
EM 311M - Dynamics

Exam 3 - Solutions- April 19, 2012

Write your work and solutions only on the FRONT side of the sheets provided, including white sheets.

1. i. Given the positions of two points A and B in a rigid body with angular velocity ~ω, the
rate of change of the relative position vector of A relative to B is given by

d~r
A/B

dt
= ~ω × ~r

A/B
.

(a) (1 point) Write the expression for the velocity of A as a function of the velocity of
B and the angular velocity of the rigid body.
(b) (3 points) Derive the expression for the acceleration of A as a function of the accel-
eration of B and the angular velocity and acceleration of the rigid body.
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ii. At the instant shown (see figure below) the crank BC has a given constant angular
velocity ωBC clockwise.
(a) (21 points) Determine the expressions for the acceleration of points A and D as
functions of ωBC , d and L.
(b) (2 bonus∗ points) Look at the velocities of A and B. What type of motion the
rigid body AD undergoes instantaneously? Explain how to conclude that by using
instantaneous centers.
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∗Bonus points will be given only if exam grade is lower than 100 (maximum possible grade).



Solution:

i) (a) (1 point) The position vector of A can be written as

~rA = ~rB + ~r
A/B
,

and taking the time derivative we get

d~rA
dt

=
d~rB
dt

+
d~r

A/B

dt
⇒ ~vA = ~vB + ~v

A/B
.

For A and B points in a rigid body, the velocity of A relative to B can be written as

~v
A/B

=
d~r

A/B

dt
= ~ω × ~r

A/B
,

with ~ω the angular velocity of the rigid body. Then, we obtain

~vA = ~vB + ~ω × ~r
A/B

. (1)

(b) (3 points) We now take the time derivative of (1):

d~vA
dt

=
d~vB
dt

+
d

dt

(
~ω × ~r

A/B

)
and get

~aA = ~aB +
d~ω

dt
× ~r

A/B
+ ~ω ×

d~r
A/B

dt
,

from where the final result is obtained

~aA = ~aB + ~α× ~r
A/B

+ ~ω ×
(
~ω × ~r

A/B

)
,

where ~α = d~ω
dt is the angular acceleration. In a planar motion, the acceleration expression

reduces to

~aA = ~aB + ~α× ~r
A/B
− ω2 ~r

A/B
.



ii) (a) In this type of questions, to obtain accelerations, we first need to find velocities.
We have the following information:

- Point C is fixed: ~vC = ~0 and ~aC = ~0.

- Point A is constrained to move in the vertical direction: ~vA = vA ĵ and ~aA = aA ĵ.

- Crank BC has constant clockwise angular velocity: ~ωBC = −ωBC k̂ and ~αBC = ~0.

Let’s take a look at the following diagram:
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where by the Pythagorean theorem

h =
√
L2 − d2.

(3 point) We compute first the velocity of B:

~vB = ~vC + ~ωBC × ~rB/C

= ~0− ωBC k̂ × (−dî) = dωBC ĵ

~vB = dωBC ĵ

(6 point) We now can compute the velocity of A:

~vA = ~vB + ~ωAD × ~rA/B
vA ĵ = dωBC ĵ + ωAD k̂ × (dî− hĵ)

= hωAD î+ (dωBC + dωAD)ĵ.

Note that since A and B are points belonging to the rigid body AD, we used the angular
velocity ~ωAD . The above relation is a vector equation, thus we compare the components of
the left-hand side and right-hand side:

î components: 0 = hωAD ⇒ ωAD = 0 ,

ĵ components: vA = dωBC + dωAD = dωBC ⇒ ~vA = dωBC ĵ .

(3 point) We compute now the acceleration of B:

~aB = ~aC + ~αBC × ~rB/C
− ω2

BC
~r
B/C

= ~0 +~0 + dω2
BC
î = dω2

BC
î

~aB = dω2
BC
î .



(6 point) We now can compute the acceleration of A:

~aA = ~aB + ~αAD × ~rA/B − ω
2
AD
~r
A/B

aA ĵ = dω2
BC
î+ αAD k̂ × (dî− hĵ) +~0

= (hαAD + dω2
BC

)̂i+ dαAD ĵ.

