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Set 11.2:

7. In this exercise, we use time-independent wave functions for simplicity.

(a) We check whether €@ is Hermitian:
W) o) = [~ i@ ols
@) o) = [ e @otends - / V(@) gla)de £ (9(2), € 9(x).

Then, the operator is not Hermitian.

(b) We check whether % is Hermitian:

W) ot = [~ v s s =w*<x>jjj<x>' - [ @ P wa

a*  dg :
- /_ood ()% (@),

where we used integration by parts, and the fact that ¢(z) — 0 for x — oo and we
assume the wave function derivatives are bounded. By another integration by parts we
obtain
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where the boundary terms vanish as before. Therefore,
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and thus the operator is Hermitian.



(¢) We check whether z-% is Hermitian:

@) aso@) = [ vt @@
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where we used integration by parts and assumed wave functions decay fast enough so
that \/x¢(zr) == 0 and /zp*(z) == 0 as x — +oo. This assumption implies (z) is
bounded. Thus, the operator is not Hermitian.
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b) Following Schrédinger’s equation
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c) Using the Hermitian property of H we proceed as follows
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then we have




Set I1.3:

1. a) Considering the time-independent Schrédinger’s equation

_%Aw(xﬁy) - El/’(% y) in ﬁa
Y(z,y) =0 on Of).

We find a solution using the method of separation of variables: (z,y) = X(2)Y (y).
Then, the equation in € is

2 2 2 2 2 2 2
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= EX(2)Y (y),

or dividing by X (z)Y (y) (assuming X (z)Y (y) # 0)
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Because each term depends on a different variable, a solution exists if each term is a

constant and the sum of those constants equals £. Denote the constants ex and ey,
then

h? d’X
C2m da?
h? d’Y
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(x) =exX(z), x€(0,a)
(y) =exvY(y), ye€(0,b),

with ex 4+ ey = E. The general solutions (assuming ex and ey are positive) are

X(z) = Asin(k,z) + B cos(kyx),

Y (y) = Csin(kyy) + D cos(kyy),
where

h2 h2

—kg =ex, and —ks =ey.
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Using the boundary conditions, we get

X(0)=0= B =0,
X(a) =0 = Asin(kya) = kya = nm,
Y(0)=0= D =0,
Y (b) = 0 = Csin(kyb) = kyb =n'r,

with n,n/, nonzero integers. We now use the normalization to find A and C.

1= / | X (z)*dx = AQ/ sin?(kya)de = A 2 _ sin(Zk,z) A2 5 A= :I:\/i.
0 0 2 4kx 0 2 a




Similarly,

k b 2
1:/ Y (y)2dy = C*~ = C = +4/ ~.
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Then, choosing the positive normalizations, the solution is of the form

W(a,y) = X(@)Y (y) = \/3 sin () sin (Ty) :

b) We now observe that
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The energy levels are F = ex + ey, then

2m \ a? b2

c) Assume a square box (a = b). Denote the energy levels by fi,,;,,/, then

nr* 2
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forn=1,2,...and n’ =1,2,.... The lowest energy level occurs for n = n’ =1 and is
h2m?
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We then have
n? +n'?
Hnn! = T M1t

The following levels corresponding to n and n’ up to 4 are:

_ 5 _ 18
H12 = 21 = 2#11, 33 = 5 Hi1,
_8 220
Ho2 = 2#11, H24 = 42 = B Hi1,
10 25
H13 = H31 = ?Mlla H34 = 43 = 3#11,
13 32
H23 = [32 = — M11, Haa = — H11,
2 2
17
H14 = H41 = ?Nll-

Note: Notice that some states are degenerate.
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2. a) Let R= VL and r = r; — ro. Then,
m
Mri=(M+m)R—-rom=(M+mR—(r1 —r)m
m 1 Mm
= R = R i— .
e L v Ve
Furthermore,
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ro =R — Mﬂfmr:R—;]\;lfmr.
Let m* = %, then
ry :R+mﬁ*r; rng—%*r
b) Using the chain rule
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Then, we have
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c) The Schrodinger’s equation for this two-particle system is

h? h? OV
<_2]\4Ar1 - %AI? -+ V(r)) \I/(r1, Iro, t) = Zha(rl, ro, t)

Assume a solution, using separation of variables, of the form W(ry,ro, t) = 9(r1, rg)e*iEt/h.
Then, we get

h? h2 : ;
<—2MAr1 — 5 A+ V(r)> W(ry, ro)e BT — Eup(ry, ro)e= BT,

Thus, the time independent Schrodinger’s equation is

h2 K2
<—2MAr1 - %Al‘z + V(I‘)) Y(ry,ro) = E(ry, ra).

We now want to write this expression using the variables R and r. Then,
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Let o(R,r) = ¢(r1(R,r),r2(R,r)), therefore we obtain

2 2
(_2(]\4h—|—m)AR - QBWAT + V(r)> o(R,r) = Ep(R,1)|.

Assume that M > m and % > —1  then
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Then, the resulting Schrodinger’s equation involving only r is

<_2fiar + v(r)) p(r) = Ep(r) |

where we assume R is effectively constant.
We now take a look at the Schrodinger’s equation involving both R and r
h2

Ar = g A4 Vi) ) plRor) = BplRor

(zr s

and assume the solution is separable, i.e., o(R,r) = ¢(r)x(R), then

h? 12
<_2(M ) Agr — Gy Ay + V(r)> o(r)x(R) = Ep(r)x(R)

or

2 2
S e AR(R) - 5

X(R)Arp(r) + V(r)o(r)x(R) = Eo(r)x(R).

Dividing the entire equation by ¢(r)x(R) (assuming ¢(r)x(R) # 0) we get

h2

i - ARX(R)) + <—2m*¢(1r)

(_ 2(M +m) x(R)

Arp(r) + V(r)) =FE.



Because each term depends on a different variable, we can only satisfy this equation if
each term is constant. We denote the constants Ey, and Er, which are required to satisfy
FE, + Er = E, then

h2

" 2(M +m)
2

2m*

Arx(R) + VrXx(R) = Erx(R),

Arp(r) + V(r)p(r) = Evp(r),

with Vg = 0.



