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One of the most fascinating frustrated antiferromagnets, CuFeO2, contains stacked hexagonal layers,
each with an ↑↑↓↓ magnetic structure. Recent neutron-scattering studies have found that the
spin-wave spectrum softens with increasing magnetic field or by substituting Al for Fe. We present
a theory of the spin-wave excitations that fits the observed frequencies quite well and explains this
softening. © 2008 American Institute of Physics. �DOI: 10.1063/1.2834428�

Due to antiferromagnetic interactions between nearest
neighbors within each hexagonal layer, CuFeO2 provides one
of the best examples of a geometrically frustrated antiferro-
magnet. Like other geometrically frustrated
antiferromagnets,1 CuFeO2 supports competing ground states
that depend sensitively on the exchange interactions and an-
isotropy. In this paper, we study the relation between the
spin-wave excitations and the transformation between
ground states in Al-doped CuFeO2.

In zero field below 10.5 K, the S= 5
2 Fe3+ spins of

CuFeO2 are found to order along the z axis in the ↑↑↓↓ spin
configuration2,3 shown in Fig. 1�a�. At low temperature, the
spins are completely aligned with �Siz�= �

5
2 . Despite the ap-

parent “Ising-like� character of the Fe3+ spins, inelastic
neutron-scattering reveals that the spin-waves �SWs� are ac-
tually quite soft with an energy gap of only about 0.9 meV
on either side of the ordering wavevector Q.4,5 The SW gap
is found to decrease either with applied field along the z axis
or by substituting nonmagnetic Al3+ ions for Fe3+. At a criti-
cal Al concentration of about 1.6% �Ref. 4� or a critical mag-
netic field of about 7 T,6 the SW gaps vanish, the spin struc-
tures become noncollinear,7 and the crystals display
multiferroic behavior.6

Takagi and Mekata8 used mean-field theory to compare
the ground-state energies of different possible two-
dimensional, Ising-like spin configurations �all spins in the
�ẑ directions� with the nearest-neighbor antiferromagnetic
exchange J1�0 and the next-nearest and next-next-nearest
neighbor interactions J2 and J3 within each hexagonal plane,
as shown in Fig. 1�a�. They concluded that the ↑↑↓↓ spin
state is stable within the region of �J2 / �J1� ,J3 / �J1�	 phase
space sketched in Fig. 1�b�, bordered by the dashed lines and
extending down to J3 / �J1�=−�. Assuming that adjacent hex-
agonal planes are stacked antiferromagnetically, then the
nearest-neighbor antiferromagnetic coupling Jz along the z
axis and the single-ion anisotropy −D
iSiz

2 on every site do
not affect this phase diagram since the energy of each Ising-
like phase is changed by the same amount. However, those
terms are essential to accurately describe the spin dynamics
of the ↑↑↓↓ phase in CuFeO2.

The Hamiltonian of CuFeO2 in a magnetic field B=Bẑ
along the +ẑ direction is simply given by

