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While a magnetic phase may be both locally stable and globally unstable, global stability always

implies local stability. The distinction between local and global stability is studied on a

geometrically-frustrated triangular lattice antiferromagnet with single-ion anisotropy D that

favors alignment along the z axis. Whereas the critical value Dloc
c for local stability may be

discontinuous across a magnetic phase boundary, the critical value Dglo
c � Dloc

c for global

stability must be continuous. We demonstrate this behavior across the phase boundary between

collinear three and four sublattice phases that are stable for large D. VC 2011 American Institute of
Physics. [doi:10.1063/1.3553780]

Although quite well understood in many contexts, the

distinction between local and global stability is seldom

applied to the magnetic phase diagram of a complex sys-

tem. This paper studies the distinction between local and

global stability on a frustrated triangular-lattice (TL)

antiferromagnet (AF) with single-ion anisotropy D that

favors the alignment of classical spins along the z axis.

With decreasing D, the collinear magnetic phases even-

tually become unstable to noncollinear spin states. The

critical value for global stability Dglo
c must exceed or

equal the critical value for local stability Dloc
c of any

collinear phase. Whereas Dloc
c may be discontinuous

across a magnetic phase boundary, Dglo
c must be a con-

tinuous function of the exchange parameters Jij.

A TLAF with exchange interactions J1 < 0, J2, and J3

(up to third nearest neighbors) is sketched in the inset to Fig.

1. Even for Ising spins, the TLAF has a rather complex phase

diagram containing five collinear magnetic phases with 1, 2,

3, 5, or 8 sublattices (SLs).1 A portion of the magnetic phase

diagram with J2 > � jJ1j=2 and J3 < 0, shown in Fig. 1,

contains 2SL, 3SL, and 4SL phases. The 2SL phase is a sim-

ple AF; the 3SL and 4SL phases are sketched in the inset to

Fig. 1. The 4SL or ::;; phase is particularly important

because it appears at low temperatures in the hexagonal

planes of pure CuFeO2.2

The energy of a TLAF with anisotropy D and classical

spins Si is given by

E ¼ � 1

2

X
i6¼j

JijSi � Sj � D
X

i

Siz
2: (1)

The Ising limit is obtained as D!1, which confines the

spins to the z axis. As D decreases, the collinear phases even-

tually become unstable, first globally and then locally.

Local stability of a magnetic phase with classical spins

can be tested by performing a 1/S expansion about the classi-

cal limit. A phase is locally stable if the spin-wave (SW) fre-

quencies are real and the SW weights are positive.3 The

softening of a SW mode signals that the magnetic phase is

no longer locally stable.4 In recent work,5 we evaluated the

critical values Dloc
c for the local stability of all five collinear

phases in the TLAF.

Surprisingly, the 2SL, 4SL, and 8SL regions break into

subregions where the conditions for local stability are differ-

ent. There are two distinct subregions of the 4SL phase. In

subregion 4II, bordered by the solid lines and and to the right

of the dashed curve J3 ¼ J2
2=ðJ1 � 2J2Þ in Fig. 1, the SWs

soften at the wavevector QSW ¼ ð4p=3Þx in the x direction

(or in the equivalent hexagonal directions rotated by 6p=3),

regardless of the exchange interactions. But in subregion 4I,

bordered by the solid lines and to the left of the dashed curve,

the SWs soften at a wavevector QSW that sensitively depends

on the exchange interactions.6 It is believed7 that the

exchange parameters of pure CuFeO2 (neglecting the intra-

layer exchange) occupy subregion 4I with QSW � 0:85px.

The critical values for local stability of the collinear

phases were obtained throughout the fJ2=jJ1j; J3=jJ1jg phase

diagram with J1 < 0.5 We found that Dloc
c was continuous

across all phase boundaries except those involving the 3SL

phase: Dloc
c was discontinuous across both the 2SL-3SL and

the 4SL-3SL phase boundaries with Dloc
c three times higher in

the 3SL phase than in the neighboring 2SL and 4SL phases.