We compare the components of the left-hand side and right-hand side:

î components: 0 = hαAD + dω2
BC
⇒ αAD = −

dω2
BC

h
,

ĵ components: aA = dαAD ⇒ ~aA = −
d2 ω2

BC

h
ĵ.

The acceleration vector of A is

~aA = −
d2 ω2

BC√
L2 − d2

ĵ .

(3 point) To compute the acceleration of D, we take a look at the diagram
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where DO ‖ BC. We observe that the triangles 4AOD and 4ACB are similar. Then,

AD

AB
=
AO

AC
⇒ AO = 2AC = 2h and

AD

AB
=
DO

BC
⇒ DO = 2BC = 2d .

The acceleration of D is then

~aD = ~aA + ~αAD × ~rD/A
− ω2

AD
~r
D/A
,

~aD = −
d2 ω2

BC

h
ĵ + αAD k̂ × (−2dî+ 2hĵ) +~0

= −2hαAD î−

(
d2 ω2

BC

h
+ 2dαAD

)
ĵ = 2dω2

BC
î+

d2 ω2
BC

h
ĵ.

The acceleration vector of D is

~aD = 2dω2
BC
î+

d2 ω2
BC√

L2 − d2
ĵ .



(b) (2 bonus points) We observe that ~vA = ~vB , i.e., they have the same direction and
magnitude; thus, the body is instantaneously in translation. If we now draw lines through
A and B perpendicular to their directions of motion, we observe that these lines are parallel
and do not intersect. Then, there is no instantaneous center for bar AD at that moment, and
the body is not rotating, thus it is in translation.



2. i. (5 points) Given a general system of N particles with masses mi and velocities ~vi,
i = 1, . . . , N , derive the Moment-Angular Momentum Principle.

ii. In the system shown below, the following information is provided:

- The weight WA of the pulley A, its radius RA and its moment of inertia IA about
its center.

- The moment of inertia IB of pulley B about its center and its radius RB.

- The weights of the loads a and b: wa and wb.

Assume the system is released from rest.

(a) (18 points) What is the expression for the acceleration of the load b as a function of
the given data?

(b) (2 points) Take the result of (a) and assume you do not know the weight wb. What is
the condition on the magnitude of wb so that the velocity of the load b is downward?
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Solution:

i)(1
2 points) By Newton’s 2nd law for particle i∑

j

~fij + ~f E
i =

d

dt
(mi~vi),

with ~fij the force that particle j exerts on particle i and ~f E
i an external force exerted on

particle i. Taking the cross product with ~ri and summing over all particles i = 1 to N we
obtain ∑

i

∑
j

~ri × ~fij +
∑
i

~ri × ~f E
i =

∑
i

~ri ×
d

dt
(mi~vi). (2)

(2 point) We now show that the total moment corresponding to internal forces in (2) is
zero:∑
i

∑
j

~ri × ~fij =
1

2

∑
i

∑
j

~ri × ~fij +
1

2

∑
j

∑
i

~rj × ~fji ← Change dummy indexes names in second term

=
1

2

∑
i

∑
j

~ri × ~fij −
1

2

∑
j

∑
i

~rj × ~fij ← Newton’s 3rd law : ~fji = −~fij

=
1

2

∑
i

∑
j

(~ri − ~rj)× ~fij ← Change order of summation in second term

= ~0. ← Assume ~fij ‖ (~ri − ~rj)

(2 point) Furthermore, we observe that

d

dt
(~ri ×mi~vi) =

d~ri
dt
×mi~vi + ~ri ×

d

dt
(mi~vi) =���

���:0
~vi ×mi~vi + ~ri ×

d

dt
(mi~vi)

and thus

∑
i

~ri ×
d

dt
(mi~vi) =

d

dt

(∑
i

~ri ×mi~vi

)
=
dHO

dt

with HO the total angular momentum about the origin O.

(1
2 point) Let MO denote the total moment exerted on the system by external forces:

MO =
∑
i

~ri × ~f E
i .

