

because [z, plp = ihp.

4. (a) We show that the operators @@ and M commute:
n? 92 O h? 9 0%
QMY () = < om ax2> (‘%x> = (‘Qmax> (‘%ﬂ)

0 h? 0%
- (‘%x) <_2m8x2) = MQy(a).

[Q, M]ip(z) = (@M — MQ)y(x) = 0.

Then we have



(b) Let () = €™** then

T

W) = =g 5 = g © V)
Mup(a) = —ih e = Rk = A (z),

with A\g = % and A\p; = hk. Therefore, ¢(x) is a simultaneous eigenfunction of @) and
M with eigenvalues A\g and Ajs respectively.

The Hamiltonian for a free particle is H = —%8‘9—; = @. Then Hy(x) = E¢(x) with
E = % Furthermore, the momentum operator p = —iha% = M, then py(z) = py(x)
with p = hk. Consequently

S |
2m 2m




Proof of (10.27) The Shrédinger equation is

8\11 h? 9%W
ov V= 1
ih ot 2m 0x2 v 0, (1)
then
LU h 0% 1

— = U —— 4+ VUM,
ot 2mi  Ox2 tn ih

If we now apply the complex conjugate operation to (1), we get

ov* h? 920+
i o VU =
ih ot + 2m Ox? v 0
then 5 a2
y w1
ot 2mi 0x2 v %VII’ v
Using the above results, we have
o+ ) L S iho[ 2T QUTOW  9Ur U U
vl = (gl T + - -
ot ot 2m 922~ 922 ) 2m Ox? or Oxr Oz dx 022
ih 0 ov v
= mor (‘I’ 9 O ‘I’) :

‘We now look at

dix) d [> _, [0, [ (o L0V
dt—dt/oom\ll (:c,t)\I/(x,t)dac—/ xa(\ll \Il)d:z:—/oox< 5 U+ v at)dw

—00

in o [ 0V v
“om ) 8x<\1’8x_ oz )d:c.

We now assume that the wave function decays sufficiently fast so that lim, 1. 2% (x,t) =0,
and, in addition, the derivative %\I’ is bounded for x — 4+00. Then, by performing integration

by parts we obtain

o) I (0000 )

_ <\Il ov _ov \I/> dz

dt om” ox or 2m or  Ox
ih [ LOU QU ih 8\11 zh < oU*
2m < dr Oz ) do = 2m J 83; a9z 2m 0o O d
ih ov ih ih ov
=—— \I!*— —U*w - — \I/*—
2m J_o Oz do =+ 2m 2m J_ Oz de
ih hov o0 1
-z \IJ*—d / \I/*—a—d / U pUdr = — (p).
m J_ T m i Ox m J_o m
Then,
dz)
(p) = dt




Proof of (10.28)

d(p) d/°° e /°° ov* _ /°° L OV
g ar )  VPYAr= | pppvded [ W de
We now observe that

h oW
i = &/
T
hOU*
o — _(HD)*
i ot (HY)

with H the Hamiltonian. Because H is Hermitian, we can write:

o0 ov 1 [
U*p—dr = — U*pHU
/OO pé?t dx ih/ pHYdx

° P 1 [ 1 [
SUdy — —— HU)5Uds = —— | U*HpUdz.
/_OO ot P T T /_OO< )'pvdr = —7 /_oo .

We then can write

d(p) /Co 1, . /°° 1.,
TN —— (U*HHU — U*pHT = ——VU* (Hp — pH) ¥dx.
dt oo ih/( b pHY) dz ih (Hp —pH) Wdz

— 00

2
‘We now observe that because H = 2% + V we have

3 3 LU B O
(Hp — pH) = <p+Vp—£n+pV>W:V—

2m 1 Ox z'(?:v(V\P)
hov h [(OV h oV
ZViax‘Z(ax)‘I"me
then,
d(p) © 1 _,.( h[fOV [T [ OV _/ oV
[ GG e L (5 e ()
Then,