H = −
1

2

i�j

JijSi · S j − D

i

Siz
2 − g�BB


i

Siz, �1�

where Jij =J1, J2, J3, or Jz, depending on the relative vector
Ri−R j between sites i and j. Although the actual magnetic
unit cell of CuFeO2 sketched in Ref. 5 contains six hexago-
nal layers, we assume a simplified crystal with only two
layers per magnetic unit cell and adjacent layers stacked one
on top of the other antiferromagnetically. This reduces the
number of inequivalent spins per unit cell from 12 to 4,
allowing us to provide an analytic expression for the SW
frequencies. Despite this simplification, the evaluated SW
dispersion along the qz axis agrees quite well with inelastic
neutron-scattering measurements, as shown elsewhere.5 In a
further simplification, we ignore the very small ��0.4% �
distortion of the hexagonal plane9 that reduces the energy of
one of the three ↑↑↓↓ phases with respect to the other two.
While this magnetoelastic distortion may be significant for
other properties, it changes the SW dynamics only very
slightly.
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FIG. 1. �Color online� �a� The spin arrangement �up spins are filled and
down spins are empty circles� of CuFeO2 in each hexagonal plane, with the
exchange parameters J1, J2, and J3 and the four inequivalent spins �, �, �,
and �. �b� The region in �J2 / �J1� ,J3 / �J1�	 phase space �with J1�0� where the
↑↑↓↓ phase is stable �Ref. 8� against other “Ising-like” phases is bordered by
the dashed lines and extends down to J3 / �J1�=−�. A fit to the observed SW
frequencies �Ref. 5� gives the solid point. When D / �J1�=0.2, the ↑↑↓↓ phase
is locally stable only within the smaller region bordered by the dashed and
dash-dotted lines.
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For the spin configuration shown in Fig. 1�a�, the anti-
ferromagnetic ordering wavevector is given by Q
= �	 /a ,0 ,	 /c�, where a�3.04 Å is the nearest-neighbor
distance in each plane and c�2a is the separation between
adjacent hexagonal planes. In the reference frames defined
by the primitive real-space translation vectors e1= �a /2�x̂
+ ��3a /2�ŷ, e2= �a /2�x̂− ��3a /2�ŷ, and e3=3cẑ and the cor-

responding reciprocal-lattice vectors, Q corresponds to the
wavevector � 1

4 , 1
4 , 3

2
�.

Employing a Holstein-Primakoff 1 /S expansion about
the classical limit, we express the spins Si on the inequiva-
lent sites �, �, �, and � in terms of the boson operators �i,
�i, �i, and �i. To first order in 1 /S, the Fourier-transformed
Hamiltonian can then be written as

H = E0 + 

q

�A�q��+���q
†�q + �q

†�q� + A�q��−���q
†�q + �q

†�q� + C�q���q�q + �q
†�q

† + �q�q + �q
†�q

†� + D�q���q
†�q + �q

†�q

+ �q�q + �q
†�q

†� + D�q����q
†�q + �q

†�q + �q
†�q

† + �q�q�	 , �2�

where E0
S2 is the mean-field energy, A�q����

=A�q��g�BB, and

A�q� = 2S�D − J1 + J2�1 − cos�qy
�3a��

− J3�1 + cos�2qxa�� − Jz	 , �3�

C�q� = − 2S�J1 + 2J3 cos�qy
�3a�	cos�qxa�

− 2SJz cos�qzc� , �4�

D�q� = − 2S cos�qy
�3a/2��J1eiqxa/2 + J2e−3iqxa/2	 . �5�

Notice that the �� ,� ,� ,�	 spins in one hexagonal layer are
coupled by the nearest-neighbor exchange Jz to the
�� ,� ,� ,�	 spins in adjacent layers.

Diagonalizing the Hamiltonian H is equivalent to solv-
ing two sets of coupled equations of motion. The first set for
vq= ��q ,�q ,�q

† ,�q
†� may be written in matrix form as

idvq /dt=−�H ,vq�=M� �q�vq, where the 4
4 matrix M� �q� is
given by

M� �q� =�
A�q��+� D�q� C�q� D�q��

D�q�� A�q��+� D�q� C�q�
− C�q� − D�q�� − A�q��−� − D�q�
− D�q� − C�q� − D�q�� − A�q��−�

� . �6�

The SW frequencies are then determined from the condition
Det�M� �q�−��q�I��=0 or

���q� − g�BB�2 = A�q�2 − C�q�2 � ��D�q�2 − D�q��2�2

+ 4�A�q�D�q� − C�q�D�q���2	1/2. �7�

The second set of coupled equations of motion for vq
† gives

the same expression but with a � sign before the g�BB term
on the left. Hence, each of the SW branches is linearly split
by �g�BB, as expected for an antiferromagnet.