Then, we can write (2) as

MO =
dHO

dt
,

the Moment-Angular Momentum Principle for a system of N particles.



ii) (a) (2 points) We draw the free-body diagram:
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We now write the equations of motion:

- (2 points) Load b: ∑
Fy = T1 − wb

= m
b
a . (1)

- (2 points) Pulley B: ∑
Fy = N −WB = 0.

Note: We do not have the information about WB , so we will not use this equation.∑
M =

[
RB î× (−T1)ĵ + (−RB )̂i× (−T2)ĵ

]
· k̂ = IBαB

then,

RB (T2 − T1) = IBαB . (2)

- (2 points) Pulley A: ∑
Fy = T2 + T3 − (T4 +WA) = mAaA . (3)

∑
M =

[
RA î× (T2)ĵ + (−RA )̂i× (T3)ĵ

]
· k̂ = IAαA

then,

RA(T2 − T3) = IAαA . (4)

- (2 points) Load a: ∑
Fy = T4 − wa = maaA . (5)

Note: Pulley A and load a move together; thus they have the same acceleration.

Unknowns: T1 , T2 , T3 , T4 , αA , αB , aA , a. We have 8 unknowns, thus we need 8 equations. We
will look for 3 additional equations using kinematics.



(1 points) Before that, let’s combine some equations to get a reduced system of equations.
Using (1) and (2):

T2 = T1 +
IB
RB

αB = w
b

+m
b
a+

IB
RB

αB ,

then

T2 = w
b

+m
b
a+

IB
RB

αB . (∗)

Using (3) and (4):

2T2 = T4 +WA +mAaA +
IA
RA

αA

and using (5) we get

2T2 = wa +maaA +WA +mAaA +
IA
RA

αA

then

2T2 = (wa +WA) + (ma +mA)aA +
IA
RA

αA . (∗∗)

Combine (∗) and (∗∗) to get

2

[
w

b
+m

b
a+

IB
RB

αB

]
= (wa +WA) + (ma +mA)aA +

IA
RA

αA . (∗ ∗ ∗)

The unknowns are: a, aA , αA , αB . Thus, we need now three additional equations, to express
aA , αA , αB as functions of a. We now look for special points that will provide kinematic
constraints:
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Kinematic constraints
(2 points) Kinematic constraint 1:

(i) a = (~aC )y,

(ii) ~aC = ~aB + ~αB × ~rC/B − ω
2
B
~r
A/B

= ~0 + αB k̂ ×RB î− ω
2
B
RB î

= −RBω
2
B
î+RBαB ĵ.



Then, we obtain

a = RBαB . (6)

(2 points) Kinematic constraint 2:

(iii) ~aD = ~aB + ~αB × ~rD/B
− ω2

B
~r
D/B

= ~0 + αB k̂ × (−RB )̂i− ω2
B

(−RB )̂i

= RBω
2
B
î−RBαB ĵ

(iv) ~aE = ~aA + ~αA × ~rE/A − ω
2
A
~r
E/A

= aA ĵ + αA k̂ ×RA î− ω
2
A
RA î

= −RAω
2
A
î+ (aA +RAαA) ĵ

We have that (~aD)y = (~aE )y, then

−RBαB = aA +RAαA . (7)

(2 points) Kinematic constraint 3:

(v) ~aF = ~aA + ~αA × ~rF/A − ω
2
A
~r
F/A

= aA ĵ + αA k̂ × (−RA )̂i− ω2
A

(−RA )̂i

= RAω
2
A
î+
(
aA ĵ − αARA

)
ĵ

(v) ~aG = ~0

We have that (~aG)y = (~aF )y, then

aA = αARA . (8)

We now have from (6)

αB =
a

RB

.

Using this result in (7) together with (8) we have

−RB

(
a

RB

)
= αARA +RAαA ⇒ αA = − a

2RA

.

And finally, from (8) we obtain

aA = −a
2
.

(1 points) Substituting aA , αA , αB in (∗ ∗ ∗), we get

2

[
w

b
+m

b
a+

IB
R2

B

a

]
= (wa +WA)− (ma +mA)

a

2
− IA

2R2
A

a,

from where we obtain

w
b
− (wa +WA)

2
= −

[
m

b
+
IB
R2

B

+
1

4
(ma +mA) +

IA
4R2

A

]
a,

and the acceleration of the load b is

a = −
w

b
− (wa +WA)

2[
w

b

g
+
IB
R2

B

+
wa +WA

4g
+

IA
4R2

A

]



(b) (2 points) For the velocity of load b to be downward, we need a < 0. Then, the
condition is

w
b
>

(wa +WA)

2
.