It is easy to prove that the critical anisotropy for global

stability must be continuous across any phase boundary.

Imagine that phases 1 and 2 have different values of Dglo
c

such that phases 1 or 10 are globally stable for J > 0 when

D > Dc1 or D < Dc1 and phase 2 is globally stable for J < 0

when D > Dc2 where Dc2 < Dc1. Since phases 1 and 2 are

degenerate at the J ¼ 0 phase boundary for D � Dc1, their

energies E1 and E2 must be equal when D ¼ Dc1. However,

for Dc1 > D > Dc2 and J ¼ 0, the energy E10 of phase 10

must be smaller than the energy E2 of phase 2. Since the
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energy must be a continuous function of J, this leads to a

contradiction. Hence, the critical value for global stability

must be continuous across the J ¼ 0 phase boundary.

We conclude that the critical anisotropy for the global

stability of the 4SL phase near the 4SL-3SL phase boundary

must be at least three times higher then the critical anisot-

ropy for its local stability. To obtain the globally stable

phase, we use the recently developed technique of Fishman

and Okamoto8 to construct trial spin states containing odd-

order harmonics of the fundamental wavevector Q:

SzðRÞ ¼ A cosðQxÞ þ
X1
l¼1

C2lþ1 cos Qð2lþ 1Þxð Þ
( )

; (2)

SyðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SzðRÞ2

q
sgn sinðQxÞð Þ; (3)

where the amplitude A is fixed by the constraint that

maxjSzðxÞj ¼ 1 and the lattice constant is set to 1. Notice

that SðRÞ ¼ SðxÞ depends only on x. The anharmonic coeffi-

cients C2lþ1>1 reflect the deviation from a pure cycloid with

SðxÞ ¼ 0; sinðQxÞ; cosðQxÞð Þ. The coefficients C2lþ1 and the

wavevector Q are treated as variational parameters that mini-

mize the energy E of Eq.(1).

The energy E was minimized within a unit cell of length

5000 with open boundary conditions in the x direction. Dou-

bling the length of the unit cell has no noticeable effect on

the amplitudes C2lþ1. Throughout the phase space of Fig. 1,

only the third and fifth harmonics C3 and C5 are significant

and harmonics above C5 can be neglected. The anharmonic-

ity becomes weaker with decreasing D and pure spirals with

C2lþ1>1 ¼ 0 are recovered as D! 0.

In the 3SL region, the stable phase below Dglo
c has wave-

vector Q ¼ ð4p=3Þx with the spin configuration shown in the

inset to Fig. 2(a). If the spin on site site 1 points up, the spins

of neighboring sites 2 and 3 point at angles 6h toward the

�z direction. Since odd multiples of Q ¼ ð4p=3Þx are either

equivalent to the Bragg vector 4px or to Q itself, Eqs. (2)

and (3) imply that this spin configuration has z component

SzðRÞ ¼
cosð4px=3Þ þ f

1þ f
; (4)

where f is a constant. Because the angle h is given by the

relation cos h ¼ ðf � 1=2Þ=ð1þ f Þ, the 3SL phase with h ¼ p
is recovered when f ¼ �1=4.

The critical value Dglo
c =jJ1j in the 3SL region depends

only on J3=jJ1j and not on J2=jJ1j > 0. We find that the condi-

tions for global and local stability coincide with Dglo
c

¼ Dloc
c ¼ 3ðjJ1j þ jJ3jÞ=2. Lines of constant critical anisotropy

(iso–anisotropy curves) are sketched in Fig. 1 in increments

FIG. 2. (Color online) The angle h for the noncollinear spin state with

wavevector 4p/3 versus D=jJ1j (a) in region 3SL for any J2=jJ1j > 0 and (b)

in region 4ii with J3=jJ1j ¼ �1.