As shown in Ref. 5, the parameters that provide the best
fit to the neutron-scattering data in zero field are J1S=
−1.14 meV, J2S=−0.50 meV, J3S=−0.65 meV, JzS=
−0.33 meV, and DS=0.17 meV. These values produce the
two upper SW modes plotted in Fig. 2 as the solid and
dashed curves. The qx axis has been scaled so that the order-

ing wavevector Q lies at the 1
4 point. Notice that the SW gap

of about 0.9 meV occurs at wavevectors q���

= ��1�0.18�	 /a ,0 ,	 /c� on either side of Q, as found
experimentally.4,5 Since the SW branches are linearly split in
a magnetic field, our results imply that the critical field re-
quired to destabilize the ↑↑↓↓ phase is Bc=0.9 meV /2�B

�7.7 T, just slightly larger than the experimental value.6

The exchange parameters given above correspond to
J2 / �J1�=−0.44 and J3 / �J1�=−0.57, which is denoted by the
solid point in Fig. 1�b�. Consequently, the ↑↑↓↓ phase is
stable against other Ising-like phases with spins aligned
along the �ẑ directions. The local �but not global� stability
of the ↑↑↓↓ phase is guaranteed by the positive values of the
SW frequencies for all q. In the limit D / �J1�→�, the ↑↑↓↓
phase is both globally stable against other Ising-like phases
and locally stable against slight rotations of the spins �since
all the SW frequencies would be infinite� in the whole region
of Fig. 1�b� bordered by the dashed lines and extending
down to J3 / �J1�=−�. However, as D / �J1� decreases, the ↑↑↓↓

FIG. 2. �Color online� The SW frequencies along the qx direction with qy

=0 and qz=	 /c. The solid and dashed curves denote the two SW branches
for the exchange parameters given in the text. The upper solid and dashed
curves are for anisotropy DS=0.17 meV and the lower for DS=0.12 meV.
The measured SW frequencies for Al doping of 0.02 �Ref. 4� are plotted as
the solid points.
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phase remains locally stable within a shrinking region of
�J2 / �J1� ,J3 / �J1�	 phase space. For a given set �J1 ,J2 ,J3	 of
exchange parameters, the ↑↑↓↓ phase becomes locally un-
stable when D�Dc since the SW frequencies become nega-
tive near q���. For the exchange and anisotropy parameters
given above, DS=0.17 meV and DcS=0.12 meV. When
D / �J1�=0.2, the ↑↑↓↓ phase is stable within the small region
of Fig. 1�b� bordered by the dashed and dash-dotted lines,
which contains the solid point. Since the lattice is not frus-
trated along the z direction, the value of Jz does not effect the
boundaries for the stability of the ↑↑↓↓ phase.

Doping with Al is found to soften the SW frequencies of
CuFe1−xAlxO2 at the same wavevectors q��� where the lower
SW branch of pure CuFeO2 has minima.4 As shown in Fig. 2,
reducing the SW anisotropy parameter DS from 0.17 meV to
DcS=0.12 meV provides a good fit to the the measured fre-
quencies with an Al doping of x=0.02, slightly above the
critical value of 0.016. Notice that both the measured and
theoretical frequencies exhibit a linear dispersion about q���.
Therefore, the dominant effect of swapping Fe3+ for Al3+

may be to suppress the single-ion anisotropy while keeping
the other exchange parameters relatively unchanged. Though
the present theory clearly indicates that the ↑↑↓↓ phase be-
comes unstable when B
Bc or when D�Dc, we have thus
far been unable to determine the nature of the “noncollinear-
incommensurate� phase6,10 that is stable above 7 T or when
the Al concentration exceeds 0.016.

The low value of the anisotropy parameter D implies
that the Fe3+ moments can fluctuate much more readily than
the Ising-like nature of their long-range order might suggest.
Conversely, it is difficult to understand how Fe3+ ions with
S= 5

2 and L=0 can exhibit any magnetic anisotropy at all.

One possibility is that due to oxidation, the admixture of S
=2 Fe2+ impurities permits single-ion magnetic anisotropy D
to develop. If the Al3+ dopants preferentially replace the Fe2+

rather than the Fe3+ ions, then they would have the effect of
decreasing the anisotropy D. Hopefully, future experiments
will confirm this hypothesis.
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