3. i. In the figure below, a uniform slender bar of length L and mass m is presented.
(a) (2 points) Use direct integration to compute the moment of inertia of the bar about
an axis through its center of mass.
(b) (3 points) Use the parallel-axis theorem to compute the moment of inertia of the bar
about an axis through the point O (see figure).
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ii. (20 points) In the system below, each bar is of mass m and length L. The spring constant
k is given, and the spring is unstretched when θ = 0. If the system is released from rest
with the bars vertical, what is the magnitude of the angular velocity of the bars for a
given angle θ = θ0 > 0, as a function of the given data.
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Solution:

i) (a) (2 point) To compute the moment of inertia of the slender bar, we divide the bar into
infinitesimal pieces of material, each of mass dm as shown below:

PPPPPPPPPPPP

⊕
−L

2
L
2

dm~r -

The moment of inertia is

I =

∫
m
r2dm.

We need to find the differential of mass dm. For a uniform slender bar, the mass density is
ρ = m

AL , where A is the cross-sectional area. Then, dm = ρAdr. Now, we compute

I =

∫
m
r2dm =

∫ L
2

−L
2

r2ρAdr = ρA
r3

3

∣∣∣L2
−L

2

= ρA
L3

12
,

where we assume A to be constant. We then obtain

I = 1
12mL

2 .

(b) (3 point) Since the center of mass is at a distance L/2 from O, by the parallel-axis
theorem

IO = m

(
L

2

)2

+ I = m
L2

4
+m

L2

12
.

We then get

IO = 1
3mL

2 .



ii) (2 point) We draw the free-body diagram:
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The only forces that do work are the force of the spring Fs and the weights of the two bars;
these forces are conservative.

By conservation of energy:

T1 + V1︸ ︷︷ ︸
Total energy when

system is released

= T2 + V2︸ ︷︷ ︸
Total energy for

given angle θ0

.

(3 point) The kinetic energy of the system for any instance is

T =
1

2
IOω

2
OA︸ ︷︷ ︸

Kinetic energy of bar OA

(rotating about fixed axis though O)

+
1

2
mv2

G
+

1

2
Iω2

AB︸ ︷︷ ︸
Kinetic energy of bar AB

.

(3 point) The potential energy of the system for a given angle θ is

V =
L

2
cos(θ)mg︸ ︷︷ ︸

Potential energy of bar OA

+
3L

2
cos(θ)mg︸ ︷︷ ︸

Potential energy of bar AB

+
1

2
k (2L− 2L cos(θ))2︸ ︷︷ ︸

Potential energy of spring

.

Then, we have from the conservation of energy equation (with T1 = 0)

L

2
mg+

3L

2
mg =

1

2
IOω

2
OA

+
1

2
mv2

G
+

1

2
Iω2

AB
+
L

2
cos(θ0)mg+

3L

2
cos(θ0)mg+

1

2
k (2L− 2L cos(θ0))2

which gives

4Lmg(1− cos(θ0))− 4kL2 (1− cos(θ0))2 = IOω
2
OA

+mv2
G

+ Iω2
AB

(1)

The unknowns are : ωOA , ωAB , vG .



By kinematics:
(2 point)

~vA = ~vO + ~ωOA × ~rA/O = ~0 + ωOA k̂ × (−L sin(θ0 )̂i+ L cos(θ0)ĵ)

= −LωOA cos(θ0 )̂i− LωOA sin(θ0)ĵ

(2 point)

~vA = ~vB + ~ωAB × ~rA/B = vB ĵ + ωAB k̂ × (−L sin(θ0 )̂i− L cos(θ0)ĵ)

= vB ĵ + LωAB cos(θ0 )̂i− LωAB sin(θ0)ĵ

(2 point) Equating both expressions for ~vA , we obtain

−LωOA cos(θ0 )̂i− LωOA sin(θ0)ĵ = LωAB cos(θ0 )̂i+ (vB − LωAB sin(θ0)) ĵ

and we compare the components of the vector equation:

î components: − LωOA cos(θ0) = LωAB cos(θ0)⇒ ωAB = −ωOA ,

ĵ components: − LωOA sin(θ0) = vB − LωAB sin(θ0)⇒ vB = −2LωOA sin(θ0) .