FIG. 1. (Color online) The phase diagram of a

TLAF with interactions J1 < 0, J2, and J3

denoted in the bottom inset. The region of sta-

bility for the 4SL phase with strong anisotropy

D is bordered by the solid lines. The thin iso–

anisotropy curves provide values for the critical

global anisotropy Dglo
c =jJ1j in increments of 0.2.

Spin states of the 3SL and 4SL phases with up

(filled circles) and down (empty circles) spins

are sketched in the inset.
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of 0.2. In Fig. 2(a), h smoothly decreases from p (the 3SL

phase) for D > Dglo
c to 2p/3 (the ‘‘120� phase’’) as D! 0.

On the left side of the J2 ¼ 0 phase boundary but to

the right of the solid curve, the stable phase below Dglo
c is

precisely the same Q ¼ ð4p=3Þx phase described above.

For any J2 < 0, the transition between the 4SL phase and

the phase below Dglo
c is first order, as shown in Fig. 2(b),

with h < p just below Dglo
c . The critical values for global

stability Dglo
c always exceed the critical values for local

stability Dloc
c calculated earlier.5 Just to the left of the 4SL-

3SL phase boundary, Dglo
c is precisely three times higher

than Dloc
c so that the iso–anisotropy curves sketched in

Fig. 1 continuously join those on the right side of the

J2 ¼ 0 phase boundary. Hence, our results obey the theorem

that the iso–anisotropy curves must be continuous across

any phase boundary.

More surprisingly, the region of stability for the 4p/3

phase does not extend all the way to the boundary of the 4I

subregion evaluated earlier5 using the conditions for local

stability. We have denoted 4ii as the stable subregion for the

4p/3 phase. To the left of the solid curve in subregion 4i, the

low-D state is no longer the 4p/3 state but rather is character-

ized by nonzero coefficients C3 and C5 and by a wavevector

Q that depends sensitively on the exchange parameters. As

seen in Fig. 1, the iso–anisotropy curves in region 4i continu-

ously join the iso–anisotropy curves in subregion 4ii. So as

expected, the critical values for global stability are continu-

ous across the 4i-4ii phase boundary.

In earlier works,5,6 we speculated that the dominant SW

instability wavevector QSW of the collinear phase just above

Dloc
c corresponds to the dominant ordering wavevector QNC

of the noncollinear phase just below Dglo
c . This seems to be

the case when Dloc
c ¼ Dglo

c and the phase transition is second

order, such as for the 3SL phase with parameters plotted in

Fig. 2(a). However, this conjecture is violated, sometimes

spectacularly, when Dglo
c > Dloc

c and the phase transition is

first order. For example, between the solid and dashed curves

lying within subregion 4i sketched in Fig. 1, QSW ¼ ð4p/3Þx
but QNC sensitively depends on the exchange parameters.

Even within subregion 4i to the left of the dashed curve,

where both QSW and QNC depend on the exchange parame-

ters, QSW and QNC are not precisely equal.

Of course, it is possible that the trial spin state employed

in this work does not provide the lowest-energy solution of

Eq. (1). However, the continuous iso–anisotropy curves pro-

vide us with great confidence in our variational solutions.

Like a jig-saw puzzle, the stable phases of the TLAF can be

pieced together one subregion at a time, with the continuity

condition providing assurance that the puzzle is being

assembled correctly.

For example, the global critical values to the right of the

J2 ¼ �jJ1j=2 phase boundary between the 4SL and 8SL

phases are now substantially higher than the local critical

values. This places severe constraints on the noncollinear

spin state in the neighboring 8SL region. Along the

J3 ¼ J2=2 phase boundary between the 4SL and 2SL phases,

the global critical values are again larger than the local criti-

cal values, except when Dglo
c ¼ Dloc

c ¼ 0 for J2 ¼ �jJ1j=3.

So our results for the 4SL phase place severe constraints

on the noncollinear spin state of the neighboring 2SL region.

We hope that this work will prove useful in obtaining a com-

plete solution of the classical TLAF in the future.
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