(2 point) We now find the expression of the velocity of the center of mass of the bar AB:

~vG = ~vB + ~ωAB × ~rG/B = vB ĵ + ωAB k̂ ×
(
−L

2
sin(θ0 )̂i− L

2
cos(θ0)ĵ

)
=
L

2
ωAB cos(θ0 )̂i+

(
vB −

L

2
ωAB sin(θ0)

)
ĵ

=
L

2
ωAB cos(θ0 )̂i+

3L

2
ωAB sin(θ0)ĵ

Then,

v2
G

=

(
L

2
ωAB cos(θ0)

)2

+

(
3L

2
ωAB sin(θ0)

)2

=
1

4
L2ω2

AB

(
cos2(θ0) + 9 sin2(θ0)

)
=

1

4
L2ω2

AB

(
1− sin2(θ0) + 9 sin2(θ0)

)

v2
G

=
1

4
L2ω2

AB

(
1 + 8 sin2(θ0)

)
.

(2 point) We substitute the above into (1) to get

4Lmg(1− cos(θ0))− 4kL2 (1− cos(θ0))2 = IOω
2
OA

+m
1

4
L2ω2

OA

(
1 + 8 sin2(θ0)

)
+ Iω2

OA
.

(2 point) For a slender bar we have

I =
1

12
mL2 ; IO =

1

3
mL2

4Lmg(1− cos(θ0))− 4kL2 (1− cos(θ0))2 = mL2

[
5

12
+

1

4

(
1 + 8 sin2(θ0)

)]
ω2
OA

then

|ωOA | =

√
4(1− cos(θ0)) [mg − kL (1− cos(θ0))]

mL
[

5
12 + 1

4

(
1 + 8 sin2(θ0)

)]



4. A slender bar of mass m is released from rest in the horizontal position from a height h above
the fixed projection at O. The horizontal distance from the bar’s center of mass to the fixed
point O is d.
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i. (a) (2 points) What is the moment of inertia of the bar about the point of impact?
(b) (5 points) Assume the impact of the bar with the projection at O is perfectly plastic
(i.e., the bar adheres to the fixed point O). Find the expression of the bar’s angular
velocity immediately after the impact as a function of the given data.

ii. Assume now that an arbitrary value of the coefficient of restitution e is given.
(a) (10 points)

- What is the expression for the bar’s angular velocity immediately after the impact
as a function of the given data?

- Show that for e = 0, you recover the result obtained in “i.(b)”.
(b) (8 points)

- Assuming a general value for e, what is the expression for the distance d that would
cause the velocity of the bar’s center of mass to be zero immediately after the impact?

- What is the bar’s kinetic energy, in this case, immediately after the impact?



Solution:

i) (a) (2 point) We compute the moment of inertia of the slender bar about an axis through
the point P , which is the point where the bar will impact the fixed point O:

PPPPPPPPPPPP

⊕
d
-�

•
P

For this purpose, we use the parallel-axis theorem

IP = I +md2

with I the moment of inertia of the slender bar about an axis through its center of mass.
Then, we obtain

IP = 1
12mL

2 +md2 .

(b) (2 point) The system is diagram below:

L -�

h

O • -

6

x

y
P

•

d -�

?

6

⊕
•

G

We first compute the velocity of the center of mass just before the impact. The only force
acting on the bar is its weight, which is conservative. By conservation of energy

T1 + V1 = T2 + V2

then,

0︸︷︷︸
Kinetic energy

when bar is released

+ mgh︸︷︷︸
Potential energy

when bar is released

=
1

2
mv2

G
+

1

2
Iω2︸ ︷︷ ︸

Kinetic energy
just before impact

+ 0︸︷︷︸
Potential energy
just before impact

.

Note: At the release moment, the bar has no velocity and no angular velocity, i.e., the angular
momentum is zero. Particularly, the angular momentum about the center of mass H = 0.
The weight exerts a force at the center of mass, thus the moment about the center

∑
M = 0.

Then, we have ∑
M =

dH

dt
⇒ H = constant = 0



until the impact; furthermore, H = Iω, then ω = 0.

From the conservation of energy equation we obtain

vG =
√

2gh (1)

so that the velocity of the center of mass just before the impact is

~vG = −
√

2gh ĵ .

(3 point) During the impact, we have conservation of angular momentum about O.
Particularly, since the bar adheres to the fixed point O, after the impact it rotates about a
fixed axis through O. Then, by conservation of angular momentum about O[

~r
G/O
×m~vG

]
· k̂ + I��>

0
ω = IPω

′

⇒
[
−dî×m(−

√
2gh)ĵ

]
· k̂ =

(
1

12
mL2 +md2

)
ω′.

The angular velocity just after the impact is

ω′ =
d
√

2gh

d2 +
L2

12

(2)

ii) (a) (2 point) We now assume an arbitrary value for the coefficient of restitution e. Then,
we can relate the velocities (in the vertical direction) just before and after the impact at the
point of impact P (which coincides with O at impact):

e =
(~v′

P
)y −��

�*negligible

(~v′
O

)y

��
�* 0

(~vO)y − (~vP )y

.

Then,

−(~vP )ye = (~v′
P

)y . (3)

(2 point) By kinematics:

~vP = ~vG +��7
0

~ω ×~r
P/G

= −vG ĵ,

~v ′
P

= ~v ′
G

+ ~ω′ ×~r
P/G

= −v′
G
ĵ + ω′k̂ × (dî)

= (−v′
G

+ dω′)ĵ.

Taking the y-components and using (3), we have

vGe = −v′
G

+ dω′ . (4)



(2 point) We now use conservation of angular momentum about O during the impact:(
~HO

)
before

=
(
~HO

)
after

then,
~r
G/P
×m~vG + Iωk̂ = ~r

G/P
×m~v ′

G
+ Iω′k̂

dmvG + I��>
0

ω = dmv′
G

+ Iω′ . (5)

(2 point) For a slender bar I = 1
12mL

2, then by (5) we have

dmvG = dmv′
G

+

(
1

12
mL2

)
ω′.

or

dvG = dv′
G

+

(
1

12
L2

)
ω′. (6)

Using (1) and (4), we have

v′
G

= dω′ −
√

2gh e . (7)

Using (6)

d
√

2gh = d(dω′ −
√

2gh e) +

(
1

12
L2

)
ω′,

from where we conclude

ω′ =
d
√

2gh(1 + e)

d2 +
L2

12

. (8)

(2 point) If e = 0

ω′ =
d
√

2gh

d2 +
L2

12

,

and we recover the result of (2).

(b) We now assume a general value for e.

(2 point) Using (7) and (8)

v′
G

=
d2
√

2gh(1 + e)

d2 +
L2

12

−
√

2gh e

=
√

2gh
d2(1 + �e)− (��d

2 + L2

12 )e

d2 +
L2

12

,



then we get

v′
G

=

d
2 − L2

12
e

d2 +
L2

12

√2gh.

(2 point) We now observe that to get v′
G

= 0 we need

d =

√
e

12
L . (9)

(2 point) In this case, the velocity of the center of mass of the bar is zero (v′
G

= 0). However,
the kinetic energy is composed of translational and rotational terms:

T =
1

2
m(v′

G
)2 +

1

2
I(ω′)2 =

1

2
I(ω′)2.

Then, we compute the angular velocity after the impact using (8) and (9):

ω′ =

√
e

12
L
√

2gh(1 + e)

e

12
L2 +

L2

12

=

√
e

12
L
√

2gh���
�(1 + e)

L2

12
���

�(1 + e)

and

ω′ =

√
24egh

L
. (10)

(2 point) Using (10), we compute the kinetic energy

T =
1

2
I(ω′)2 =

1

2

mL2

12

24egh

L2
= megh

giving the kinetic energy

T = emgh .


